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introduction

Advanced Higher Physics course content
The Advanced Higher Physics course has four units:

•
Mechanics (40 hours)

•
Electrical Phenomena (40 hours)

•
Wave Phenomena (20 hours)

•
Physics Investigation (20 hours)

The syllabus for the course is written in terms of Content Statements.  These Content Statements are divided into sections, with the first three sections covering the knowledge and understanding required for Mechanics, Electrical Phenomena and Wave Phenomena.  The fourth section covers Units, prefixes and scientific notation and Uncertainties.  This section applies to all of the units of the course.

Physics Staff Guide content
This Staff Guide covers the course content for the three units:  Mechanics, Electrical Phenomena and Wave Phenomena.  A separate booklet covering Uncertainties is to be published.

Each unit is divided into subsections in line with the topic areas of the syllabus.  The Mechanics unit divides into kinematic relationships and relativistic motion, angular motion, rotational dynamics, gravitation, simple harmonic motion, and wave-particle duality.  The Electrical Phenomena unit divides into electric fields, electromagnetism, the motion of charges in a magnetic field, and self inductance.  The Wave Phenomena unit divides into general wave properties, interference – division by amplitude, interference – division by wavefront, and polarisation.  For each unit, illustrations and discussion of everyday applications are included.

These notes have been written to support staff introducing the course.  As such they are fuller than is required to cover the material of the syllabus.  Material is included with the intention of stimulating further interest, as useful background, or to exemplify the ‘Contexts, Applications, Illustrations and Activities’ referred to opposite the Content Statements.  In some cases a derivation is given where this might be used to aid understanding, even 

though not a strict requirement of the syllabus.  In such cases the syllabus requirements are stated.  Where material clearly goes beyond the demands of the syllabus it has been put in a box.  For example, material has been included which extends the Content Statements or which give a mathematical proof or explanation significantly beyond the syllabus requirements.

These notes are not to be seen as prescriptive in any sense, and should be regarded as helpful suggestions and not directions.

Although there are currently several textbooks available for courses at this level, there is no one book that satisfactorily covers the content of this course.  A bibliography is given at the end of each unit of some titles that teachers or students may find useful.  Similarly, reference is made in the text to articles that have appeared in journals.  These are also listed at the end.  The Internet and World Wide Web are fruitful, if often frustrating, sources of interesting material.  Useful sites relevant to Advanced Higher Physics can be found by going to the Institute of Physics – Scottish Branch Web page (www.ph.ed.ac.uk/IoP/) and click on Resources for Schools.  The intention is that this will carry up-to-date addresses of sites that have material relevant to the teaching of Scottish physics courses.

Physics

Physics Staff Guide

Unit 1:

Mechanics

Unit 1

Kinematic relationships and relativistic motion
Students should be familiar with the vector nature of displacement, velocity and acceleration, but should be warned that these names are often used to denote the equivalent scalar quantities, especially velocity and acceleration.  

The equations of motion are derived using elementary calculus methods, starting from the definition of acceleration a as the rate of change of velocity v, which itself is the rate of change of displacement s:
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(M1)

As this may be the introduction to Advanced Higher Physics, care should be taken not to assume too much mathematical sophistication on the part of students.  Those who have studied Higher Mathematics, which will probably be the majority, will have met integration, but may not have become comfortable with it nor be used to its application outside the mathematics class.  Some point can be given to the derivation below by referring to the fact that inertial navigation (IN) systems in ships and aircraft calculate displacement from a (known) starting point by first sensing acceleration (how this might be done could be discussed).  The next step is to perform electronically two successive integrations of the acceleration with respect to time.  The first integral gives the velocity, and the second gives the displacement.  (Three-dimensional positioning requires three separate axes to be considered and so the acceleration along each of three axes must be measured and integrated.)  More recently, ships, aircraft, lorries, cars and individuals have made use of very accurate timing signals from global positioning system (GPS) satellites to establish their position to within a few tens of metres (Masella, 1999; Walton and Black, 1999).  Some systems use both IN and GPS in order to have independent checks on position determinations (Gordon, 1998).

The case of constant acceleration only is considered:
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(Note that the constant of integration c is not simply a number; it is a physical quantity, a velocity, and has a value and units.)

If, at time t = 0, v = u, then c = u.

Therefore, v = u + at
(M2)

Similarly, since 
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, we can integrate again:
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(This time the constant of integration is a displacement.)

If, at time t = 0, s = 0, then c = 0.

Therefore, 
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(M3)

The third equation, namely v2 = u2 + 2as
(M4)

can be found from the equations M2 and M3 by eliminating t between them.

Students may not be aware that equation M4 is related to the conservation of energy principle.  To see that this is so, both sides of the equation can be multiplied by the mass m of the body experiencing the motion and divided by 2.

This gives
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Now ma is the force F accelerating the mass m, and so we have


[image: image13.wmf]Fs

mu

mv

+

=

2

2

1

2

2

1


Fs is the work done by the accelerating force.

The other terms are the initial and final kinetic energies, giving:

Final kinetic energy = Initial kinetic energy + Work done by accelerating force
Interesting calculations might include verification of the Highway Code stopping distances, and comparing a saloon car performance with a Formula 1 racing car.

Equation M1 implies that an object can be accelerated to any (high) speed.  But according to Einstein’s theory of Special Relativity (proven experimentally beyond all reasonable doubt!), no object can be accelerated to the (vacuum) speed of light, c!  
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Equations M2, M3 and M4 must, therefore, have limitations, and cannot be applied to objects accelerated to high speeds (greater than about 

107 m s–1, which is less than 10% of c).  This is explored more fully in the Electrical Phenomena unit by applying the equation 
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 to evaluate the speed of electrons that have been accelerated from rest by potential differences V = 100 V, 1000 V and 1 000 000 V.   Electrons in, for example, high-voltage electron microscopes commonly attain ‘relativistic’ speeds.

It is useful to consider what has to happen to the physical quantities in equation M2 in order to prevent v from reaching the upper limit c.  As t becomes larger and larger, a must become smaller, if the product at is not to keep on increasing indefinitely.  Now, a basic definition of acceleration is that it is equal to F/m, and it therefore follows that the mass of the object must increase as its speed increases!

The special relativity equation, which describes the variation of mass with speed, is
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(M5)

in which m0 is the rest mass of the object.  Figure M1 illustrates equation M5, and it shows that as the speed of an object increases towards c, its mass increase ratio, m/m0, tends to infinity – the object cannot be accelerated exactly to c.

Figure M1: Variation of mass increase ratio with v/c
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In big particle accelerators, particles are injected from smaller accelerators and their energy (and mass) increase greatly.  In the larger accelerator, the increase in speed is small because the particles are travelling at close to the speed of light when they leave the small accelerator.  For example, electrons leaving a linear accelerator with an energy of 15 MeV have a velocity of approximately 0.9995c.  After being injected into a larger 5 GeV accelerator, their final speed is approximately 0.9999995c.


Figure M2: E = mc2
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Albert Einstein’s famous equation E = mc2 is known (maybe not understood!) by all physicists and by many non-physicists.  In his theory of special relativity, published in a series of papers during the period 1905–1907, he showed that all energy, necessarily and inevitably, has mass.  

Conversely, all mass has energy.  An object at rest has relativistic energy 

E0 = m0c2, where m0 is its rest mass.  If the object gains kinetic energy T, its mass is increased by an amount equal to T/c2, where c is the speed of light.  Its new energy E is E0 + T, and its new mass, its 

relativistic mass, m (see later for controversy on this term) is 
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The equation E = mc2 applies whether or not the object is at rest, provided the distinction between relativistic mass m and rest mass m0 is understood.  Note that kinetic energy T is not defined to be ½mv2 in this approach.  It is simply the difference between the relativistic energy mc2 and the rest energy m0c2:
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(M6)

One of the first applications of E = mc2 that physics students encounter is in the determination of the binding energy of the nucleons in a nucleus (Figure M3).  For example, a 12C atom might be thought to have the same mass as six hydrogen atoms and six neutrons, but this is not the case.  The mass of the 12C atom is slightly less than the sum of the masses of its constituent particles.  (Note that atomic, not nuclear, masses are used in such calculations.)  This mass ‘loss’ is commonly called the mass defect, and the energy equivalent is that required to bind the nucleons (especially the protons) together in the 12C nucleus.  Details of the binding energy are not required by the syllabus.

Figure M3: Binding energy per nucleon plotted against atomic mass number
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Consider the following fission example:
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The sum of the rest masses of the uranium nucleus and the neutron is greater than the sum of the rest masses of the particulate fission products.  The kinetic energy of the fission products equals this mass difference.  Relativistic mass, which is related to relativistic energy by the factor c2, is conserved in the reaction.

The barium and krypton nuclei are more stable than the nucleus of uranium – their nucleons are more tightly bound than those of uranium (see Figure M3).  The difference in binding energy is released when the above reaction takes place.

In the same way, the energy released in the explosion of trinitrotoluene (TNT) results from the disintegration of the relatively unstable TNT molecules to more stable, smaller molecules.  This is a chemical reaction and the binding energies involved are much smaller of course.  The difference in rest mass of the TNT molecule and the gaseous final products is too small to measure directly, but is equal to the kinetic energy release divided by c2, just as in the nuclear fission case.

Relativistic mass
It is a mark of the significance of, and interest in, the equation 
E = mc2, that learned papers are still being written on the interpretation of the equation and on how it should be taught.  It is important for the reader to realise that such discussions continue to take place, but no attempt will be made here to address the problems raised in the papers in detail.  The debate revolves around what is meant by mass.  In spite of possible protest from some authorities, it is still considered useful, at this level of study, to introduce the concept of a variable, relativistic mass of an object.

The two equations E = mc2 and 
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 can be combined to give
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(M7)

The denominator can be expanded using the binomial theorem to show how the results of the new dynamics relate to Newtonian mechanics, i.e. at speeds that are small compared with that of light.
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(M8)

If the condition v<< c is satisfied, then the total energy of an object travelling at speed v is the sum of the rest energy of the object and its kinetic energy ½m0v2.

Again, the reader should be aware that not everyone agrees (Adler, 1987) that the concept of relativistic mass should be introduced at all, and that some consider that it can be positively misleading.  The problem here is that one can argue that there are several different relativistic masses, depending on how mass is to be used, as the following consideration of linear and angular acceleration shows. 

Force is best defined as the rate of change of momentum:
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in which m is the relativistic mass of an object and v is its speed.  Recall that kinetic energy is best defined as the difference between relativistic energy and rest energy (equation M6).  

In the case of linear motion, the accelerating force is
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which shows that a ‘mass’ of 
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 should be used in the 

relationship force = mass × acceleration.
However, in the case of uniform circular motion, it is necessary to recall the vector nature of the problem: the accelerating force is at right angles to the direction in which the object is moving.  The relativistic mass m and the magnitude of 
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 are both constants of the motion, so that a mass of 
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 should be used in the relationship force = mass× acceleration.
Relativistic linear motion is mentioned in the Electrical Phenomena unit.  If illustrated there, it is best to approach it using kinetic energy increase = qV, rather than introduce the ‘mass’ that involves the 
[image: image32.wmf]2
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 power.

The rest energy of an electron is often expressed in electronvolt units, and it is approximately 0.5 MeV.  The beta particles emitted by a strontium-90 source, to which some teachers may have access, can have kinetic energies of more than 2.0 MeV, which is four times the electron’s rest energy.  Such electrons have a relativistic mass five times their rest mass!

One of the first measurements of the charge to mass ratio of beta particles from a radioactive source was performed by Bucherer in 1909, and his measurements confirmed Einstein’s formula, equation M5.

The velocity of light
There are two points to be made about the velocity of light:

(a)
Since 
[image: image33.wmf]2
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 it follows that there is a speed limit for any


object, namely the speed of light.

(b)
The speed of light in a vacuum is the same for all observers.

The speed of light in a vacuum is absolute!  All observers, no matter what their relative motion, would measure the speed to be 299 792 458 m s–1.  All electromagnetic waves travel at this speed (in a vacuum).

The important principle of  ‘relativity in motion’ is generally attributed to Newton and Galileo (Ryder, 1987).  This implies that there is no physical difference between being at rest and moving at a uniform velocity.  There is no absolute space, and no such thing as absolute speed; meaning may only be attached to relative speed.

At this stage it is important to ensure that ‘relativity’ in the everyday sense is well understood.  Examples include the following:

•
On which side of the road is the house – left or right?  It is impossible to answer this question directly unless one knows in which direction the questioner is facing.

•
How fast is the bus travelling? ‘Relative to what?’ should be the response of the physicist!  The answer depends on who asks the question: the observer on the pavement, the passenger on the bus or the driver of an approaching car.

After this ‘relativity of motion’ concept has been grasped, the strange property of light can be properly appreciated.  

The speed at which light travels away from a light source is independent of the motion of the source relative to the observer.  This has been verified directly by measuring the speed of the high-energy photons resulting from the decay of neutral 
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The speed of the photons emitted in the forward direction from 
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 mesons travelling at 99.975% of the speed of light was measured absolutely by timing over a known distance AB 
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 30 m (Figure M4).  The result of the experiment was in agreement with the speed of light emitted from stationary sources.

Figure M4: Measuring the speed of high-energy photons
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Angular motion
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Before starting work on this section, students should be clear about angular measure, be familiar with the radian and be alert to the possible pitfalls of using their calculators in degrees mode when radians mode should be used, and vice versa.  

An angle of 60° is easily visualised – this is not much larger than one radian (57.3°).

A student on a rotating platform, with arms outstretched, holds a 2 kg mass in each hand.  If the student is rotated slowly this provides an interesting introduction to the measurement of angular velocity.

The angular velocity, in radians per second, can easily be found by using a stopwatch to find the time for a few revolutions.

If the student then draws in his or her arms, a noticeable increase in rotation rate will be observed, which can lead to (dizziness and) discussion about the cause, leading on to the angular momentum section later.

Alternatively, a sector of size 
[image: image41.wmf]8
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 radians could be cut from card and attached to a turntable, overhanging, so that it intercepts a light beam on its passage to a photocell (Figure M5).  The time of passage of this sector allows the angular velocity to be calculated.

Figure M5: Turntable with sector
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If the turntable is subject to a braking force, and is turning slowly enough, the time for this sector to pass can be noted at successive times recorded on a stopwatch, and the angular velocity plotted as a function of time.  From the graph the average angular acceleration can be found.

The equations of motion involving angular displacements and velocities at constant angular acceleration can be derived in the same way as was done for the linear case, and the similarities between the two sets of equations pointed out.  These angular derivations are not a requirement of the syllabus, but their derivation helps to reinforce the calculus.

The case of constant acceleration only is considered:
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(c, the constant of integration, is an angular velocity)

If at time t = 0, 
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and so 
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(M11)

Similarly, since 
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 = 
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 , we can integrate again:
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(c, the constant of integration, is an angle.)

If 
[image: image53.wmf]q

 = 0 when t = 0, then c = 0, and
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(M12)

As before, eliminating t between equations M11 and M12 we can form a third equation:
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(M13)

The equations of uniform linear and angular motions are summarised in Table M1.

Table M1:  The equations of uniform linear and rotational motions

Linear 
Rotational

v = u + at
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s = ut + ½at2
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v2 = u2 + 2as
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Uniform motion of a particle in a circular path
An object moves through an angle 
[image: image59.wmf]q

, from A to B, along a circular path of radius r, as shown in Figure M6, at constant speed v and in a time t.

Figure M6:  Motion in a circle
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The arc distance AB is
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, where 
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 is measured in radians.  The speed v of the particle is therefore 
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 is the angular velocity 
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 of the particle.  Therefore
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If the object is accelerating along the circular path, at any instant this acceleration a is
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(M15)

In order to establish the relationships between the factors affecting circular motion – mass, velocity and radius – an experiment using an air-bearing turntable can be carried out.  A much less expensive variant is to use a small mass such as a rubber stopper tied to a thread which is passed through a rigid 

tube such as the outside of a ballpoint pen (Figure M7).  A hanger and slotted masses of 10 g are hung on the other end of this to provide the central force.
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Figure M7: Investigating motion 

in a circular path

The thread is adjusted to a certain radius r and the mass swung so that it performs stable orbits for a given counterweight W.  The period, and hence the angular velocity, can be found using a stopwatch to time several revolutions.  Systematic variation of r and W allows exploration of the relationships
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Once the relationships have been established experimentally, they should be treated theoretically.  One method for deriving the central acceleration is suggested below.
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When the object in Figure M6 moves from A to a point B which is very close to A, it does so in a very short time interval
[image: image69.wmf]t

d

.  Its velocity vector, which was vertical at A, rotates through a very small angle 
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 as shown in Figure M8.
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The vector representing the small change in velocity is almost horizontal, that is it (almost) points towards the centre of the circle.  Hence, the (instantaneous) acceleration is towards the centre of the circle.

The length of the small vector is (almost) 
[image: image71.wmf]dq
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.  Therefore, the (magnitude of the) acceleration is 
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In carrying out the derivation, and in discussion, care should be taken to avoid any difficulty arising from the possible confusion of radial and angular acceleration.

Discussion is possible about centripetal and centrifugal forces, and the reality or otherwise of these (Halstead and James, 1984).  It should be pointed out that the laws of motion are valid for inertial (non-accelerated) frames of reference, and that an observer who is subject to rotation is in a non-inertial frame.  Most people have experienced the sensation of being in a car which is turning a corner at a fairly high speed.  The feeling of being ‘thrown to the outside of the curve’ is very strong, especially if you slide along the seat.  The proper view is that the friction between yourself and the seat is insufficient to provide the centripetal force required to deviate you from the straight-line path you were following before the turn.  Instead of being flung out, you are continuing on a straight (or almost straight) line, whilst the car moves inward.  Eventually you are moved from the straight-line path by the inward (centripetal) force provided by the door.

An object moving on the surface of the Earth is in a rotating (non-inertial) frame of reference, but for most situations the motion is little different from that in an inertial frame.  One important exception is the warm air generated at the Equator with an eastward velocity of about 460 m s–1 (1040 miles per hour).  It makes its way to the colder northerly or southerly regions, where the air has an eastward velocity somewhat less than at the Equator.  Consequently, the air moves eastward – the Coriolis effect.  The complex interactions between the migrating air and the Earth’s surface give rise to its very variable weather patterns.

A pendulum swinging for a long time will appear to rotate – the Foucault pendulum.  These are an attraction in some science centres, but the explanation of their behaviour is difficult to grasp for some.  In the classroom, a long pendulum could be set swinging parallel to a line on the floor (deliberately drawn to the attention of students), and the students asked to consider the question: ‘in what direction will the pendulum be swinging after an hour or more?’.  In the absence of any (obvious) external influences, the answer given will probably be: ‘parallel to the line on the floor’.  Students should then be asked to reconsider the question after the teacher sets the pendulum swinging towards the Sun.  The effect may be demonstrated in a short time scale using a pendulum hung from a small hole near the end of a metre stick.  The pendulum is set swinging parallel to the edge of a lab bench.  If the metre stick is carefully rotated (representing the rotation of the Earth) the direction of the swinging pendulum is unchanged.

A playground roundabout provides a striking demonstration of the difference between an inertial and a non-inertial frame.  If you sit on the circumference rail and swing your legs along a radius of the roundabout as it is rotating, you will experience the Coriolis effect.

Rotational dynamics

A rod (Figure M9), of length r, on a smooth horizontal surface, is smoothly pivoted at one end A so that it is free to rotate about A.  A force F acts at the free end B at right angles to the rod, as shown.  Clearly, this force will turn the rod in an anticlockwise direction and, because it is smoothly pivoted, it will undergo angular acceleration.
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Figure M9:  Defining the moment of a force
The twisting effect or moment of the force about A is defined as Fr, also called the torque, T.


T = Fr
(M17)

If the force acted halfway along the length of the rod, the torque would be Fr/2, and the angular acceleration would be much less (see later for a more quantitative statement). 

In the case of a force that does not act at right angles to the rod (Figure M10), the moment is reduced by a factor of sin
[image: image73.wmf]q

, to Fr sin
[image: image74.wmf]q

.

Figure M10: Refining the definition of the moment of a force

Students should be reminded of the resolution of vectors.  In this case, if F is resolved into two components, one at right angles to the rod, 
F sin
[image: image75.wmf]q

, and the other along the rod, F cos
[image: image76.wmf]q

, then only the component 
F sin
[image: image77.wmf]q

 will produce any turning effect on the rod, so that the moment of F is Fr sin
[image: image78.wmf]q

.

In Figure M11, a particle of mass m is attached to a smooth pin at O by a light, taut string.  A force F causes the particle to accelerate.

Figure M11: Defining moment of inertia for a single particle
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The distance s moved by the particle along the circular path it is forced to traverse is found from one of the equations of uniformly accelerated motion (Equation M3):

s = ut + ½at2
In this case, the distance s is the length of the arc of a circle, and is related to the angle of rotation θ by 

s = r
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The ‘linear’ acceleration a of the particle 
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 is therefore 

related to the angular acceleration 
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(See also the section ‘Uniform motion of a particle in a circular path’, page 14.)

F is related to the torque T by T = Fr, so that
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The important thing to note is that the angular acceleration depends on the mass of the particle and the square of its distance from the axis of rotation.  The quantity mr2 is called the second moment or moment of inertia of the particle about the axis at O.

The argument may be extended to a large rigid object that is constrained to rotate about an axis O (Figure M12), and which is subjected to a torque T. 

Figure M12: Defining the moment of inertia of an extended object
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If the rigid object is thought of as a rigidly linked structure of small particles, then (i) each particle will undergo the same angular acceleration α (otherwise the object would not be rigid) and (ii) each particle, mass mi and distance ri from the axis of rotation, experiences a small force Fi and hence a small torque Ti = Firi = miri2 
[image: image86.wmf]a

 (using equations M17 and M19).  The sum of all these torques will be T, that is
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in which the summation is over all particles making up the rigid object.  The quantity ∑imiri2 is the moment of inertia I of the rigid object:
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which, in general, has to be found by integration.  We therefore have:
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The similarity of this to F = ma should be noted.

Referring back to Figure M11, the ‘linear’ momentum of the particle is mv.  This is a vector quantity, just like F, and points in the same direction as F.  The moment of mv about O is defined in the same way as the moment of F (Equation M17) and is called the angular momentum of the particle:


angular momentum = mvr = mr2
[image: image90.wmf]w


(M23)

Again, notice the important quantity mr2 in the relationship.  For a (large) rigid object the angular momentum L is
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Furthermore, just as linear momentum is conserved when there are no external forces, so also angular momentum is conserved in the absence of external torques.

Linear momentum is a vector quantity, the direction being that of the velocity.  The vector nature of angular momentum is more subtle.  Its direction is that in which a screw with a right-handed thread would advance (Figure M13).

Figure M13: Defining the direction of angular momentum
[image: image92.png]



Conservation of angular momentum may be demonstrated using an air table.  Measure the angular velocity of a disc rotating on the table.  A second disc, or ring, having no angular momentum is carefully dropped centrally on to the first one and the new angular velocity measured.  The moments of inertia of the discs are evaluated, and the conservation law may be verified.

A variable inertia bar (Figure M14) may be used to make quantitative measurements of torque, angular momentum and angular acceleration.  
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Figure M14: Variable inertia bar

The moment of inertia I for the bar can be found by considering it to be made of two point masses at a known radius from the axis.  Wrapping a string around the axis and hanging a mass on the end provides the torque.  The initial torque is the product of the weight and the radius of the axle.  The string should be just long enough to reach the ground after a known number of turns of the system, that is, after the mass has dropped through a certain, repeatable, height.  The acceleration of the mass should be kept very small, that is, much less than g.

If the acceleration is not much smaller than g, the analysis is less straightforward.  Let m be the mass used to accelerate the inertia bar, Ft the tension in the string, r the radius of the axle, I the moment of inertia of the inertia bar, and α its angular acceleration, then the equations of motion which have to be used are:

mg – Ft = ma

Ftr = I
[image: image93.wmf]a


The number of turns that it takes for the string to unwind should be counted.  The adjustable masses are set to a given radius, giving a certain moment of inertia, the string is wound up and the mass providing the torque is released.  When the mass strikes the ground, the time for the bar to make, say, 10 further revolutions is noted, and from this the angular velocity is calculated.  From this data, the angular acceleration 
[image: image94.wmf]a

 can be found.  Keeping I fixed, the torque can be varied by altering the mass on the string, and the variation of 
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 found.  The torque can be kept constant whilst I is varied, and the variation of 
[image: image96.wmf]a

 studied.

An interesting study in rotational dynamics is the difference in motion between two cylinders having the same radius and mass, rolling down an inclined plane.  If one is solid while the other is hollow, then the latter has a much larger moment of inertia and will accelerate more slowly down the plane.  Such objects can be made from old coffee tins, suitably loaded to be matched in mass but not in moment of inertia.

The kinetic energy of the particle in Figure M6 is ½mv2 = ½mr2
[image: image97.wmf]w

2 and, since it is a rotating particle, this is called its rotational kinetic energy Ek, which for a (large) rigid object can be expressed as


Ek = ½I
[image: image98.wmf]w
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(M25)

The moment of inertia of an object with cylindrical symmetry, such as a wheel, can be found experimentally by rolling it, without slipping, down a plane set at a shallow angle (Figure M15).  If the object has a fairly large moment of inertia, and is rolled down the plane from rest, it will accelerate slowly enough to allow the time t to travel a distance s down the plane to be measured with a stopwatch.

Figure M15: Determining the moment of inertia of a cylinder
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At the bottom of the slope, the translational velocity of the cylinder is v and its angular velocity is 
[image: image100.wmf]w

.  Note that since the point of contact is not slipping, its instantaneous speed (as shown on a very short exposure photograph) must be zero.  Since the (solid) cylinder has a speed v down the slope, the point of contact must also have a (component of) speed v up the slope, and the point on the circumference directly opposite the point of contact must have a speed 2v down the slope.  The speed of any point on the circumference, as observed from the centre of the cylinder, is v.  The cylinder’s angular velocity is therefore v/R. 

Let the mass of the cylinder be M.  From the conservation of energy: decrease in gravitational potential energy = increase in translational kinetic energy + increase in rotational kinetic energy


Mgh = ½Mv2 + ½I
[image: image101.wmf]w
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Since 
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 = v/R, this becomes Mgh = ½Mv2 + ½I
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Also, h = s sin
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, so  Mgs sin 
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  = ½Mv2 + ½I
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Rearranged, this gives I = (Mgs sin 
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 – ½Mv2) 
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However, the measurements give v = s/t, so that
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which may be compared with the theoretical result (involving integral calculus) of ½MR2.

Rotating discs or cylinders (flywheels) are used in many devices to store energy or ensure the smooth running of the device (for example, cassette players, engines).  A recent development using flywheels is described at www.trinityflywheel.com/flywheel.html

The ‘skater’s spin’ is a very good illustration of conservation of angular momentum (in the absence of external torques, Iω is constant).  The skater starts a slow spin with limbs outstretched (large moment of inertia).  When the limbs are brought close to the body, the reduction in moment of inertia necessarily leads to an increase in angular velocity.

The angular momentum of a planet around the Sun is conserved and, because planetary orbits are elliptical, the speed of the planet in its orbit varies throughout its ‘year’.  For the Earth, including the tilt of its axis, this leads to a complicated variation of sunrise and sunset times throughout the year.  In particular, the date of the latest sunrise is several days earlier than, and the date of the earliest sunset is several days later than, the shortest day of winter in the northern hemisphere (Jacobs, 1990; Shipstone, 1998 a, b).

A very good demonstration involving conservation of angular momentum (and friction) can be given as shown in Figure M16.  A small mass is connected to a large mass by a taut length of string that passes over a rod.  What will happen when the smaller mass is released from the horizontal position so that it avoids colliding with the vertical section of the string?  (Some trials with different masses and string length, and a little practice may be required.)

Figure M16: Angular momentum (and friction) demonstration
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Gravitation

Newton’s law of gravitation 
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is one example of the expression of an inverse square law of force.  The fact that the index of r appears to be exactly equal to 2 is very profound.  The law applies to extended spherical objects like a planet and its moon, in which case the distance r is the separation of the centres of the objects.  The similarity of Newton’s law of universal gravitation and Coulomb’s law of electrostatic force should be emphasised.

Tides
A treatment of satellite motion and tides, suitable for upper level physics students, has been written by Woolsey (1994).

The motion of a satellite around a planet may be determined using Newton’s law of gravitation and the equations of motion.  The force of attraction is the same as for two point masses located at the centres of the bodies.  However, we shall examine the situation more closely for the case of the Moon’s attractive force on the Earth (Figure M17).

Figure M17:  Forces exerted by the Moon on different 1 kg masses on Earth
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The gravitational force on 1 kg of Earth material on the ‘near side’ of the Earth is (very slightly) greater than the force on 1 kg at the Earth’s centre, and this is (very slightly) greater than the force on 1 kg at the ‘far side’ of the Earth.  The very small difference between the ‘near side’ and ‘far side’ forces is only about one ten thousandth part of a newton, and it tries to pull two such 

1 kg masses apart.  When this is scaled up over the whole of the Earth’s material, it amounts to an incredible 1018 N, enough to break a steel cable 70 miles in diameter!  This force is not enough to pull the Earth apart into bits, but it can pull the water on the Earth’s surface into two large piles, one on the ‘near side’ and one on the ‘far side’ – the tides.  Of course, the Earth is rotating, and so these piles of water move across the Earth’s surface and, at any fixed position, two high tides are observed daily – in fact, not quite daily because the Moon is orbiting the Earth and the period between high tides is about 12.5 hours. The Earth’s land distribution has, of course, a significant influence on local tidal patterns.

Do tidal forces deform the solid Earth?  Yes!  Bulges about 30 cm high follow the Moon in its apparent daily revolution of the Earth.  The influence on a large-scale high energy physics project (the large electron-positron accelerator at the CERN research centre in Geneva, Switzerland) was demonstrated in 1992 (Miller, 1993).  Its 26.7 km circumference stretches and shrinks by about 1 mm owing to the Moon’s tidal force on the Earth.

Within the solar system, the result of tidal forces was spectacularly demonstrated in July 1994, when the remains of the comet Shoemaker–Levy crashed into Jupiter.  On previous orbits around the planet it had been pulled apart into a ‘string of pearls’ by the tidal force produced on it by Jupiter.  These ‘pearls’ then crashed at 60 km s–1 on to Jupiter, forming a line of impacts across the Jovian ‘surface’.  Photographs are available at http://nssdc.gsfc.nasa.gov/planetary/comet.html

On a much larger scale, the effects of tidal forces have been observed on two galaxies that have come close to one another (the Antennae galaxies).

Mathematically, the force per unit mass exerted by the Moon, mass M, on the water covering the Earth’s surface is 
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 , where r can vary by 

12 760 km (Earth’s diameter 2RE) in 384 400 km (the distance from the Earth to the Moon, R).  The difference in the force across a diameter of the Earth, is therefore proportional to 
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since, in the denominator, R2>>R2E
Using calculus notation, the difference in the force across a diameter of 

the Earth depends on 
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The Moon has a much larger effect on the tides than the Sun, yet clearly (compare M/R2  for the Sun and the Moon) the Sun attracts the Earth more strongly than the Moon does. The tidal effect, or stretching force, depends on M/R3.  A comparison shows that this is greater for the Moon by a factor of 2.15.

When the Moon, Earth and Sun are aligned, the tidal forces produce maximum (spring) tides (‘spring’ from the German ‘springen’, meaning to spring up; they are not specifically associated with the spring season).  When the Moon is at right angles to the Sun–Earth line, the tidal forces produce minimum (neap) tides.

The Earth also produces a tidal deformation of the lunar surface, but the strongest stresses occur at new Moon and full Moon (when the Earth, Moon and Sun are aligned) – the same times at which the Apollo seismometers reported the highest frequency of moonquakes.  The stretching of the Moon along the radius vector of its orbit around the Earth causes it to take on a slightly ellipsoidal (rugby ball) shape.  It follows that its orbit around the Earth is most stable if it keeps a ‘pointed’ end towards the Earth – the same side of the Moon always facing the Earth.  The period of its rotation about its axis is the same as the period of its orbit around the earth.  The rotation of nearly every moon of the solar system is in synchrony with its orbital period around its parent planet.  A number of searching questions regarding tides have been addressed by Härtel (2000).

Fields
The concept of a ‘field’ is often found difficult.  A possible approach is to point to the uncomfortable idea that two objects, separated by empty space (a vacuum), can exert a force on each other, the so-called action-at-a-distance force.  It is more comfortable to think of objects experiencing a force exerted by something with which they are in close contact.  A model has therefore been devised which states that an object sets up a condition, a gravitational field, in the space around it.  The strength of this field, a vector quantity, at some distance r, is simply the force that would be exerted on a 1 kg mass placed at that point.  The field (units, N kg–1) exerts a force on a second mass placed at the point – a ‘local’ interaction.  Mathematically, the magnitude of the gravitational field strength distance r from a (point) mass m1  is
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and the direction of the field is towards the mass m1.  The force on a 

mass m2 placed a distance r from m1 is 
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 towards m1, of course!

Accurate pictures may be drawn to illustrate the magnitude and direction of the gravitational field strength.  The simplest is that for of an isolated (spherical) object (Figure M18).  Close to the object, the field lines are close together, which reflects the fact that the field is strong there.  

Also, by symmetry, the field lines must be radial and have an isotropic appearance.

Figure M18: Field lines around a spherical mass
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Very close to the surface of the object, the field lines are almost parallel.  ‘Very close’ means ‘within distances that are much less than the object’s radius’.  For the Earth, this is up to a few hundred kilometres above its surface.

The similarity of Figure M18 to the field lines around an electric charge should be emphasised.

In the case of two objects (Figure M19), the force exerted on a ‘1 kg test mass’ at any point is given by the (vector) sum of the forces on it due to each of the two objects (consider the sum of the forces at a typical point such as P).  The field lines must therefore have shapes rather like those shown, at least in the case where the two objects in question are of approximately equal mass.

Figure M19: Gravitational field lines round two equal spherical masses
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Again, the similarity between Figure M19 and the case of electric field lines between two like charges should be referred to at the appropriate time.

Gravitational potential energy and potential
Gravitational potential energy will probably have been introduced in earlier studies by considering the energy that has to be expended (the work done) by a person (an ‘external agent’) in raising a mass m through a ‘small’ height h above the ground (a suitable reference level).   ‘Small’ means ‘small compared to the radius of the Earth’, so h could be up to a few hundred kilometres.  The (gravitational) potential energy of the mass m at height h is mgh, units J. 


potential energy = mgh
(M28)

A more general, but not final, definition of the potential energy at a point may now be stated – it is the energy that has to be expended in transferring a mass m from some reference position to the point.  In everyday examples, the reference level might be sea level, ground level, floor level or bench top level.

In dealing with gravitation problems in general, it is found convenient to take the reference position as being at a very large (infinite) distance from any objects.  There, the field strength is zero.  So, the gravitational potential energy of a mass m at a point is the energy that has to be expended in transferring the mass from infinity to the point.
Students should be familiar with the expression 

work done (energy expended) = force × distance

and attention might be drawn to the fact that this cannot be used to evaluate, for example, the energy expended in transferring a mass m2 from an infinite distance to a distance r from a mass m1, since the force varies continuously with r.  Nevertheless, the potential energy can be evaluated using integral calculus.  Students should appreciate that the energy expended will be negative, since the force on the mass m2 is towards the mass m1.  

Taking an infinite distance from any masses as a reference position, the general expression for the potential energy is


Potential energy = –
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Again, the similarity of this expression with that encountered in electrostatics should be emphasised, but there the pupil has to cope with the added difficulty of having both positive and negative electric charges.  Fortunately, this is not the case in gravitation, but it might be interesting to ask pupils to consider what would happen to a negative mass if it were released in the Earth’s gravitational field.

What is the energy expended in transferring a 1 kg mass from infinity to a point in space?  Simply set m2 = 1 in equation M29.  This quantity, which has units J kg–1, is known as the gravitational potential at the particular point in space:


gravitational potential = –
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or, more generally,
gravitational potential = –
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Attention might be drawn to the units of the quantity, voltage.  These, at a basic level are J C–1, and have to do with the energy expended when a charge of +1 coulomb is transferred between two points in an electric field.

Conservative field
A conservative field is one in which the potential energy of an object depends only on its position, and not on how it was placed in that position.  For example, the potential energy of a rock resting on the edge of a cliff top depends only on the height of the cliff, and not on whether it was lifted up there by helicopter or transported up a path on a trailer.  Alternatively, a conservative field is one for which the work done in moving an object, which is affected by the field, is independent of the path taken and depends only on the initial and final positions in the field.  It follows from this that if an object is moved on any closed path from a given starting point back to the same point in a conservative field, then no net work is done.  This is the case for gravitational fields and electric fields of electrostatic origin, but not for magnetic fields.

Escape velocity
The potential energy of an object, mass m, at the surface of a planet, mass M and radius R, is, from Equation M29,
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If the object (a rocket) is given a kinetic energy greater than GmM/R, the gravitational attraction of the planet will not be large enough to force the object to return to the planet.  The kinetic energy, which is just sufficient for the object to ‘escape’ from the planet, is given by
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from which the escape velocity is 
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It is worth noting that an object cannot be completely free from the gravitational influence of a planet. However, if the kinetic energy given to an object is 0.999GmM/R, the object will travel to a maximum distance from the planet of 1000R, which could be considered as ‘escaping’ from the planet.

The escape velocities for the planets and the Moon are given in Table M2.

Table M2:  Escape velocities from solar system objects
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Mass 
Diameter 
Escape velocity 


(1024 kg)
(103 km)
(km s–1)
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Mercury
0.33
4,872
4.3

Venus
4.87
12,118
10.3

Earth
5.976
12,756
11.2

Moon
0.735
3,476
2.38

Mars
0.642
6,761
5.0

Jupiter
1,899
142,870
61

Saturn
569
120,160
35.6

Uranus
86.9
51,152
22

Neptune
103
50,131
25

Pluto
0.013
2,296
1.2

For comparison, the speed of Concorde at Mach 2 is about 0.6 km s–1.  Up-to-date data on the Solar System are available from a number of internet sites, for example

http://nssdc.gsfc.nasa.gov/planetary/planetfact.html

Planetary atmospheres
The kinetic theory of gases shows that the average kinetic energy of an atom or molecule is directly proportional to the absolute temperature:


½mv2 = 
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where k is Boltzmann’s constant (1.38 x 10–23 J K–1).

If the average kinetic energy of a gas molecule is such that its velocity is greater than about 10% of the escape velocity, a planet will not be able to hold significant quantities of that gas in its atmosphere.

At a temperature of 293 K, the average speeds of hydrogen and nitrogen molecules are 1.9 and 0.48 km s–1 respectively.  This explains why the Earth does not retain hydrogen in its atmosphere, and why hydrogen is an important constituent of Jupiter’s atmosphere.

Black holes
Photons are particles that have zero rest mass and of course travel always at the speed of light.  Their energy is E = hf and, from the theory of special relativity, they have a relativistic mass m = E/c2.  Thus, they experience a force in a gravitational field.  Strictly, general relativity is required to explain the motion of photons in gravitational fields.  However, a less rigorous treatment allows a partial understanding of black holes and of the deflection of starlight passing close to the Sun.

In 1911, Einstein speculated whether m = E/c2, substituted in the universal gravitation formula, would correctly describe the deflection, by the Sun, of light rays from a distant star (Figure M20).

Figure M20: Deflection of starlight by the Sun
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The result of this calculation is that the light is deflected through an 

angle 
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 ,  a result which is too small by a factor of two.

Fortunately, Einstein worked out the correct answer, 
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his theory of general relativity, before an experimental check was done in 1919.  The experiment involved observing starlight that had passed close to the Sun during an eclipse of the Sun and then comparing the apparent position of the star with that of its calculated position.  The difference between these two was 1.75″, in excellent agreement with Einstein’s prediction.  This may be compared with the smallest angle which can be measured reliably with a student spectrometer, 
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30″.  According to the general theory, half of the deflection is produced by the Newtonian field of attraction of the Sun, and the other half by the geometrical modification, that is, curvature of space caused by the Sun.  In effect, the space around a massive object acts like a convex lens.

An illustration of the calculation can be given as follows.  Assume that the force of attraction acts on the photon only when it is close to the Sun, over a distance, 2RS, the diameter of the Sun; that it acts transverse to the direction of travel of the photons and that it is constant in magnitude (GMSmph/RS2).  The force will act for a time 2RS/c, and the impulse (force × time) gives the magnitude of the transverse momentum ∆p produced (Figure M21).

Figure M21: Angle of deflection of starlight by Sun
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The small angle of deflection is given by 
[image: image133.wmf]p

p

D

»

q




[image: image134.wmf](

)

2

2

ph

S

2

S

ph

S

2

/

/

2

/

c

R

GM

c

hf

m

c

hf

c

R

R

m

GM

s

s

=

=

=

q

q
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‘A Cambridge don, John Mitchell, wrote a paper in 1783 ... in which he pointed out that a star which was sufficiently massive and compact would have such a strong gravitational field that light could not escape ...’  (Hawking, 1988).  Clearly, the paper referred to predates the papers of Einstein on the general theory of relativity by more than one hundred years, and the prediction was based on a simple, classical theory.  A similar, simple theory of black holes, based on one of the results of special relativity, is appropriate here. Within a few years of the publication of Einstein’s theory, it was realised by Karl Schwarzschild that the theory predicted black holes, but the theory of black holes based on general relativity did not emerge until the late 1960s.

Consider what happens when a photon is emitted from the surface of a star of radius R and mass M.  The initial (kinetic) energy of the photon hf decreases as it travels to positions of greater potential energy, but the velocity of the photon remains the same.  Observers at different heights will observe the frequency and wavelength changing; that is, blue light emitted from the surface would be observed as red light from a sufficiently massive, high density star.  (Note: This is the gravitational redshift, not the well-known Doppler redshift caused by the expanding universe.)

If the mass and the density of the stellar object are greater than some critical values, the frequency of the photon will decrease to zero at a finite distance from the star, and the photon will not be observed at greater distances.

Consider the light emitted from the surface of a star which is collapsing under gravitational attraction towards its centre (the radius is decreasing but the mass is constant).  (Normally the temperature of a star is high enough to 

resist this attraction.)  An observer at a fixed distance from the star will see the colour change progressively to longer wavelengths.

The condition necessary for a massive high density body to be a black hole can be derived, non-rigorously, as follows.

Consider an observer at distance Robs from a body of mass M and radius R.  A photon emitted from the surface with energy hf will reach the observer with reduced energy hfobs.  If photon mass m is taken as hf/c2, then the observed mass mobs of the photon is also reduced, to hfobs/c2.

Thus
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If the observer is at a large distance, i.e. Robs >> R, then
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It is clear that if fobs = 0, the photon will have zero frequency and zero energy, that is, it will not escape the gravitational attraction of the star and the star will not be observed – a black hole.

The condition for the above is that R 
[image: image138.wmf]£

 GM/c2, which is the Schwarzschild radius, according to this simple theory (actually too small by a factor of two).  For a body of the mass of the Sun, R = 2.95 km, while for the Earth, R = 8.86 mm.

No light would escape from the region of the black hole if emitted by a source closer than the Schwarzschild radius from the hole; indeed, nothing within this distance would be able to escape!  The modern theory suggests that a black hole would act as a source of X-rays emitted by charged matter being accelerated towards the hole (remember that the gravitational attraction close to the hole will be enormous).  It will also act as a source of particles and antiparticles (Hawking radiation) because one partner of a particle–antiparticle pair created in space close to the Schwarzschild boundary is trapped by the hole and the other is ejected from the region.

It is instructive to compare the gravitational attraction of a black hole with that of the Earth.  Consider, for example, a black hole of radius 8.86 mm and of mass equal to that of the Earth.  (The density of this is unrealistically high, but the advantage is that we are all familiar with the gravitational forces exerted by the Earth.)  At a distance of 6000 km, the attractive force will be the same as on the Earth’s surface, 9.8 N kg–1, but at a distance of 6000 m, the force will be 106 times larger!

Satellites in circular orbits
The central force mv2/r required to keep a satellite moving in a circular orbit of radius r, measured from the centre of the planet, is provided by the gravitational force of attraction GmM/r2.

The speed v and period T = 2π r/v of a satellite may easily be found as follows:
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Hence 
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For a satellite orbiting the Earth at a height of 400 km, 
r = (6380 + 400) × 103 m, which gives v = 7.67 km s–1 and T = 93 minutes.

Of particular interest in the communications field is a ‘synchronous satellite’ – that is, one for which the period is equal to the time it takes for the Earth to rotate once on its axis. (This is 23 hours 56 minutes – the sidereal day, not 24 hours, the solar day.  The difference is about 0.4%, but that is very important if millions of pounds are being spent putting a communications satellite into orbit.)  Since it is synchronised to the period of rotation (8.62 × 104 s) of the Earth, it has the useful characteristic of appearing in a fixed position in the sky for earth-based observers.  The satellite is said to be in a geostationary orbit.  The radius of its orbit can have only one value, which is obtained by setting T = 8.62 × 104 s to obtain r = 4.22 × 107 m.  This is about 6.6 Earth radii.

Kepler’s laws
Between 1609 and 1619, Johannes Kepler proposed his ‘laws of planetary motion’ as a result of work on the observations of the astronomer, Tycho Brahe.  Applied to the Solar System, these laws are:

1.
The planets move in elliptical orbits with the Sun at one focus.

2.
The radius vector drawn from the Sun to a planet sweeps out equal areas in equal times.

3.
The square of the orbital period of a planet is proportional to the cube of the semi-major axis of the orbit.

The second law, which follows from conservation of angular momentum, is obvious for a circular orbit.  For an elliptical orbit (Figure M22), the conservation law has to be applied with care since the velocity vector is not, apart from aphelion (planet furthest from the Sun) and perihelion (planet closest to the Sun), at right angles to the radius vector.

In Figure M22, v is the velocity of the planet, r its distance from the Sun, and let 
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 be the angle that the radius vector makes with the major axis of the orbit.  The component of the velocity at right angles to the radius vector is therefore 
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Figure M22: Elliptical orbit of a planet

[image: image145.png]



Let A1 and A2 be the areas swept out by the radius vector. Since the time interval 
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By conservation of angular momentum, 
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 Hence A1 = A2, that is, equal areas are swept out in equal times.

The third law is easily verified for circular orbits (the orbits of all the planets except Mercury and Pluto are very close to being circular):

since 
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Simple harmonic motion

An object moving in such a way that its displacement with time is given by 
y = a sinωt or y = a cosωt is said to be executing simple harmonic motion (SHM) about the origin.  It is straightforward to show that these equations satisfy a simple, second-order differential equation – the equation of simple harmonic motion.  Differentiate twice with respect to time:
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Hence, in both cases      
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which states, in a succinct mathematical form, that the acceleration of the object is directly proportional to its displacement and is always directed towards the origin (y = 0).  The restoring force is 
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Examples are numerous: vibrations of stringed and wind instruments, springs, pendula, artificial structures, quartz crystals, interacting atoms, etc.

The expression for the velocity in terms of the displacement is useful:


y = a sin
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and 
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Adding equations M42 and M43 gives
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Hence 
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and 
v = 
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The kinetic energy of the object is ½ mv2, which, using equation M44a, is 


 ½ 
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The energy expended in displacing the object from the origin to y is the average force required, ½mω2y, multiplied by the displacement y.  Therefore the potential energy is
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The relationship between SHM and uniform motion in a circle might be considered (Figure M23):

Figure M23: SHM and uniform motion in a circle
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In Figure M23, a particle, starting at point A, reaches point B after a time t.  The angle θ is therefore equal to ωt.  The coordinates of B are 

(r cos
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), where r is the radius of the circular orbit – the ‘shadow’ of B on the x- or y-axis (X or Y, respectively) performs SHM.

SHM can be studied easily in the laboratory using an ultrasonic motion sensor interfaced to a computer and directed at a mass bobbing on a spring, a pendulum bob, a trolley oscillating between two springs, a loaded hacksaw blade or metre stick, etc. (Figure M24).

Figure M24: Studying simple harmonic motion
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The program supplied with the detector can be used to look at the displacement–time graph and the speed–time graph, and they can be compared with each other.  It should be apparent that each of these has the shape of a sine curve, and that the speed of the object is zero where its displacement is a maximum, and vice versa.  This could be checked by taking print-outs of the graphs and analysing them – the distance along the time axis between successive zeros of the displacement, for example, could be measured and this would correspond to an angular displacement of π radians.  The maximum displacement a could be measured, and an attempt made to fit the data to a curve of the form y = a sin
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The period of oscillation of a vertical mass–spring system is given by
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which is independent of the acceleration due to gravity.  The period would be the same on the surface of the Moon, or in any gravitational field.  There is a mass–spring system on the Skylab space station for measuring the astronauts’ masses.

Damped harmonic motion
When a system starts executing SHM, it will not continue to do so indefinitely.  This is because there will always be opposing (damping) forces – friction, air resistance, etc.  The amplitude of the oscillations will decay as time progresses, and the simplest mathematical description of this is expressed as an exponential factor appearing in the expression for the displacement of the object:
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Figure M25 is a graphical illustration of the function e–x sin50x for 

0 
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Figure M25: Damped harmonic motion
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Forced harmonic motion
All mechanical systems have natural oscillation frequencies and, if such systems are subjected to a periodic force that matches (or nearly matches) one of the natural frequencies, the amplitude of oscillation will build up rapidly and may lead to damage to the system.  These natural frequencies are often referred to as the system’s resonant frequencies.  Examples are numerous.  The one that is most often referred to in physics textbooks is that of the destruction of the Tacoma Narrows Bridge on 7 November 1940.  A particular wind pattern excited a torsional standing wave that lasted for several hours until the bridge collapsed.  The event was captured on video, a short clip of which may be seen at http://www.fen.bris.ac.uk/engmaths/research/nonlinear/tacoma/tacoma.html

The spring–damper combination of a car’s suspension system is a useful illustration of a forced/damped system. Without this system a car would oscillate uncomfortably when driven over a bump or pothole on the road surface, but the damper ensures that the oscillations do not persist – they are rapidly damped.

Another common example is in the design of tall chimney stacks.  These could be set oscillating violently by the wind, but a spiral structure attached to a stack will cause the wind to be deflected from it in a more random way than from a smooth cylindrical stack.  The build-up of destructive oscillations is therefore prevented.

Wave–particle duality

In the section on black holes, the energy E and relativistic mass m of a photon were noted as being


E = hf  and  m = 
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The momentum (p = mc) of a photon can therefore be expressed as
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Interference (and diffraction) experiments will have been used in earlier studies to demonstrate the wave nature of light.  The photoelectric effect (Einstein, Physics Nobel Prize, 1921) will also have been used to demonstrate the particle, or quantum, nature of light.  The fact that two models are required to explain the behaviour of light in different circumstances is not a very satisfactory state of affairs for the enquiring mind.

Students are expected to be able to give only brief details of the evidence that shows that electrons and electromagnetic radiation exhibit wave–particle duality.  Only a few examples are given here.  Teachers should use whatever examples suit local circumstances.

The Compton effect
When a gamma ray or high-energy X-ray is scattered from an electron, the scattered ray is found to have a longer wavelength than the incident ray (Figure M26).

Figure M26: Compton scattering
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This effect (A H Compton, Physics Nobel Prize, 1927) is explained by assuming that the collision is particle-like.  An incident photon has energy hf and the scattered photon has a reduced energy hf ′.  Since f ′ must be less than f, the wavelength of the scattered radiation is longer.

It is interesting to note that the derivation of the relationship between the energy of the scattered radiation and the scattering angle requires that the energy and momentum of the target electron be treated relativistically.

Electron diffraction
In 1924 de Broglie (Physics Nobel Prize, 1929) suggested that wave–particle duality should be extended to material particles (those with non-zero rest mass energy) such as electrons, nucleons, atoms etc.  The wave associated with the motion of a particle has a wavelength 
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Three years later de Broglie’s hypothesis was verified experimentally by Davisson and Germer (USA), and in 1928 by G P Thomson and A Reid (Aberdeen).  Davisson and Thomson shared the 1937 Physics Nobel Prize.  These experiments were similar to those which had been performed 15 years earlier on X-ray wavelength measurements, and they rely on the fact that reflection of the incident ‘waves’ from the layers of atoms in a crystal (Figure M27) will give constructive interference at certain angles of incidence.

Figure M27: Electron diffraction by atoms in a crystal
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In Figure M27, the path difference, BC + CD, between the two rays shown is 2d
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.  If this is equal to an integral number of wavelengths, 
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, the ‘reflected’ rays will interfere constructively.  The condition
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is known as the Bragg equation (W H Bragg and W L Bragg, Physics Nobel Prize, 1915).

Reference may be made here to the formula for thin film interference in optics.  There, 
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  is used, but that is because in light optics it is usual to work with the angle of incidence rather than the glancing angle, as in X-ray optics.

The experimental arrangements used by Davisson and Germer, and by Thomson and Reid, are shown schematically in Figure M28.

Figure M28: Experimental arrangement for electron diffraction experiments
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In Figure M28a, a beam of electrons that was accelerated through a potential difference of 54 V (kinetic energy, ½ mv2 = eV) impinged on a single nickel crystal, and a maximum in the intensity of the reflected beam was observed at an angle of 50°.  The Bragg angle (
[image: image192.wmf]θ

) was therefore 90° – (50°/2) = 65°.  The spacing of the layers of atoms in the crystal was known to be 0.215 nm from previous X-ray studies.  Substitution in the Bragg formula gives 
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 = 0.165 nm.  The formula 
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= h/mv gives a wavelength of 0.167 nm.

In the Thomson–Reid experiment, Figure M28b, a narrow beam of electrons that was accelerated through a potential difference of several tens of kilovolts was ‘scattered’ as it passed through a thin metal foil.  The metal consists of a random array of microscopic crystals, so some are always at the proper angles to give reflection in accordance with the Bragg equation.  A ring system was recorded on a photographic plate.  Analysis of the data again confirmed de Broglie’s hypothesis.

It is interesting to note that J J Thomson and his son G P Thomson were awarded Nobel prizes in 1906 and 1937 respectively, the former for demonstrating the particle nature of electrons, the latter for demonstrating the wave nature of electrons.

The electron microscope
Interference of light waves is readily demonstrated when the dimensions of the ‘scattering’ object are less than about 10 wavelengths.  Extending this to particles, the dimensions of a ‘scattering’ object should be less than about 10 de Broglie wavelengths.

For a macroscopic particle, even something as small as a speck of dust of mass 1 
[image: image195.wmf]m

g and moving at 1 mm s–1, the de Broglie wavelength is so small that the particle’s motion is adequately described by the laws of classical mechanics.  In this example, the de Broglie wavelength is 6.63 x 10–22 m, which is many orders of magnitude smaller than even nuclear dimensions.

In an electron microscope (Figure M29), a beam of electrons may be accelerated through a potential difference of 100 kV.  A relativistic calculation shows that the de Broglie wavelength is about 0.004 nm.  Such a beam is therefore suitable for examining matter on an atomic scale.  In practice, non-uniformities in the optics of the electron microscope limit the resolution to about 0.4 nm, which is still about 1000 times better than an optical microscope.
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Figure M29: Electron microscope

A two-dimensional representation of a magnetic ‘lens’ is shown in Figure M30.  The electron trajectory is actually rotated as it passes through the lens, as can be verified by applying whatever rule is used to show the relative directions of field, motion and force.

Figure M30: Magnetic ‘lens’
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Quantisation of angular momentum and the Bohr atom
The experimental results of Geiger and Marsden on the scattering of 
[image: image197.wmf]a

-particles by gold foil were interpreted by Rutherford in terms of a new model of the atom, one in which the positive charges are concentrated in what came to be called the nucleus.  Subsequently, Bohr suggested a model of the atom in which electrons revolve in dynamic equilibrium around the nucleus.  The model solved the problem which had been puzzling physicists at the end of the nineteenth century and the beginning of the twentieth – the existence of spectra composed of well-defined frequencies.

One of the problems with this model was that classical electromagnetic theory predicted that such accelerating charged electrons would lose energy by radiating electromagnetic waves.  The atom would therefore be unstable.

The stability is now explained in terms of quantum theory and indeed the pictorial view of the atom given by the Rutherford–Bohr model has been superseded.  However, the model is still a useful one, and particularly so in this context because it gives the opportunity of combining results from diverse parts of the syllabus in one piece of theory – results from electrostatics, angular momentum, central force, etc.

Consider an electron of charge –e and mass m in a circular orbit of radius r around a hydrogen nucleus (a proton) of charge +e, and assume that the mass of the nucleus is very large compared with that of the electron.  The central force is provided by the electrostatic attraction between the nucleus and the electron:
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Bohr postulated that when the angular momentum mvr of the electron was an integral multiple of Planck’s constant divided by 2π, i.e.
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then the orbit was stable.  Even though the electron was accelerating towards the centre of the orbit, it did not radiate electromagnetic waves.  The special orbits to which this quantisation rule leads can perhaps be understood in terms of the wave behaviour of electrons.  The orbits are such that standing waves are formed around the nucleus.  The condition for this is that the circumference, 
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 (Figure M31).  As 
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 = h/mv, the standing wave requirement and the quantisation of angular momentum rule can be seen to be the same.

Figure M31: Standing wave for n = 4
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Although the derivation of the quantised energies of the hydrogen atom and the discrete wavelengths of its spectrum is not a requirement of the syllabus, it is included here for completeness.

The energy of the system (non-relativistic) is the sum of the kinetic energy of the electron and its electrostatic potential energy in the field of the nucleus.
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Using equation M52, the kinetic energy, ½mv2, is 
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,  and equation M54 may be written as
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Eliminating v from equations M52 and M53, the radii rn of the allowed orbits are
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Substituting equation M56 into equation M55 gives the energies En of the allowed orbits as
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which shows that the energies of the system are always negative, confirming that the electron is bound to the proton.

When an electron makes a transition between two energy levels n2 and n1 (n2 > n1), the energy difference (
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) between these levels is
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But 
[image: image211.wmf]l

hc

hf

E

=

=

D

 , and so




[image: image212.wmf]ú

ú

û

ù

ê

ê

ë

é

-

=

2

2

2

1

3

2

0

4

1

1

8

1

n

n

c

h

me

e

l


(M58)

The n = 2 to n = 1 transition in atomic hydrogen gives rise to radiation of wavelength 121.6 nm (from equation M58).  The energy difference between 
n = 2 and n = 1 is often expressed in electronvolts, 10.2 eV.

The speed of the electron in the first Bohr orbit of atomic hydrogen is found to be a fraction, 1/137, of the speed of light, which verifies the non-relativistic nature of the problem.  This fraction is one of the fundamental constants of physics and is known as the fine structure constant.

Hydrogen-like atoms
Early in the twentieth century the fundamental particles of physics were protons, neutrons and electrons.  Scores of ‘fundamental’ particles have since been detected in sophisticated experiments, and the existence of others has been postulated theoretically.  Hydrogen-like atoms can be formed from lots of different pairs of positively and negatively charged particles.

The general problem of two bodies moving under some central force (a force that acts along the line joining the centres of the bodies) is equivalent to the motion of one of the bodies around a fixed point, provided its mass m is replaced by the so-called reduced mass
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where M is the mass of the other (usually more massive) body.

The allowed energies are given by equation M58, with m replaced by μ.  

Positronium, discovered in 1951, consists of an electron and its antiparticle (same mass, opposite charge), the positron.  In this case the centre of mass is midway between the particles.  The hydrogen atom energies are therefore modified by a factor of
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Muonium, discovered in 1961, is a hydrogen-like atom consisting of a positively charged muon (M = 207me) and an electron.  Since M >> me, its energies are almost the same as those of hydrogen.

Both positronium and muonium consist of particles that belong to the lepton family.  Particle families are discussed again in the Electrical Phenomena unit.

Beyond Bohr
The Bohr theory, developed in 1913, adequately explains the spectra of hydrogen and hydrogen-like atoms, neglecting, of course, the effects of electron and nuclear spins.  It has been superseded by the much more advanced, and fairly abstract, quantum mechanics.  In this theory, describing all matter in terms of waves has solved the wave–particle duality problem.  ‘What is waving?’ and ‘In what is it waving?’ are questions that may occur.  The mathematical functions representing the waves (the wave functions) involve the use of complex numbers and have a significance only in the context of the theory.  Years earlier, similar questions about electromagnetic waves led to the fallacious concept of the aether.

The wave functions of quantum mechanics have no direct physical significance, being only a useful computational device.  However, the square of the amplitude of the wave function (actually the product of the wave function and its complex conjugate) can be observed, and is interpreted as a probability.  We have to accept that physics has given up on the problem of trying to predict exactly what will happen in certain circumstances – even in principle – and the predictions of theory are now in terms of probabilities.  In the context of atoms, the electrons are no longer thought of as point objects moving around a nucleus in well-defined orbits.  Instead, there are regions in which the probability of finding the electron is high.  For example, the greatest probability of finding an electron in a ground-state hydrogen atom is around 5.3 × 10–11 m from the nucleus, the same distance as predicted by the Bohr theory.  It is also important to note that the quantum mechanical expression for the allowed energy values for a single electron (hydrogen-like) atom are exactly as predicted by the Bohr theory.

There is some connection between the conclusions of quantum mechanics and wave phenomena with which students may be familiar.  The note from a musical instrument is not made up of a single-frequency harmonic wave, but rather from a superposition of a number of harmonic waves in varying proportions which depend on the type of instrument (and the manner in which it is played!).  Similarly, the wave function representing particle motion is made up of a range of ‘harmonic’ waves.  This has very profound consequences.  Since each harmonic wave has a well-defined wavelength, it follows that the momentum of a particle, which is related to wavelength through de Broglie’s relation, equation M50, is not well-defined.

In a detailed study of wave phenomena, it is also found that a wider range of harmonics is required to represent a more localised event (a very short sound or light pulse, for example).  In quantum mechanics, this same result means that if the position of a particle is very precisely known, the harmonic waves making up its wave function have a wide spread of wavelengths, which, in turn, means that the momentum of the particle is less well-defined!  Indeed, this position–momentum uncertainty may be (precisely) expressed in a form of Heisenberg’s Uncertainty Principle:
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in which the uncertainties 
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 refer to a simultaneous determination of the x-position, and the x-component of the momentum p of a particle, respectively.
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Unit 2: 

Electrical Phenomena

Unit 2

Electric fields 

Simple electrostatic experiments are often regarded as being evidence of the dated nature of physics. In fact, the electromagnetic force, as one of the four fundamental forces, plays a central part in physics. Although the study of electrostatics is of long standing it is not yet completely understood. Although we understand some aspects of electric charges, many of their properties remain to be elaborated.

Our first quantitative understanding of electrical forces came from Coulomb’s work on the twisting of fibres.  That he could measure the small forces involved with any accuracy is due to his ‘technological breakthrough’ in relating the angle of twist of a fibre to the force causing the twist (Figure E1).
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Figure E1: Coulomb’s balance
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With this equipment Coulomb showed that F 
[image: image219.wmf]2

2

1

r

Q

Q

α


Cavendish carried out a similar experiment to measure the gravitational force between two masses, with a beam supporting two lead balls attracted to two larger stationary masses of lead, about 20 cm in diameter. Cavendish’s experiment allows the Mechanics unit and the Electrical Phenomena unit to be linked, via discussion of the torsion balance.  The opportunity could be taken to compare the sizes of the forces involved, and to discuss the similar nature of the laws governing them  –  the force being proportional to the 

product of two masses/two charges; forces falling off in strength as the inverse square of the distance and the need for a constant in the expression for the force.  It is possible also to make a link with the section on ‘magnetism’ by discussing the practical difficulties involved in performing a similar type of experiment. The main difficulty that arises is the lack of an isolated magnetic North or South pole, as would strictly be required. Although the existence of magnetic monopoles is suspected, they have not as yet been detected, far less used in making direct measurements of magnetic forces. 

The constant presence of cosmic rays in the atmosphere creates ions in the air and leads to leakage of charges, even where extremely effective modern insulating materials are used in the equipment. This makes use of measurements involving static charges unsuitable for defining basic electrical standards.  

The magnetic forces and fields produced by currents allow the rate of flow of charge to be used in the definition of the basic electrical unit, the ampere. Leakage of charge is not a problem in implementing such a definition.

The constant in Coulomb’s law, and in expressions derived from it, may be puzzling.  The standard explanation (Figure E2), that a factor of 
[image: image220.wmf]p

4

1

 appears where spherical symmetry applies, a factor of 
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 appears where there is cylindrical symmetry and there is no factor in a planar case, does not always clarify the situation.

Figure E2: Various geometries and associated constants
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The latter two cases are not encountered in the course.  Although not an exact parallel, the case of the magnetic field round a long straight 

wire shows cylindrical symmetry, the relevant factor here being 
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In the same way, the constant0 appearing on the bottom line of an expression is unfamiliar. In mathematical work students are perhaps more familiar with a constant as a multiplier. In the case of gravitational forces, the universal gravitational constant appears as a multiplier on the top line of the equivalent gravitational force equation.  Again comparison with the magnetic case may help.  The presence of a dielectric material between charges reduces the electric field strength by a factor known as the relative permittivity.  Consequently, relative permittivity constants are found as divisors.  On the other hand, when a magnetic material with a relative permeability greater than unity is placed in a magnetic field, its effect is to increase the magnetic induction by its relative permeability, and so the constant appears on the top line as a multiplying constant.

Now that both c, the speed of light in a vacuum, and 0, the magnetic permeability constant, are defined quantities, the constant 0 must be a defined quantity also, as they are linked by the relationship first discovered by James Clerk Maxwell.   The result of the derivation of his equations predicting the existence of electromagnetic waves is of interest and relevance here.  

Maxwell’s equations contain the factor 
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as the speed of the waves.  This expression is in fact c,  the speed of light.  Because the speed of light is defined as (approximately) 

3  108 m s–1, and since 0 is defined as 4  10–7 H m–1, 0 is now a constant whose value is also defined.  As a consequence, experiments designed to measure 0 are attempting to measure a defined quantity. 

Potential and potential difference
The concept of electrical potential gives some difficulty.

The derivation of the potential at points in the vicinity of a point charge is not required.  For those who can cope with the mathematics, however, going through the derivation helps to illustrate the physical meaning of this idea.   Although too much detail is likely to be unhelpful, it is worth trying to give some insight into the concept of potential.  This could be done by considering the work that an external agent does when moving a test charge of +1 coulomb towards an isolated positive point charge from a position so far away that no force can be felt (Figure E3).  This can be compared with its 

purely mechanical counterpart of the work done by some agent moving a test 1 kg mass up a frictionless slope of ever-increasing steepness from an initial position at sea level very far from the slope.

Figure E3: Potential energy gains
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In each case the object being moved gains potential energy, and in each case this potential energy is converted from the energy source associated with whatever ‘agent’ is moving the object.

In each case, there is also zero work done/energy stored in the system when the test object is very far away (at infinity in the electrical case and at sea level in this mechanical case).

The calculation of work done in these examples is not simple, since the force exerted by the agent doing the work changes with position in the field. The force between charges is given by Coulomb’s law, which states:


F =
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where the charges are Q1 and Q2, and r is the distance between their centres.

Calculus methods are necessary if the relationship is to be derived. 

Figure E4: Work done in a field
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Figure E4 shows a positive charge Q2 which is at rest in the field of a second positive charge Q1, a distance x from it.   Both are point charges.  It is important that the distinction is made between the force of repulsion F acting in the positive x-direction, and the force –F due to an external agent, which acts in the opposite direction (hence the negative sign) and maintains Q2 at rest (Q1 is presumed fixed).  

When the external agent allows the charge Q2 to move, which it can do by increasing or decreasing the force –F by an infinitesimal amount so that the forces are no longer in balance, then work is done.  

Again it is important to note that, as is always the case in such situations, there are two forces involved.  The external agent force does work, and so also does the field force.  There is an energy transfer between the energy source of the external agent and the field, with one losing energy and the other gaining that energy.  It is probably easiest to imagine the external agent as a person pushing or pulling the charge Q2.  

Another possibility is that the charge Q2 has a certain mass associated with it and has been projected towards Q1 with some amount of kinetic energy, in which case there is no external agent.  Nevertheless, there is an obvious energy transfer from kinetic energy to potential energy in the field.  

Continuing with the first scenario, and imagining that an agent is responsible for the movement of Q2, and that this movement is sufficiently slow at all times that no kinetic energy is involved, then we must examine the work done by this external agent.  The definition of the potential at a point in a field is that it represents the work done in taking a unit positive charge from infinity 

to that point.  We will first calculate the work done by moving charge Q2 and then by division find the work done moving unit charge.

The work done by the external agent when the charge Q2 is moved through a distance x is:

W = – Fx
The sign is important, as the force is negative.  The displacement x is a positive displacement.  In reality the derivation deals with movement from infinity to a position r, that is, to the left in Figure E4.  This is a negative displacement in our coordinate system and this is taken into consideration in the integration that follows, where the integral is over the range from infinity to r.

Thus
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So the work done is:
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Since the result varies with the magnitude (and sign) of the test charge being moved, unit (positive) charge must be considered.  To find the work done per unit charge, the total work must be divided by the charge involved; we must divide by Q2 .  This gives the work done on unit charge and therefore, by definition, the potential at point r.

The potential at a point a distance r from a point charge Q1 is therefore:
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It is worth recalling that this quantity has units of joules per coulomb, volts.

(It is often stated that the second charge in this derivation must be small enough not to distort the field in which it is located.  This is not the case, and the misconception possibly arises from envisaging a practical situation involving charged spherical conductors.  These behave like true point charges only when in isolation, as the presence of other charges or fields will cause a redistribution of the charges on them from the symmetrical distribution that is found when they are isolated.  Since point charges are considered in the derivation, the values of the charges have no bearing on the derivation above.)

Equipotential surfaces

A flame probe and some suitable interface can be used to explore the potential distribution in space around charged objects (Winn, 1988).

Figure E5: Using a flame probe

[image: image232.png]—

Nylon fibre

Interface





The concept can now be developed using the idea of a uniform field (Figure E6).

Figure E6: Uniform field and potential
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If the potential difference between two points in a uniform field is V and the field strength is E, then the force on charge q due to the field is qE.  The work done in moving charge q across this potential difference is qEd (since work done = F  d). 

Thus the work done per coulomb is Ed.  The potential difference between these points V means the work done per coulomb is:   

V = Ed
(E3)

Note

Students will by now be aware of the vector nature of field strength.  They should realise that potential is a scalar quantity and that calculation of the potential at a point due to any given arrangement of charges simply requires algebraic (non-vector) addition and is therefore a simpler process than the calculation of field strength.
Induction and shielding
The field inside a hollow conductor, enclosing no charge, must be zero.  When a hollow conducting object is placed in an external field charges redistribute themselves on its surface under the influence of that field.  This redistribution of charge itself sets up an internal field, and the movement of charge stops when there is equilibrium between the external field and the internal field of the displaced charges.  Without going into too much detail, this is achieved when the (vector) sum of these fields inside the conductor is zero.

The originally uniform field shown in Figure E7 will induce charge on the surface of the conducting sphere when it is placed in the field.


Figure E7:  Uniform field and conducting sphere

Figure E8:  Induced charges on a sphere
Inside the sphere the resultant field is the vector sum of the external field and the internal field caused by the distribution of charge on the surface of the conductor.  These two fields cancel.  Thus the inner space is a region of zero field – it is ‘shielded’ from the external field by the conductor. The effect is independent of the shape of the conductor. Even a fairly coarse wire mesh is enough of a conductor to produce the effect.  Car bodies, girder frames of buildings, steel mesh in reinforced concrete, etc. all have shielding properties, despite not being continuous surfaces. 

Examples such as co-axial cables, conducting suits worn by National Grid linesmen working on live lines (at voltages up to 400 kV), electronic components inside conducting boxes, doors on microwave ovens with conducting mesh printed on them, the failure of signals to reach radios inside cars without the aid of a car aerial, the need for retransmission of radio signals inside long tunnels, etc. will all help to give some life and meaning to this section.

Electrostatic generators – the Van de Graaff generator
A discussion of the principles on which the working of a Van de Graaff generator depends helps to tie together many of the ideas discussed in the first section.  There is charging by friction. Work is done by the motor driving the belt, which carries charge to the dome against the field created by the charges already present. There is no field inside the hollow, conducting dome.  Charges are stored on the outside surface of the dome, and these charges increase the potential of the dome as they accumulate. 

Figure E9: The Van de Graaff generator


Another machine, designed to accelerate charged particles in order to study the properties of the nucleus, is the linear accelerator or LINAC.  Charged particles are accelerated down a series of tubes of increasing length by the electric field across the gaps between the tubes (Figure E10).

Figure E10: Linear accelerator

The electron feels no force inside the zero-field region of each tube.  There is an accelerating field between adjacent tubes and this speeds the charge up as it traverses the gap between tubes.  The tubes are supplied by an alternating voltage whose frequency is fixed. As the particle is speeding up, therefore, successive tubes are made longer so that the time spent inside the tube is constant, and the particle emerges at just the right time to be met by an accelerating field. 

Linear accelerators are often used in the production of energetic particles or of X-rays for medical purposes and their use is one example among many of a device developed for pure physics research that has found applications in other areas. 

Since the development of the Van de Graaff and linear accelerators, machines have been designed that use magnetic fields to confine electrons or other charged particles to circular paths while they are being accelerated.   Discussion of such machines is an excellent way to link together the sections on particle paths in magnetic and electric fields, and the work on circular motion involving central forces.  A full development is best postponed until the magnetic forces on moving charges have been introduced.

Xerography

The drum of a xerographic copier is a selenium-coated aluminium cylinder.  Selenium is a photoconductor – that is, it is an insulator in the dark but becomes a conductor when exposed to light.

An image of the document to be copied is focused on the drum which has been given a positive charge (Figure E11).  The positive charge remains only on the darker parts of the image.

A black powder, the toner, is given a negative charge and is attracted to the charged drum.

A sheet of paper is then passed over the drum and the toner is transferred on to it, producing a copy of the original.

The toner must be melted into the paper.  This is achieved by passing the sheet between a set of heated rollers.

Figure E11: The photocopier
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Laser printer

The operation of a laser printer is similar to that of the xerographic copier.  The information to be copied is stored in a computer memory.  A laser beam is scanned across the drum (Figure E12) in much the same way as an electron beam is scanned across the screen of a television set.  The intensity of the laser beam is modulated by the stored information.  The pattern of charge on the drum is therefore an ‘image’ of the ‘original’.  Since the laser beam can be focused to a fine point on the drum, a high quality copy can be produced.

Figure E12: The laser printer
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Inkjet printer

As it moves back and forth across a line the print head of an inkjet printer sprays a fine beam of ink towards the paper (Figure E13).  Some of the tiny droplets in the spray are then charged.  The density of charged droplets is controlled by the information stored in a computer memory.  On its way to the paper the beam passes between a pair of deflection plates and only the charged droplets reach the paper.  More detail including animated diagrams of this can be found on the internet at www.videojet.com/t_overview.html

Figure E13: The inkjet printer
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Electrostatic air cleaner

In an electrostatic air cleaner a fan draws contaminated air first through an ordinary mesh filter to remove larger particles (Figure E14).  The air then passes through a second filter in which particles are given a positive charge.  It continues through a third negatively charged filter on which the positively charged particles are deposited.  A fourth activated charcoal filter removes unwanted odours.

Figure E14: The electrostatic air cleaner
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Electron beams

Whilst the calculation of the deflection of a beam of electrons in an oscilloscope is tedious, the end result should confirm that deflection in the y‑direction is proportional to the potential difference between the plates (Figure E15). This is one of the features that gives the device its usefulness.  Other useful features are its extremely fast response – electrons can be manipulated to ‘draw’ traces across the screen with a response time of nanoseconds – and its extremely high impedance.  As a voltage‑ measuring device it can have an input impedance of several megohms.  

Figure E15:  The oscilloscope
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Very clear and illustrative demonstrations of electron deflection can be done using an e/m deflection tube or a fine-beam tube.

Figure E16: e/m deflection tube
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The principle of conservation of energy should be used to calculate the kinetic energy acquired by electrons (or other charged particles) when accelerated in electric fields. The need for caution in applying non-relativistic equations, and the (perhaps surprisingly low) limits to the accelerating potential difference before relativistic effects become important should be pointed out, Table E1.  

The equation ½mv2 = qV sets no limitations on the speed of a charged particle accelerated through a p.d. V.  For example, if V = 106  volts and the particle is an electron, then v = 6.0  108 m s–1, twice the speed of light!  The effects of special relativity must be taken into account in dealing with particles having speeds comparable to that of light.

The equation E = mc2 applies equally well to stationary and moving particles.  If a particle, charge q, is accelerated through a potential difference V, it is given an amount of energy (kinetic energy) qV in addition to its rest mass energy (m0 c2), so that its new total energy (E) is m0 c2 + qV.  Hence


m0 c2 + qV = m c2
(E4)

The variation of relativistic mass with speed is referred to in the Mechanics section, and is given by
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For the example of the electron referred to above:



[image: image241.wmf]2

2

2

0

2

0

1

c

v

c

m

eV

c

m

-

=

+


This may be rearranged to give
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(E5)

from which v is determined to be 0.94 c.

Note that equations E4 and E5 are not in the syllabus.

A convenient unit of energy is the electronvolt (eV) which is just the kinetic energy acquired by an electron after it has been accelerated from rest through a potential difference of 1 volt.  It is therefore equivalent to 1.60  10–19 J.

The large electron–positron collider at CERN (Figure E17) produces electrons having a kinetic energy of 100 GeV (1011 eV).  The speed of the electrons at this energy is about one part in 1011 less than c.

Figure E17: Large electron–positron collider at CERN
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Classical versus relativistic motion

When is it appropriate to perform a relativistic rather than a classical calculation to determine the speed of a charged particle that has been accelerated from rest through some potential difference?

The relationship of equation E5
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may be expanded using the binomial theorem:
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(E6)

As a rule of thumb, if qV is less than 10% of m0 c2, a classical calculation is adequate.  This is because terms beyond the second term in the binomial expansion are then small enough to be neglected – v will be determined to better than about 7%.

Table E1


particle
electron
proton

Higgs boson



m0 c2

511 keV
938 MeV
>100 GeV

From the table, a 50 keV electron beam and a 100 MeV proton beam may be regarded as being non-relativistic.

This kind of illustration can also be done by numerical examples.  If skill is available in the use of spreadsheets the relationships can be explored graphically. 

Head-on collisions

Whilst it is instructive to consider the conversion of electrical potential energy to kinetic energy in this way, the conservation of energy principle can also be applied in the opposite sense. When an -particle makes a head-on collision with a nucleus such as that of a gold atom, it will come to rest in the field of the gold nucleus at a point where all of its kinetic energy has been converted into the electrical potential energy of the system.  

An analogy is that of a moving car coasting to a halt as it climbs a hill (Figure E18).

Figure E18: Kinetic to potential energy

[image: image246.png]



By treating the nucleus of the gold atom as being so massive as to be ‘fixed’, the distance of closest approach of an -particle of a given energy can be determined.  This can be done by equating the kinetic energy of the incoming -particle to the electrical potential energy stored in the two bodies when it comes to a halt.  -particle scattering, and Rutherford’s interpretation of the results, may have been discussed in an earlier course.  Rutherford’s work was extremely important, leading as it did to the view of the atom as having a nucleus.  Although his analysis of the mathematics of the scattering data is still beyond a treatment at this level, a greater insight into what is happening in these collisions can be gained by looking at this kind of problem. 

Scientists are now extremely familiar with the concept of the nucleus. The accompanying idea of the electron as a discrete entity is also very familiar.  That this should be so is largely due to the work of Rutherford in the former case and of Millikan in the latter.  Knowledge of the forces and energies involved in electric fields allows appreciation of Millikan’s work in investigating the charge on the electron.  The technical details of how Millikan measured the mass of the drops in his apparatus need not be discussed. 

The use of the phenomenon of the viscosity of the air and the application of Stokes’s Law to finding the masses of drops by measuring their terminal velocity is beyond the limits of the course.  Nonetheless, a knowledge of the far-reaching results obtained by this relatively straightforward piece of apparatus and its elementary theory is important. An interested student could repeat Millikan’s experiment as an investigation.

Electromagnetism

Magnets, in addition to exerting forces on each other and on magnetic materials, have a strong fascination for most people. It is difficult not to be intrigued by the (often) powerful forces of attraction and repulsion which act across empty space.  (Small neodymium magnets which have very high field strengths are commercially available.)  Despite their intrinsically interesting properties, however, magnets and magnetic fields receive scant attention in physics courses prior to Advanced Higher.

It is therefore worthwhile taking a little time to let students play with permanent magnets. The concepts of field, field lines, poles, etc. can all be discussed.  In particular the idea of the interactions between magnets in terms of interactions between their fields should be developed.  The occasion also presents itself here to discuss the similarities and differences between electric, gravitational and magnetic fields. 

Magnetic effect of a current
Although knowledge of Oersted and his discovery of this effect is not specified in the content statements, it is natural when discussing the field round a wire to say something about his work. Most accounts attribute Oersted’s finding of this effect to a chance observation.  While he was demonstrating something else (the heating effect of a current), the wire with which he was working happened to run in a plane perpendicular to the plane in which a nearby compass needle was free to swing.  (Previous investigations had had the wire in the plane of the compass needle.)  Oersted noticed that whenever a current was flowing in the wire, the needle of the compass was displaced. When the current was switched off, the needle returned to its undisturbed position.  Later systematic experiment confirmed his view that the current was producing a magnetic field.

The definition of magnetic induction and its unit, the tesla (T), introduce a concept that students have not previously met, namely, measurement of the magnitude of a magnetic field.  As this is completely new, some typical magnetic induction values could be quoted (Table E2).

Table E2: Force on a current-carrying conductor in a magnetic field

Field




Magnetic induction (T)


Earth’s field intensity



10–4


        

Small bar magnet



5.0  10–2
         

Field inside the JET torus


3.5

MR scanner 




8.0

CERN bending magnet


8.0

Strongest research magnet


80.0 

Neutron star field intensity


108
         

Force on a current-carrying conductor in a magnetic field

Figure E19 shows an experimental set-up which can be used to verify the relationship 


F = BIlsin
(E7)

Figure E19: Measurement of force on a conductor
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With a wire of sufficient thickness, currents of up to 10 A can be used.  The force of attraction or repulsion between the fields round the wire and the permanent magnets can be read from the digital balance.  By making the horizontal section of the conductor short enough, the magnet assembly can be rotated around the conductor.  This allows the variation of force with the angle made by the lines of induction and the wire to be studied.

Force between two parallel current-carrying conductors

The derivation of the formula for the magnetic induction due to current in a long straight wire is not required by the syllabus but students should be able to state the formula (E8).
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Notice that this is a situation involving cylindrical symmetry.  The factor 
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This is the first occasion in which students are able to deal quantitatively with electromagnetism.  It should be pointed out that 0 the permeability constant is the counterpart in magnetism of 0 the permittivity constant in electrostatics.  The reason why one should appear on the top line and the other on the bottom line has already been discussed.

The value of the constant of permeability of free space, 410–7 H m–1, and the fact that it is a defined quantity, could be given and discussed.

It was Ampère who reasoned, on hearing of Oersted’s findings, that two conductors carrying currents should exert a magnetic force on each other.  It is very easy to demonstrate that this is the case.  Two short lengths of wire lying parallel to each other and connected in parallel to a low-voltage supply will show attraction or repulsion depending on the current direction. The experiment also works very well for two thin strips of foil mounted close together, when they each carry a current.  From Ampère’s early work we now have the definition of the unit of electric current.  Knowledge of the definition of the ampere is not in the content statements (nor is knowledge of Ampère’s work), but it would seem natural to mention it/him here in passing. 

For the case of two parallel, infinitely long, straight wires carrying currents I1 and I2, one wire may be considered as producing a magnetic field.  The second wire experiences a force as it lies in this field. A combination of the relationships
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and 
F = I2lB
(E9)

shows that the force per unit length that each wire exerts on the other is
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(E10)

Use a rule (Table E3) to find the relative directions of force, field, and current.  The rule might be applied here to show that currents in the same direction attract and currents in the opposite direction repel each other.

When I1 = I2, this equation becomes
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(E11)

which shows that a current may be expressed in terms of force and distance, both of which can be measured with precision. 

Equation E11 forms the basis of the definition of the unit of electric current, the ampere:

‘If two parallel straight conductors of infinite length and of negligible circular cross section placed one metre apart in a vacuum each carry a constant current of one ampere, then the force per unit length that each exerts on the other is 2  10–7 N m–1.’

At the National Physical Laboratory (www.npl.co.uk), a current-weighing and induced e.m.f. method is used to establish a secondary standard of current that is accurate to about one part in 107: 

1.
the force on a current-carrying conductor in a magnetic field is measured and 

2.
the conductor is then moved at constant velocity in the magnetic field and the induced e.m.f. is measured (Figure E20).

Figure E20: Current balance
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The principles of the method are as follows.

Consider the force F on a current-carrying conductor of length l in a magnetic field B (Figure E21a):


F = I l B.
(E12)

Figure E21a


Figure E21b 
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When the conductor is then moved with constant velocity v at right angles to the field, the charges within the conductor each experience a magnetic force Bqv.  This force causes a movement of the charges in the conductor so that a potential difference V is established between its ends (Figure E21b).  

The resulting electric field (E = V/l) within the conductor opposes further net movement of the charges – the magnetic force Bqv is balanced by the electric force Eq (= Vq/l). 

Hence
V = B v l  
(E13)

Dividing equation E12 by equation E13 gives:



[image: image255.wmf]v

I

V

F

=


or



[image: image256.wmf]V

Fv

I

=


(E14)

– that is, the current is expressed in terms of measured quantities.

Hall voltage

When a charge carrier moves across a magnetic field it is subject to a force that is at right angles to the direction of motion and to the magnetic field.  Consider the piece of material shown in Figure E22, in which electrons flow from left to right driven by a source of e.m.f.

Figure E22: The Hall effect
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The electrons are deflected towards the bottom edge of the material, causing an excess negative charge there and leaving an excess positive charge on the top edge. The process will reach equilibrium when the field created by this separation of charge exerts a force on the electrons equal and opposite to the force acting on them due to their motion across the magnetic field.

For a sample of breadth d, in a field of induction B, the electric field strength is

E = VH /d
The magnitude of the force on an electron (charge e) in the field is 

F = eE
that is
F = eVH /d
At equilibrium the magnitude of the magnetic force is equal to this and in the opposite direction.

Now
Fmag = evB
where v is the velocity of the electrons through the material, and so 


evB = eVH /d

This gives us 
v = VH /dB
(E14)

Using semiconductor materials it is straightforward to set up an experiment allowing measurement of VH, d, and B.  This allows the velocity of the charge carriers in a material to be measured.

By taking into account the current I, and the thickness of the sample t, the density of the charge carriers making up the current can also be determined.  The cross-sectional area of the material is A = d  t.  Let  be the number of charge carriers per unit volume of the material.  Then all the charges in a volume, v d t, pass a point in one second, that is 
v d t charges pass.  Since the charge on each is q, the rate of flow of charge past each point in the material is 


I = q v d t 
(E15)

I can be measured directly, as can d and t.  The velocity is given by equation E13, and so the density of charges, , can be found.

The Hall effect can therefore give insights into the behaviour and conditions of the charge carriers in a conducting medium.  One way to show to students that the charge carriers in p-type semiconductor material are positive holes is to demonstrate the Hall voltage first in a piece of n-type material and then in a piece of p-type material.  A bar magnet is brought up to a piece of n-type semiconductor through which a current is passing. The direction (polarity) of the Hall voltage created by this is noted.  The experiment is repeated with a piece of p-type semiconductor in series with the first. The same current is necessarily present in the second piece of material.  One would expect the sign of the Hall voltage produced when the magnet is brought near this material, to be the same as for the n-type material, assuming it is brought up in the same orientation as before.  When the experiment is carried out, the polarity of the Hall voltage is seen to be reversed.  This can be explained as being due to positive holes acting as charge carriers and flowing in the opposite direction to the flow of electrons in the n-type material. 

Semiconductor Hall probes are used for measuring magnetic induction.  It is likely that the Hall effect will play a part in the storage of data in computers in the not too distant future (de Boeck and Borghs, 1999).

Measuring magnetic induction

It is possible to use a Hall probe to measure the induction around a wire

carrying a current.  The magnetic induction is given by 
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Experiments can be difficult because measurements are made at the limits of the sensitivity of the system.  For reasonable currents, up to about 10 amperes, the induction even close to the wire is very small.  One does not have to move very far from the wire before finding that the induction is comparable to that due to the Earth’s magnetism.  

A further complication when working over restricted ranges like this is that the Hall detector is itself of finite size and the induction is not constant over its surface.  These difficulties can be avoided in part by using the e.m.f. induced in a search coil by an alternating current in a long wire. 

A ‘long’ wire (of about 1 metre length) is supported vertically on a wooden frame, in series with a resistor of a few ohms resistance (Figure E23).  

Figure E23: Field near a long straight wire
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The induction is measured using the size of the induced e.m.f. across a search coil.  A coil of 2,500 turns is suitable for this. Some explanation of the rationale behind this way of measuring the induction is required. Faraday’s laws of induction are not in the syllabus, but the self-inductance of a coil is discussed later.  The best that can be done is to point out that a changing current induces an e.m.f. across the search coil, a result that should be familiar from earlier work.  This e.m.f. is caused by the varying magnetic induction created by the varying current.  The size of this e.m.f. depends on the rate of change of the magnetic induction, which itself is proportional to the size of the induction.

When exploring the 1/r relationship, the fields due to other parts of the circuit will begin to affect the measurement even when the search coil is fairly close to the wire. The induction falls off as the inverse of the distance and not as the inverse square. Another difficulty is that the finite size of the search coil makes it difficult to determine just where a given reading is being taken.  (In fact there is no unique point in space at which the induction  B is measured with this technique – it is averaged over the coil area.)

The symmetry of the situation, however, means that the fields to the left and the right of the wire should be mirror images of each other and so the zero reference position can be found by taking readings both left and right of the wire.  (Since B varies as 1/r then at r = 0 the induction is theoretically infinite.) 

The resulting graphs should allow the zero position to be determined.  It is also worth remembering that steel‑framed furniture will distort the field, and so the experiment should not be performed on a steel-framed bench.  Steel stands should also be avoided.

To explore the dependence of the induction on current, the potential difference across the resistor (current) and the induced e.m.f. across the coil (induction) can be displayed on a double‑beam oscilloscope.  The traces should be made identical in size, and the amplitude of the output of the oscillator varied.  The two voltages seen on the oscilloscope will be seen to vary in an identical manner, showing that the induction is directly proportional to the current. 

The speed of light

James Clerk Maxwell (1831–1879) developed a unified theory of electric and magnetic phenomena.  The basis of the theory is a set of four equations, known as Maxwell’s equations, a detailed study of which is usually undertaken in advanced undergraduate level physics courses.  However the following results are of interest:

•
The study of electric phenomena involves 0, the permittivity of free space.

•
The study of magnetic phenomena involves 0, the permeability of free space.

In electromagnetism, an electromagnetic wave is a transverse wave in which oscillating electric and magnetic fields are at right angles to each other and to the direction of propagation (Figure E24).  The speed c of such a wave in a vacuum is given by:
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Figure E24: Fields associated with an electromagnetic wave
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In 1973 the Consultative Committee for the Definition of the Metre (CCDM), a subordinate body of the General Conference on Weights and Measures (CGPM), adopted for the speed of light in a vacuum the experimentally-derived value 299 792 458  1.2 m s–1.

The error in this value (about 4 in 109) is about five orders of magnitude greater than the error in the standard of time (the caesium clock, Figure E25a) that was adopted internationally in 1967.

In the early 1970s the distance between the Earth and the Moon was measured to an accuracy of less than 50 cm using the technique of laser range finding.  A short, intense laser pulse was directed at the retro-reflector left on the Moon’s surface by the Apollo astronauts, and its return time-of-flight measured.  This led to the anomalous situation in which the Earth–Moon distance could be measured to greater accuracy than the existing standard of length could be defined!

In October 1983 the CGPM redefined the metre as ‘the distance travelled by light, in a vacuum, in a time interval of 1/299 792 458 of a second’.

The speed of light in a vacuum is now a fundamental constant of physics: 
c = 299 792 458 m s–1 exactly.

This standard is not very convenient from a practical point of view, so the National Physical Laboratory has a secondary standard is based on the wavelength of a very stable helium–neon laser (Figure 25b).  This secondary standard is accurate to about three parts in 1011.  This corresponds to measuring the Earth’s mean circumference to an accuracy of about 1 mm.

Figure E25a: Schematic diagram of caesium clock 

Figure E25b: Helium–neon laser 

Motion in a magnetic field

The deflection of charges moving across magnetic fields is easily and beautifully demonstrated and measured using an e/m deflection tube.  More impressive still is the fine‑beam tube containing gas at low pressure which glows as the beam of electrons passes through.  This tube allows full circular and helical paths to be observed. Students are always impressed by the beauty of these demonstrations. The observations in electromagnetism can be linked to the explanation of the auroras. These are caused by charges, largely protons, ejected by the Sun, which follow paths that are looped around lines of the Earth’s magnetic field.  As they approach the Earth these charges move along its field lines towards the poles. They collide with and excite molecules of oxygen and nitrogen in the upper atmosphere at high latitudes.  The excited molecules emit light when radiative decay takes place.

More information about the aurora and space science generally can be found on http://www.spaceweather.com/. An excellent article on the topic of the aurorae appears in Physics Review (Berry, 1999).

The demonstrations give another opportunity to make connections between the work of this unit and the circular motion theory of the Mechanics unit.

Note on current convention
In teaching this topic it is essential to be aware of the convention being followed and of the possibility that other texts or sources use a different convention. Whilst ‘current’ means rate of flow of charge, the convention followed here is that the charges which actually move are negative charges, that is electrons.  This is certainly the case for metallic conductors, but it is not true in wider contexts.  

Rules of ‘thumb’ or otherwise
Whatever convention is adopted for the sign of the moving charge and for the direction of motion of that charge, there is no need to confuse the issue by introducing both left‑hand and right-hand rules.  A charge moving in a magnetic field cannot be aware of whether it is moving in a motor or a dynamo, and whether it should be subject to a right-hand rule or a left-hand rule.  Therefore such considerations are of no conceivable relevance.  What is important is the sign of the moving charge and the direction of its motion relative to the field.  Two possible aides-memoire are offered, both for electron flow.  Each must be adapted if conventional current is the preferred convention. 

Table E3
It should be pointed out that for both of these rules:

•
the left hand is used throughout

•
one rule only is required, without any modification, to explain the behaviour of motors, generators, beams of cathode rays, electrons in accelerators, the Hall effect, back e.m.f. etc.  It is universally applicable.

The rule(s) can be easily visualised for a motor, where the electrons are driven along the conductors by an external e.m.f. in an obvious direction.  It is conceptually slightly more difficult to see that when such a conductor is bodily moved across a magnetic field, by whatever means, every charge in the conductor is moving with it in the same direction.  All the charges in it will experience the electromagnetic force as a result.  The free charges, electrons in a metallic conductor, will move under the effect of this force.

Figure E27:  Forces on moving charges
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In the situation shown in Figure E27, the wire is being forced upwards.  Every electron (and every proton) is moving upwards with it, through the magnetic field.  Consequently the electrons, by the left-hand rule above, feel a force along the length of the wire out of the page.  There is no need to ask whether this is a motor or generator, and to remember, possibly wrongly, a second rule.  If the wire is being driven upwards by a mechanical force, as it would be in a generator, then the rule states that the electrons would tend to move along the wire out of the page.  

Should the wire be moving upwards because it is part of an electric motor, then the electron current creating this motion must be along the wire into the page (apply the left-hand rule to check).  The consequence of the motor’s turning like this is that the electrons experience a force out of the page, a back e.m.f.  There is no mystery!

Force on moving charge in a magnetic field

The derivation of the formula involving the force on a charged particle moving across a magnetic field starts from Equation E7:

F = IlBsin
Figure E28: Force on charges
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Figure E28 shows a wire of cross-section A which is at right angles to a magnetic field of induction B.  The current in the wire is I and the speed of the charges is v.

The density of charges is  per cubic metre.

All the charges in a volume A v pass through a cross section of the wire in one second.  That is A v charges will pass in 1 second.  

This number, multiplied by the charge q on each, is therefore equal to the current in the wire:

I = e  A v
The force on the wire is F = I l B sin, that is F = q  A v l B
Now  A l is the number of charges in length l, and so the force on each charge is 


F = q v B
(E16)

This equation gives an insight into the origin of the force on a current-carrying conductor.  The force is always at right angles to the direction of motion of the charge and to the magnetic field.  A constant magnetic field cannot change the speed of  charged particles.  These facts should be discussed.  The way is then clear to explain the circular motion seen in the experiments referred to earlier.  (A more advanced treatment would consider the current and the magnetic induction as vectors and make use of the vector product.)

Applications of this effect range from the deflection of the electron beam in a television tube, to the aurorae, to particle accelerators such as at CERN in Geneva and plasma containment in fusion reactors such as the Joint European Torus (JET). 


For further information about the accelerators at CERN and their uses, visit the CERN website at www.cern.ch/public.  Links exist to discussion about the uses of fundamental research in general and of the work being done at CERN in particular.

The equation for the radius of the path followed by a charged particle, at non-relativistic speeds, in a magnetic field should be derived.  The use of the curvature of the tracks in the analysis of events arising in collisions in accelerators should also be mentioned.  Table E2 gives the strength of field of the bending magnets required to keep fast-moving protons in the required path round the accelerator.  Note that the velocity of particles in accelerators may be well into the relativistic region and simple non-relativistic equations cannot be applied to this case.

Other applications of moving charged particles
At very high temperatures the kinetic energy of the atoms in a gas is so high that the atoms become ionised by atom–atom collisions, resulting in a mixture, a plasma, or fourth state of matter, whose properties are quite different from those of a normal gas (Figure E29a).

Figure E29a: Gas state

        Figure E29b:  Plasma state 
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In general, charged particles will spiral along magnetic field lines since they will have a component of velocity in the field direction.  The component at right angles to the field lines gives rise to the circular motion (Figure E30b).

Figure E30a: Charged particles with no magnetic field present


Figure E30b: Charged particles within magnetic field

In Figure E31, gamma rays entering a bubble chamber (a nuclear charged particle detector) from the top produce (a) a low energy and (b) a high energy electron–positron pair.  In the former the radii of the particles’ orbits decrease as they lose energy through collisions with the liquid in the bubble chamber.  In (a) the third track is that of an electron ejected from an atom in the detector (pair production only occurs when a gamma ray passes close to a nucleus).

Figure E31: Representation of gamma ray entering a bubble chamber producing (a) a low energy and (b) a high energy electron–positron pair.
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In one type of fusion reactor research, a high temperature plasma is prevented from touching the walls of a toroidal (doughnut-shaped) vessel by strong magnetic fields that spiral around the major axis of the torus (Figure E32).  The plasma is therefore confined close to the major axis and it can then be heated by various methods to temperatures that are high enough (108 K) for fusion reactions to occur.

Figure E32: Magnetic fields in torus
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Currents in the molten iron core of the Earth cause it to behave like a huge magnet.  The magnetic field is strongest in the polar regions.  Lower energy cosmic ray particles travelling towards the Earth tend to spiral along its magnetic field lines.  After a solar flare, a shower of protons and electrons rains down on the upper atmosphere near the poles, and the collisions with atmospheric gases give rise to a spectacular display of visible radiation called the northern lights (aurora borealis) or southern lights (aurora australis).

Charge to mass ratio of electrons
Students should be able to describe the details of J  J Thomson’s experiment to determine the charge to mass ratio of the electron.  Interested students could repeat the measurement using a deflection tube.

By adjusting the magnetic and electric fields in the region between the plates of his equipment, Thomson was able to deduce the velocity of the particles in the beam.  When the magnetic force and the electrostatic force are equal



evB = eV/d
(E17)
and the beam is undeflected.

From this equation, the velocity is v = V/Bd

With the electric field switched off, the beam follows a path of radius of curvature given by the general expression for a central force:

F = mv2/r
Since in this case the force is due to the magnetic field, then

F = mv2/r = evB
and so
e/m = v/rB
(E18)




Now v is known from the balancing fields condition, and so e/m can be evaluated.

Accelerators and the mass spectrometer
Many ingenious ways have been devised to exploit the fact that moving charges are forced into circular paths.  The cyclotron is one example (Figure E33).

Figure E33: The cyclotron
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Electrons are accelerated by the potential difference between the two hollow ‘dees’.  Whilst inside the dees, they feel no electric force, as they are inside a hollow conductor – a region of zero field.  As the dees are in a strong magnetic field, the electrons follow a curved, semicircular path whilst they 

are inside the dees.  The radius of this path is found from

mv2/r = evB

which gives 
r = mv/eB
(E19)

It can be seen from this that the radius of the electron’s path and its velocity are in direct proportion to each other.  This has the fortunate consequence that the time taken by the electron to complete a semicircular path inside each dee is constant, no matter what the speed. This allows the potential difference applied across the dees to be switched at a constant rate, despite the fact that the electron is being speeded up. Each time the electron emerges from the dees it sees an accelerating field.  Cyclotrons were the first accelerators to confine charged particles to circular paths.  Despite the quirk of nature that makes them particularly simple to design, they do suffer from one or two drawbacks.  One is the relativistic mass change of the particles as they are accelerated. The constancy of the period is no longer maintained – there is a mass term in the expression above relating the path radius and the velocity.  The mass changes with the velocity as speeds approach the speed of light.  The frequency must be reduced as higher speeds are reached, giving a synchrocyclotron.  The other drawback is that a large magnet is required to maintain a high field over the large volume involved.  This is expensive and difficult to engineer.

Later accelerators, synchrotrons, use a path of constant radius, as at CERN in Geneva.  Here the field strength is adjusted as the energy of the accelerated particles increases.  Smaller, superconducting magnets are used at intervals round the accelerating ring.

Reference has already been made to the aurora borealis/australis, which are natural examples of charges following helical paths round field lines.  Other examples of this kind of trajectory are found in the magnetron, a device that produces microwaves for radar and other purposes. 

Students of chemistry will be familiar with the mass spectrometer, in which ions are first selected so that they all have the same speed, and are then deflected by passing them through a magnetic field.  Heavier ions follow paths of lesser curvature than the lighter ones, thus allowing the different chemical substances present in a sample to be identified.

Figure E34: The mass spectrometer
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A mass spectrometer is combined with an accelerator in the technique of radiocarbon dating.  Instead of measuring the decay of a radioactive isotope such as 14C, a small sample is ionised and accelerated before being analysed in a strong magnetic field.  The isotopic composition of the sample can be measured directly, giving a much more sensitive means of dating the material (see Grove, 1999).  The Turin shroud has recently been dated by this method.

Self-inductance

This may seem rather an abstract concept, if introduced from a theoretical point of view.   A demonstration of the slow growth of current when a supply is connected to an electromagnet consisting of many turns of wire is a good place to begin.  With a coil of 37 000 turns and a full iron core, the growth of current can be slow enough to observe and time with a stopwatch.  Indeed this is a feasible experiment with which to measure the self-inductance of the coil.  It is best done with an analogue meter, as digital meters fluctuate in such a way as to make reading them when currents are changing a rather uncertain affair.

To find the self-inductance of the coil, a source of e.m.f. such as a battery is connected across the coil, and the current is read at intervals.  The current versus time graph is plotted.  The gradient, in amperes per second, at the moment of switching on the current is found. Theory dictates that at the moment of switch-on, when there is no current flowing, there is therefore no potential difference across any resistance in the circuit. The e.m.f. generated by the changing current must be equal and opposite to the open-circuit e.m.f. of the supply.

This self-induced e.m.f. induced is given by 
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(E20)

As this is numerically equal to
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Students may have met induced e.m.f.s when they studied transformers and generators.  In the case of the transformer it would have been stressed then that the device would only work when the current in the primary coils was alternating.  The generator was shown to produce an e.m.f. when there was relative motion between a wire and a magnetic field. The treatment in each case was necessarily fairly superficial.

Students should be reminded of these phenomena when self-inductance is introduced.  In particular, the mutual inductance of the two coils of a transformer makes an ideal place to begin discussion of the self-inductance of a coil.  From a strictly theoretical point of view, whenever a magnetic field changes through an area of space there will be an e.m.f. developed around that area.  This will be the case whether or not there is a conductor or free charges present.   

It is probably easier conceptually for students, although perhaps not strictly accurate, to have a firm picture of magnetic field lines and of conducting circuits with free electrons in them.  If the wire is fixed and in the form of a coil, a changing field may be visualised as the field lines growing or shrinking through the turns of the coil.  This, in a sense, can be thought of as relative motion between the field lines and the free charges in the wires. In the case of the transformer, the current in the primary coil produces the changing field that threads the secondary coil.  In the case of the single isolated coil, it is the field produced by its own current that changes through its own turns.  Although this is very similar from a physical point of view, it is quite a difficult idea to grasp.  

As far as individual electrons are concerned, however, they are ignorant of what the source of the changing field actually is.  The e.m.f. generated by the changing field acts on them regardless of its origin.  It should be relatively straightforward to convince students that this e.m.f. is not in a direction that encourages growth of current, as an e.m.f. in that direction would represent energy being generated without being converted from some other form, and thus be the electrical equivalent of a free lunch.  The fact that it is a ‘back e.m.f.’, and that Lenz’s law applies, is evidence that energy cannot spontaneously arise from nowhere.  Indeed the establishment of a magnetic field requires energy to be stored in the field.  If it is any comfort to students, they should realise that the energy stored in the field is not ‘lost’, but can be recovered when the current ceases, and the field collapses.  It should be added that if they receive an unexpected shock from such a sequence of events their comfort is likely to be short-lived.  On a serious note such shocks could be fatal.

Although the experiment outlined above is a satisfactory means of measuring the self-inductance of a heavily inductive coil, the time constant of many inductors is so short that a data-capture device must be used.  

Figure E35 shows a circuit arrangement in which an interface is used in conjunction with a computer to record the rising current in a circuit containing an inductor.  

Figure E35: Measuring self-inductance
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The interface is set to trigger when the digital input rises.  This occurs at the instant the switch S is closed, as the full supply e.m.f. appears across this input at this instant.  This ensures that the rising current is recorded from the instant of switch-on, which is necessary if the gradient of the current–time curve at t = 0 is to be found.  The data rate is set according to the size of the inductor.  

Note:  When performing experiments with this equipment, it is important to disconnect the interface from the circuit before switching the current off.  The rapid collapse of the magnetic field will generate a large back e.m.f.  If this precaution is not observed, the interface may be damaged.  Alternatively a diode may be connected across the inductor, as shown in Figure E35.
The open-circuit e.m.f. of the supply, 
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, is measured using a digital meter.  The gradient of the graph at t = 0 is found, and from these measurements the self-inductance is calculated.

Energy storage

It is not at all easy to see how an inductor stores energy.  However, it is easy to demonstrate that energy is stored by breaking a circuit containing an inductor that has a neon lamp across it (Figure E36).

Figure E36: Illustrating large back e.m.f.
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A small neon lamp will require an e.m.f. of about 80 V across it before it will strike. When the switch in the circuit in Figure E36 is opened, there is a back e.m.f. produced that is large enough to cause the neon to strike. It is not necessarily apparent that the energy for this has come from the magnetic field.

It might help to demonstrate an inductor not connected to a source of e.m.f. but with a permanent magnet inserted into it.  An oscilloscope connected across the terminals will show any e.m.f. produced.  Here the field of the magnet plays the part of the field created by a current in the coil.  When the magnet is removed, the change in the field created by its removal induces an e.m.f. across the coil. The faster the magnet is removed, the greater the e.m.f. that is created.  This is similar to the effect of the coil’s own field decreasing rapidly to zero when the circuit linking it to a battery or other source of e.m.f. is broken.  This changing field induces an e.m.f.  

The meaning of the term ‘e.m.f.’ as being the number of joules per coulomb converted to electrical energy from whatever is the energy source should be spelled out frequently in the course of teaching this work.

It is not possible to justify the formula for the energy stored in an inductor without going through the derivation.  Indeed, it is still not a straightforward matter to understand what is going on.  First of all the relationship between current and time can be derived as follows.

The equation for energy in a circuit containing inductance is:
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which gives
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Now integrate both sides
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When t = 0, I = 0 and so c = ln I0
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This gives the result
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(E22)

The graph of this is as shown in Figure E37.  Figures are taken for an ideal inductor: L = 200 H, circuit resistance R = 2 , supply voltage = 4 V.

Figure E37: Current versus time in an inductor
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To evaluate the energy stored in the field, the e.m.f. at any instant is multiplied by the current at that instant, giving the instantaneous power.  This in turn is multiplied by the time for which it occurs, giving the energy converted during this time.  (This is in fact the product of the increment of charge that is being taken across the e.m.f. present across the inductor with the e.m.f. and so represents the increment of work done on this charge.  There is consequently a conversion of energy into the potential energy stored in the magnetic field.  The total energy stored in the field is then the sum of all such quantities.)

Power at any instant is given by the rate of change of energy E


[image: image283.wmf]IV

t

E

P

=

=

d

d


V is the potential difference across which the charges forming the current I are moving, i.e. the back e.m.f. of the inductor, and so
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The energy stored is therefore 
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(Note that the symbol E in this derivation stands for energy and not anything else.)

The graphs below show the current through an inductor, the e.m.f. across the inductor terminals and the instantaneous product of  these two. The values used are 200 H for the inductance of the inductor, which is considered as ideal (one with no resistance of its own), 2  for the circuit resistance and 4 V for the e.m.f. of the (ideal – that is, zero internal resistance) source.  

The area under the V  I curve is the energy converted during the current rise, that is the energy stored in the magnetic field.

Here the individual values of V  I have been summed and multiplied by the time step taken in plotting the curve, that is by 10 seconds.  

Figure E38:  Voltage across, current through and power in an inductor
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The result of this calculation is a value for the energy stored in the magnetic field, which is shown on the graph. For the above example using the equation E = ½ L I02 the energy stored is 400 J.  The summed value from the spreadsheet is in fairly good agreement with this.

It should be noted that:

1.
a pure inductor (that is, one that has no resistance) does not dissipate energy

2.
when the steady state is reached, charges pass through the inductor but not through a potential difference – a pure inductor has no potential difference across it in the steady state, and so there is no further energy transfer involved

3.
when the circuit is eventually broken, this stored energy will be converted into some other form.  

If the current through an inductor is switched off, then the magnetic field will collapse.  As it does so, it will induce an e.m.f. across the coil.  The direction of this will be such as to maintain the current.  If, as is normally the case, the current has been switched off by opening the circuit, then the field will collapse very rapidly to begin with, and the e.m.f. generated, 

– L dI/dt, may create an electric field of sufficient intensity to break down the insulation of the air across the switch terminals.  

A spark will jump across the gap, and the resulting flow of charge will act to convert the stored energy to heat and possibly other forms.  Under normal circumstances this is of little consequence.  However, where repeated sparking like this occurs, material may be eroded from one switch contact and possibly deposited on the other.  The points in older car ignition systems required regular readjustment as a result of this.  If equipment that might be damaged by exposure to high voltages is connected to the circuit that might be damaged by exposure to the high voltages generated, then precautions must be taken to provide a safe route for this energy.  The case of a transistor switching a relay is shown in Figure E39.

A diode is connected across the relay coil so that when the relay switches off, the back e.m.f. drives current through the diode. 

Figure E39: Protection from back e.m.f.
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In the case of switchgear in systems such as the National Grid, breaking a circuit with a large inductance by opening the circuit produces a large e.m.f. across the switch terminals.  The resulting spark, if the terminals are in air, may conduct sufficiently well for the current to be maintained.  In cases like this, a blower may be operated across the terminals to snuff out the spark and allow the circuit to be broken properly.  The switch terminals are immersed in a gas that will not break down under the voltages experienced, usually an atmosphere of sulphur hexafluoride.

Alternating current and inductors

The current through an inductor does not depend only on the applied e.m.f.  Instead, it is governed by the difference between the e.m.f. applied across it from a supply and its own back e.m.f. As this latter e.m.f. is dependent on the rate of change of the current, the behaviour of an inductor in a circuit driven by an alternating current supply depends on the frequency of the supply.  

Figure E40: L R circuit
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In the circuit shown in Figure E40, the current is  I = I0 sin t.
As this is a series circuit, the e.m.f. across the inductor generated by this changing current is

VL = – L dI/dt
and
dI/dt = I0 cos t
so
VL = – I0L cos t
This represents energy per coulomb stored in the magnetic field, and so the energy per coulomb equation for the circuit at any instant is:

VS = I R + L dI/dt where VS is the e.m.f. of the supply,

i.e.
VS sin (t +  ) = I0R sin t + I0L cos t
Therefore, energy supplied per coulomb is equal to the energy dissipated in R plus the energy stored in the magnetic field of L.  Note that the phases of the e.m.f. across L and the e.m.f. of the supply are shifted with respect to the phase of the current.  The term cos t in the expression for the e.m.f. across the inductor shows that its phase is leading the phase of the current by 90o, or /2.  Consideration of the current–time and voltage–time graphs (Figure E41) shows why this should be: recall that the e.m.f. across L is given in size by the rate of change of the current, and its direction is such as to oppose the change.  The current is changing most rapidly as it rises through zero.  This then is the point at which the e.m.f. across the inductor has its greatest value.  Where the current–time graph has a gradient of zero, at the peak of the current, then the induced e.m.f. will also be zero.

In Figure E41 the current is shown at the same scale as the voltage across the inductor.  The lighter line is the current.

Figure E41:  Phase relation in an inductive circuit: voltage across L and current through L


The equation above has a term R governing the potential difference across the resistor, which is, as expected, independent of the frequency of the supply, but the factor  appears in the term describing the potential difference (actually e.m.f.) across the inductor. The inductor has an effect associated with it that is equivalent to resistance, its inductive reactance, which is frequency dependent.

These relationships can be represented on a phasor diagram where the amplitudes are represented by the lengths of the relevant lines.  The phase of the lines relative to a reference phase is shown as an angle.  Angles anti-clockwise from the reference phase are taken as positive. These lines are known as phasors (Figure E42).

Figure E42:  Use of phasors

As the current is the same, and therefore of the same phase, at all points in a series circuit, the reference phase is taken as that of the current.  The potential difference across the resistor is simply the product of the resistance and the current, and therefore has the phase of the current.

The factor I0 is common to each side of the phasor triangle of voltages in Figure E42.  A similar triangle can be drawn by dividing each side by this factor.  This triangle has sides of length R, L, and Z.

Figure E43:  Impedance and reactance phasors
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The impedance VS/I0 of the circuit is Z, where 


Z = (R2 + 2L2)
(E24)

The term L is given the symbol XL.  It is equivalent to a resistance, being the ratio of a voltage to a current, and so has the dimensions of ohms.  Since phase is associated with XL, this quantity is called a reactance.  Since the frequency f of the supply is given by the equation

f = /2
then clearly the effective resistance, or reactance, of the inductor increases linearly with the frequency.  

Students are not required to go into this detail, but a study of alternating current in circuits containing resistors, inductors and capacitors could be useful and interesting practical work for an investigation.

The current in a series circuit containing an inductor should be studied, but the relationships above must be borne in mind. Any actual inductor will have a resistance associated with its windings that may not be negligible. For low frequencies and small values of inductance the effect of the resistance is likely to outweigh the inductive reactance.  Any experiment, therefore, to investigate the variation of current with frequency must be designed with this in mind.  Table E4 gives values of resistance and inductance for some coils, with and without cores.

Table E4

Coil
Resistance R ()
Inductance L (H)


20 000 turns 

no core
 3.8  103
11.8


5 000 turns 
535



no core 

0.56 

1/2 core
 
3.16


2 400 turns 

no core 
68
 0.14 


1/2 core 

0.7

full core

6.0

Figure E44 shows the impedance of a non-ideal inductor of resistance 68  and self-inductance 0.14 H.  The graph is clearly not a straight line at low frequencies because of the resistive part of its impedance.

Figure E44:  Impedance versus frequency for a non-ideal inductor 

The increase in impedance of an inductor at higher frequencies leads to a corresponding decrease in current at these frequencies.  The more rapidly current changes through the inductor, the greater the back-e.m.f. induced across it.  This leads in turn to a decrease in the current.  At high frequencies the effective reactance of an inductor can be large.  The only dissipation of energy occurs in the resistive part of the circuit.  An inductor can be used to reduce current with very little loss of energy to heat.  Inductors therefore find a use in controlling alternating currents.  Inductors are included in fluorescent and laboratory discharge lamp circuits for this purpose. When used in this way they are called ‘chokes’.

A high voltage is required to initiate or ‘strike’ the discharge across a fluorescent tube. The tube must have a choke in series with it to limit the current. Use is made of the fact that a rapid collapse of the magnetic field through the choke will produce the necessary high voltage.  A subsidiary circuit containing a starter is used to produce a sudden switching of the current through the choke.  Before the tube has been ‘started’ the current path is through the starter, and not the tube.  When conditions in the starter are correct, the circuit is opened, and a large e.m.f. is generated across the choke, initiating a discharge across the tube.  Once current is established through the tube, the starter is bypassed and the tube continues to conduct.

Figure E45:  Fluorescent light circuit
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Smoothing and filtering

When an alternating current supply has been rectified, it usually must be smoothed as well, to produce steady direct current.  The role of capacitors in smoothing out the residual ripple in rectified alternating current should be revised.  An inductor used in conjunction with one or more capacitors provides more effective smoothing (Figure E46).

Figure E46:  Smoothing circuit


Recall that the ‘effective resistance’ (or reactance, as it should now be called) of a capacitor decreases with frequency, while the reactance of an inductor increases with frequency.  Higher frequency components are present in the ripple waveform.  The capacitors act as low-impedance paths, bypassing (‘shunting’) the load.  They provide paths of (theoretically) infinitely high reactance to the direct current component.   The inductor presents a high reactance path to the non-direct current components, and one of little or no reactance to the direct current. 

The net result is that the direct current is passed on to the load with little attenuation, and the alternating current ripple is shunted.

Similar principles apply in circuits designed to channel different frequency components of a hi-fi signal to the appropriate speaker. Sound reproduction is better in speakers that are designed to recreate sounds over a limited frequency range only and not over the entire audio spectrum.  A speaker designed for bass frequencies, a woofer, is likely to be larger in all dimensions than one designed for very high frequencies, known as a tweeter.  To exploit this, circuitry must be used to channel high frequencies to one speaker and low frequencies to the other.  This is the function of a cross-over network (Figure E47).

Figure E47:  Simple cross-over circuit

The inductor and capacitor should be looked on as being a voltage divider arrangement.  The speaker connected across each will respond to the potential difference across the element to which it is connected.  In the case of a voltage divider that is purely resistive, the greater potential difference is developed across the resistor with the greater resistance.  Since resistors are not sensitive to frequency this would do nothing to channel different frequencies to different speakers.  The inductor and capacitor are frequency sensitive, and so the potential difference that is developed across each depends on the frequency of the signal.  If the signal consists purely of high frequencies, the reactance of the inductor is higher than that of the capacitor to these frequencies, and so the potential difference at these frequencies across the top loudspeaker or tweeter is greater than that across the bottom speaker.  More power is produced in the tweeter, therefore, by the high frequencies, all other things being equal.  

For low frequency signals, on the other hand, the reactance of the capacitor is greater. These signals generate a greater potential difference across, and hence more power in, the woofer, given that all other factors are equal.

Where the signal contains a spectrum of frequencies, this simple circuit will tend to direct the appropriate parts to the appropriate speaker.

Forces of nature

The strong nuclear force

Satellites are held in orbit by the gravitational force of attraction of the Earth. In the pictorial Bohr model of the atom (see Mechanics section), electrons are held in orbit around the nucleus by the electrical force of attraction between the negatively charged electrons and the positively charged nucleus; one might ask, what holds the constituents of the nucleus together?

Perhaps a close-packed assembly of nucleons is held together by the gravitational force acting between the neutrons and protons.  However, it is easily shown (try the calculation) that the repulsive force between the positively charged protons is many orders of magnitude greater than the gravitational force of attraction between them.  There is another force responsible – the strong nuclear force – that has very different properties from those of the two familiar, inverse square law, forces.  This force is very much stronger than the other two and operates only within the dimensions typical of an atomic nucleus, that is  10–14 m. 

The strong nuclear force may be explained in terms of another, basic, force acting between quarks, the particles that bind together to form protons and neutrons.  This quark–quark force has the very strange property that the force of attraction between the quarks increases as the separation increases.  An instructive analogy is that the quarks act as if tied together with indestructible rubber bands.  Because of this, they may never be seen as free particles.

There are at least six types of quark – in three pairs – but only two types (constituting one of the three pairs) bind together to make neutrons and protons (Figure E48).  The quarks of this pair are called up (u), and down (d), and have charges of + 
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 the basic unit of charge (1.6  10–19 C) respectively.

Figure E48: The quark constituents of protons and neutrons
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The other four types of quark are called charm, strange, top and bottom (or beauty).  Groups of three quarks combine to form the neutron, proton, lambda and all such related particles, called baryons.  The discovery of the top quark, whose existence is assumed by the Standard Model of particle physics, was announced by experimenters working at Fermilab in March 1995.  

Details can be found at http://pdg.lbl.gov/cpep/top-quark.html

Quarks appear to be ‘point-like’ having a size of  10–18 m.  The strong force seems to act in such a way that quarks are always locked inside the particles that they form.  Certainly single, free quarks have not been observed in any experiments, so far, and perhaps never will be.

Another class of particle is the mesons.  These are composed of quark–antiquark pairs.

Figure E49: The quark–antiquark constituents of mesons
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Several hundred of the observed ‘elementary particles’ can be described as combinations of small numbers of quarks.  The leptons; electron e–, muon –, tau –, and their associated massless (?) neutrinos e , ,  are six other fundamental particles which are not composed of quarks.  These particles do not experience the strong interactions.

Another class of particles is associated with the transmission of the forces of nature.  These are sometimes called exchange particles; see Table E5.

How the forces are transmitted

The forces of nature are, according to the standard model, transmitted by exchange particles – a different exchange particle for each force.

Table E5
Type
Relative strengths
Exchange
Occurs


of interaction
particle
in


Strong nuclear
1
Gluon
Nucleus

force


Electromagnetic
1
Photon
Atomic shell

force
1000


Weak nuclear
1
Boson W+W-Z0
Radioactive

force
100000
(Higgs?)
decay


Gravitation
10-38
Graviton?
Planetary




system

•
The mesons act as the quanta of the strong nuclear force.  These interactions reflect the interaction between quarks due to the exchange of gluons.

•
Photons, the particles of light, carry the electromagnetic force.

•
The weak nuclear force is the second weakest force and is carried by the charged particles, W+ and W– and the neutral particle Z0.

•
Gravity is the weakest of the forces but obeying an inverse square law, acts over large distances and is of obvious importance to us.  A particle called the graviton is responsible for this force and looking for experimental evidence for the existence of this particle is one of the major research activities at the University of Glasgow.

Figure E50: Exchange of ‘particle’ giving rise to repulsive force 
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By analogy Figure E50 shows how the exchange of particles can give rise to a repulsive force.  Similarly, two students snatching a pillow from each other can be used to make plausible the idea of the exchange of a particle leading to attraction.

The weak nuclear force

As the table above shows, there is a fourth force, which is important in the theory of elementary particles – the weak force. This force is more difficult to understand in qualitative terms because its effects are most removed from everyday experience.  The most obvious example of the effect of the weak force is in radioactive -decay.  The inherent strength of the force is between that of gravitational and electromagnetic forces and it only operates over a short range of the order of the size of the nucleus.

Free neutrons decay by emission with a half-life of about fourteen minutes.

np + e– +e
That is, the neutron decays to a proton, an electron and its associated anti-neutrino.

The weak force does not hold any particles together to form a composite particle in the way that the strong force holds quarks together to form nucleons.  It is therefore better to discuss it in terms of strength of interaction or coupling constant.  As an illustration, the lifetime of a particle depends on the magnitude of the coupling constant and on a factor related to the difference in rest masses of the initial and final products of the decay, that is to the energy released in the decay process.  Consider for example the following two decays:

++  p + +
o    p  + –
The lifetime of the first is  10–23 s but that of the second is  10–10 s.  The difference of the rest masses is similar in both cases and the large difference in lifetimes is because the first takes place by the strong interaction and the second by the weak interaction.

Grand unified theory

The four forces have very different characteristics (see above) but theorists have made some progress in their understanding of them in terms of a single theory.  Until the middle of the nineteenth century, the phenomena of electrostatic forces and of magnetic forces acting on moving charges were considered quite separate phenomena.  However, the work of James Clerk Maxwell unified these in the theory of electromagnetism.  Similarly, in the 1970s, the work of Salam, Weinberg and Glashow, starting from an idea of P W Higgs of the University of Edinburgh, led to a unification of the treatment of the weak force with that of the electromagnetic force, the electroweak theory.

One of the predictions of this theory has been confirmed, namely, that in very high-energy interactions between elementary particles, the distinction between the weak and electromagnetic forces vanishes.

Another prediction of the theory is that free protons should decay with a half-life of 1032 years.  Many experiments are being carried out to test this prediction.  

Figure E51 shows the progress towards unifying the theories and how gravity and relativity are proving to be the most difficult to merge into one super-unified theory.

Figure E51:  Relationships among the forces of nature
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Unit 3:

Wave Phenomena

Unit 3

Waves

Transverse and longitudinal waves

There are two distinct types of waves: transverse and longitudinal.  Examples of the first type are waves on a string, waves on the surface of water and electromagnetic waves.  The motion of each element of the string or of the water surface in the case of these mechanical waves is at right angles to the direction of travel of the wave and for this reason they are called transverse waves.  Electromagnetic waves require no material medium through which to travel, although they can travel through transparent substances, and it is the magnitude of the orthogonal electric and magnetic fields, E and B, that vary in a direction at right angles to the direction of travel of the wave. Sound is an obvious example of the second type of wave but it does require a material medium through which to travel.  It is therefore a mechanical wave.  It differs from the above examples in that the displacement of the elements of the medium is along the direction of travel of the wave and is thus a longitudinal wave.  Seismic earthquake waves in the Earth’s crust also can be longitudinal waves.

Wave energy


When a mechanical wave travels from a source, it carries energy away from the source and transports this energy without any corresponding transfer of mass of the medium.  This can easily be demonstrated by sending a pulse along a string or rope or, for a longitudinal wave, along a slinky.  A very long rope would be needed to demonstrate a travelling wave that approximates to a sine wave but the same conclusion holds.  Electromagnetic waves also transport energy and momentum in the electric and magnetic fields.  This can be illustrated by considering the heating effect of the radiation from the Sun.  Crookes’ radiometer is often quoted as providing a demonstration of radiation pressure and therefore the transmission of energy by electromagnetic waves.  However, if the rotation of the vanes is caused by the change of momentum of the light at the silvered surface being twice what it is at the blackened surface, the vanes should rotate with the blackened sides leading.  In fact, the vanes rotate in the opposite, wrong direction and the explanation involves the collisions of the residual air molecules with the vanes.  The momentum carried by light can be demonstrated directly by supporting minute glass 

spheres (diameter about 20 μm) by the upwards radiation pressure of a laser beam.  It is not practical to attempt to demonstrate this in a school laboratory.

Intensity


The rate of transmission of energy is proportional to the square of the amplitude of the wave, that is, to the intensity.  This can be justified by referring to the equations of simple harmonic motion (SHM) and sinusoidal waves in a medium.  Each element of the medium is set in simple harmonic motion by waves of both types, transverse and longitudinal, and the energy associated with SHM is proportional to the (amplitude)2 .

Sine or cosine waves


The simplest mathematical form of wave is one in which the variation of the physical quantity, for example, pressure in a sound wave or displacement of the water surface in the case of a water wave, is represented by a sine or a cosine function.

The principle of superposition and the fact that any repetitive function can be generated as a Fourier series of sine and cosine terms allows us to discuss wave motion in terms of sine and/or cosine functions.  Note that knowledge of Fourier series is not a requirement of the syllabus.

Principle of superposition

The principle of superposition of waves states that ‘if a number of waves are travelling through a medium, the disturbance at a point in the medium is the algebraic sum of the individual disturbances produced by each wave at that point’.

One consequence of this is that travelling waves can pass through each other without being altered in any way.  For example, when two pebbles are dropped into a smooth pool, the expanding circular surface waves do not destroy each other.  The complex pattern observed can be analysed in terms of two independent sets of expanding circular waves.

Figure W1
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Figure W1 shows two wave pulses approaching each other, merging as one disturbance and then beginning to separate having passed through each other unchanged.

Formally, interference is covered later but it could be useful to illustrate the principle of superposition using sound waves as an example.

Figure W2
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In Figure W2, the point P is directly in front of loudspeaker B and is further from loudspeaker A than from B.  The loudspeakers are driven in phase by a signal of frequency f that sweeps slowly over the audio range.  There will be a phase difference between the sound waves arriving at point P from the loudspeakers because of the difference in distance and the waves will interfere.  If the phase difference is an integral number of times 2π, that is, the extra distance is an integral number of wavelengths, the interference will be constructive and there will be a maximum sound.

For maxima, 
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where m = 1, 2, 3, 4, . . . .  and 
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 is the difference in distance (AP – BP). 

If the extra distance is an odd integral number of half wavelengths, there will be destructive interference and a minimum of sound:
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If the distance between the loudspeakers A and B is 4 m and point P is 7.5 m directly in front of loudspeaker B, 
[image: image305.wmf]d

D

 = 1 m.  Taking the velocity of sound v as 340 m s–1, the frequencies for constructive interference are 340 Hz, 
680 Hz, 1020 Hz, 1700 Hz, etc.  The frequencies at which destructive interference takes place are 170 Hz, 510 Hz, 850 Hz, etc.
It is instructive to ask what happens if the signal wires to one of the loudspeakers are switched so that the loudspeakers radiate sound waves that are out of phase by π.  This phase difference of π corresponds to an extra path difference of 
[image: image306.wmf]2
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 and the condition for minimum sound at point P becomes the condition for a maximum and vice-versa.

For an effective demonstration of this effect, reflections must be minimised, for example by setting up the loudspeakers out of doors.  Only one ear should be used to detect the minima and maxima.  The effect does not spoil the enjoyment of pop concerts by distorting the music because the ears are on either side of the head and thus give directional information.

Periodic waves

A wave that repeats itself at regular intervals is called a periodic wave.  An example of a periodic wave is 
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 , which, after a little trigonometric manipulation, can be shown to be the same as 
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Figure W3
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The general result is that all periodic waves can be described by a mathematical series of a combination of sine and cosine waves.  If the periodic wave has even symmetry, only cosine waves are required and if odd, only sine waves are required.  Assuming an odd periodic function, the general Fourier series is 

y = a0 + a1 sin x + a2 sin 2x + a3 sin 3x + ...

Note that the angles are integral multiples (harmonics) of the fundamental angle in the second term.

What about non-periodic waves – for example a short pulse of light or sound?  These can also be represented by a summation of sine waves, but this time the angles in the summation differ by infinitesimal amounts and the summation is an integral – a Fourier Integral.

Fourier series

Figure W4 illustrates how a square wave of spatial period xo and amplitude a may be formed by adding sine waves together.

The square wave could, very approximately, be represented by a sine wave of the same spatial period but of slightly larger amplitude (so that, roughly speaking, the average amplitude is the same for each).

By adding a little to the sine wave on either side of the peak, and by taking away a little in the region of the peak, a better approximation to the square wave can be obtained.  This is achieved by adding a small amplitude sine wave having a spatial period x0/3.  The result is shown in W4b; addition of a small amplitude sine wave having a spatial period of x0/2 would not lead to a better approximation in this particular case, since this would add on in the region to the left of the peak and take away in the region on the other side – not the desired effect.

Figure W4: Adding sine waves to form square waves
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Addition of an even smaller-amplitude sine wave having a spatial period of x0/5 improves the approximation and is shown in figure W4c.  Mathematically this process is represented by the infinite series:
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This ability to produce complex waveforms from sine or cosine waves is exploited in analogue musical synthesisers.  In principle, the different frequencies are derived from quartz crystal-controlled oscillators, the amplitudes are suitably adjusted, and the signals are then added together by a summing operational amplifier.
Using a spreadsheet

A spreadsheet can be used to illustrate how a square wave can be approximated using increasing numbers of terms in the Fourier series.  The first three terms in the Fourier series of a square wave are  



[image: image312.wmf]ú

û

ù

ê

ë

é

+

+

+

...

2

5

sin

5

1

2

3

sin

3

1

2

sin

4

0

0

0

x

x

x

x

x

x

a

p

p

p

p


Choose a value for the amplitude a of the square wave and the period x0.  In the figure below, the values of a and of x0 have been chosen as 
a = 0.5 and x0= 9.0 arbitrary units.

Choose the number of cycles to be plotted, for example choose the variable x to cover the range (–1.1x0 to +1.1x0) for just over two cycles.

Choose the number of steps to be calculated to cover the range of values of x; 250 steps has been chosen in the following entries as an example.  In column A of the spreadsheet, put –125 in cell A1, 

–124 in cell A2, –123 in A3, etc.  Spreadsheets make this easy to do automatically: after setting the values in cells A1 and A2, click on both and drag downwards in column A until the values are complete.

In column B, set values for the angles in the series.  Use the entry ‘1.1*x0*An/125’, where ‘An’ indicates the 250 cells in column A, 

–125 ≤ n ≤ 125, that is ‘1.1*x0*A1/125’  in the first cell, ‘1.1*x0*A2/125’ in the second, etc.


After setting the value in cell B1, copy this cell and paste it to all the others in the column.

In column C, enter ‘(4*a/PI())*sin(2*PI()*Bn/x0)’, where ‘Bn’ indicates the 250 cells in column B, –125 
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 125; that is, B1 for the first cell, B2 for the second, etc.  This generates the values of the fundamental sine wave as the first approximation to the square wave.

In column D, enter ‘(4*a/PI())*(1/3)*sin(3*2*PI()*Bn/x0)’; this generates the next term in the series.

In general, the expression is 


‘(4*a/PI())*(1/(2m+1))*sin((2m+1)*2*PI()*Bn/x0)’


where m=0 for column C, m=1 for column D, m=2 for column E, etc. for the expressions entered in columns C, D, E, F, G, etc.


These expressions generate the first, second, third, fourth, etc. terms in the series.

The final column can be used to sum the terms and the chart wizard makes it easy to display the resulting waveform.
Figure W5
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Figure W5 shows the sum of the first five terms in the series.  It is not difficult to extend the sum to include sufficient terms to give a very close approximation to a square wave.

Of course, any curve can be expressed as a sum of sinusoidal curves and the Fourier series for a saw-tooth waveform is just as easy to demonstrate using the spreadsheet method.  The series is
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Travelling wave equation

Consider a particle at the origin of the x-axis.  If a wave is travelling from left to right with speed v then the particle will be performing SHM in the vertical plane.  The equation of motion of the particle will be


y = a sin 
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Now consider an instantaneous ‘snapshot’ of the wave (Figure W6).

Figure W6: Wave profile
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Note that in this snapshot, the particle at the origin is moving downwards.

A particle at a point further to the right than x = 0 will have the same motion as the particle at x = 0 but at some later time if the wave is travelling in the positive x-direction.  For example, if the particle is one wavelength away from 0, then the motion will be the same as at x = 0 one complete cycle later.  Now the time for one cycle is T, where 
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 .  A point half a wavelength to the right would suffer a delay of only half of this.  In general, 

for a point at distance x from the origin, the delay is given by 
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 , i.e. y = a sin 
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The equation of the motion of the particle at x is therefore
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This is the equation of a wave travelling in the positive x-direction.

Now 
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, and so we can write the equation as
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Clearly, if the wave is travelling in the opposite direction, the sign of the delay is reversed, and so the equation of a wave travelling in the negative 
x-direction is



[image: image326.wmf]ú

û

ù

ê

ë

é

+

=

l

p

x

ft

a

y

2

sin


(W5)
There are several alternative forms of the equation.  Using the relation 
f = 
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 , we can write
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Sometimes the angular wave number k is introduced, where  k = 
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The equation becomes

y = a sin (
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Alternatively, the relationship v = 
[image: image331.wmf]l

f

can be used, giving



y = a sin
[image: image332.wmf]÷

ø

ö

ç

è

æ

-

v

x

t

f

p

2


(W7)

Since it is always possible to define the time origin differently, the above expressions would all be equally valid if cos were to replace sin, in the case of a one-quarter cycle shift of time origin.  Also, if the time origin were shifted by half a cycle, we would get

y = – a sin2π(ft – 
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which is equivalent to 

y = a sin2π(
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and equivalent expressions for any of the above alternative forms.

Phase difference

Consider two sinusoidal waves of the same wavelength and frequency travelling along a stretched string in the same direction with amplitudes a1 and a2 respectively.  The superposition principle tells us how to sum the waves and it is found that they combine to produce a resultant sinusoidal wave travelling in the same direction with an amplitude that depends not only on a1 and a2 but also on the relative phase of the waves.  The following two waves, y1 = a1 sin(
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), have different amplitudes and differ in phase by the phase constant 
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.  If the amplitudes are the same, a1 = a2 = a, the sum is 

y = 2a cos(
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If the phase difference is zero, the resultant is a wave y = 2a sin(
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– kx), a result that is not unexpected.  If the phase difference is 180°, the result is zero, that is the two waves exactly cancel each other.  Note that the waves may only cancel each other in a limited region of space; if they diverge from this region, they will emerge as the original separate travelling waves.  Of course, the above one-dimensional equations represent waves that do not ‘diverge’.

The algebraic sum of two waves with different amplitudes and different phases is beyond the scope of the mathematical knowledge assumed for Advanced Higher Physics.  The amplitude aR and phase
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yR = aR sin(
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are given by aR2 = a12 + a22 + 2a1a2cos 
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However, the result can be easily demonstrated by using the graph-plotting facility of spreadsheet software.  Figure W7a shows the two waves separately for the case of a1 = 10, a2 = 3 and 
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= π/3.  Figure W7b shows the sum of the two waves.

Figure W7a
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Figure W7b
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Stationary or standing waves

Consider two sinusoidal waves of the same amplitude and wavelength travelling in opposite directions, for example along a string or, more generally, in the same region of space.  The principle of superposition gives


y(x,t) = asin(
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y(x,t) = 2asin
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This is not a travelling wave.  The equation describes a standing or stationary wave.

In passing, reference can be made to the standing wave pattern of an electron viewed as a wave in a stable orbit around an atomic nucleus.

Figure W8: Standing wave
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Figure W8 above shows a sequence of snapshots of a standing wave taken at four different times in a quarter of one cycle.  At the nodes, the displacement is always zero but at the anti-nodes, the displacement varies sinusoidally between +2a and –2a.

Beats

The musically untrained human ear cannot normally tell the difference between two audio notes with a frequency difference of a few hertz if listened to separately, but if the notes are played at the same time, the variation of intensity of the sound heard is clear to all.  A note corresponding to the average of the two frequencies is heard and a variation of intensity takes place at the difference of the two frequencies.

Students often find the interpretation of the equation describing a beat frequency between two notes difficult.  Advanced Higher Physics students may not have met the trigonometric identity that is necessary to obtain the mathematical result.  Before developing the beat frequency result, the following relationship will be required 

sinA + sinB = 2sin 
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Consider the two waves 
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 , present at the same place at the same time.

These are waves of equal amplitude but different frequencies.  For simplicity we will consider the particular point x = 0, but the result is generally applicable.

We have

Y = y1 + y2

Y = asin2π(f1t) + asin2π(f2t)

Y = 2asin2π 
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This is a wave with a high frequency component given by the average of f1 and f2, and whose amplitude changes at a slower rate given by half the difference between f1 and f2.  The outline of such a wave is shown in Figure W9.

Figure W9: Waveform illustrating beat frequency
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Examination of this waveform shows that, if we consider it to be a sound wave, the amplitude varies between its maximum and minimum values twice in every cycle of the modulation, that is with a frequency of (f1 – f2).  Thus when two notes are sounded that are reasonably close in frequency (pitch), a note is heard that has the intermediate frequency between them, and which varies in intensity at a frequency given by the difference between the original frequencies.

Beats are employed for tuning musical instruments.  For example, in an orchestra, the lead oboe often plays a standard A (440 Hz), and the other musicians tune their instruments until there are no beats.  Of course, some instruments tune against the second or higher harmonic of the fundamental A from the oboe.

Beats are often used in radio applications.  The meaning of a beat frequency in this context is the difference between two frequencies, but 

in most cases the beat frequency is derived not by addition of two signals but by multiplication of two signals.  In a heterodyne system in a radio, the incoming carrier frequency and a locally generated frequency are mixed together in order to produce a wave of an intermediate frequency.  The difference frequency between the two is called the beat frequency.  The locally generated frequency is adjusted so that no matter what the frequency of the signal to which the radio is tuned, the intermediate (difference) frequency produced is always the same.  This allows the amplifiers in the radio to be designed to work always in their optimum frequency range.

In Doppler radar guns, such as, for example, those originally used by police for checking the speed of motorists, the radiation reflected from the target and the signal at the frequency transmitted are mixed together.  Since the reflected wave is reflected from a moving target, it is slightly shifted in frequency by an amount dependent on the speed of the target.  The difference frequency, and hence the speed of the target, is easily obtained  (see the Doppler effect section below).  Modern instruments, including the GATSO camera, use more sophisticated methods than the above and are based on different principles.

Beats can be demonstrated in a number of ways using sound waves, for example by using two tuning forks of nominally the same frequency, but loading one tine of one of them with a small piece of plasticine.  Two oscillators tuned to slightly different audio frequencies can be connected to the same loudspeaker, and the variation in beat frequency can be heard as one is tuned up to and beyond the same frequency as that of the other.  Attention should be drawn to the fact that the beat frequency produced is the same when the oscillator being varied has a frequency x Hz below that of the other as when its frequency is x Hz above that of the other.

By connecting an oscilloscope across the loudspeaker (Figure W10) and adjusting its time-base to a suitably slow value, a waveform showing the beat frequency is obtained.  The loudspeaker allows the audio effects to be heard if suitable frequencies are chosen.

Figure W10
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It is quite instructive, and surprising, to set the frequency of one oscillator to an ultrasonic value and tune the other from just below to just above this value.

Doppler effect

When a source of sound waves is moving relative to an observer, the frequency heard will be different from that emitted by the source.  This change of frequency is called the Doppler effect.  

There is also a change of frequency of electromagnetic waves when the source and receiver are in relative motion, although in general the detailed relationships are not the same.  Police use microwaves reflected from moving vehicles to determine the speed of the vehicle.  The true speed of the vehicle can be calculated using the Doppler Effect if it is travelling directly towards or away from the radar gun.  Otherwise, the reading is too low.

In Figure W11, the wavefronts emitted from a stationary source of sound, S, are shown spreading out towards the stationary observer at O.  They travel at a speed determined by the properties of the medium.

Figure W11: Stationary source
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Figure W12: Moving source
[image: image365.png]



In Figure W12, the same wavefronts are shown emitted from a source moving with velocity vS towards the observer.  The wavefront of greatest radius shown was emitted when the source was at position x, and that of smallest radius when it was at y.  This figure shows that the wave crests arriving at the observer are more closely spaced.  The observer therefore hears a higher frequency.  If the source is moving away from the observer, the observed wavelength will be larger and the frequency smaller.  In a time equal to the period of the wave, T = 1/f, the source moves a distance (vsT).  The observed wavelength, 
[image: image366.wmf]l

′, is therefore less than the true wavelength, 
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, by this amount.
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(W9)

If the source is moving away from the observer, the received frequency is smaller and the sign in the denominator changes from – to + because +vS changes to –vS.  In general, for a moving source of sound waves, the results can be written as
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The sign relevant to a particular problem can be determined by remembering the physics of the result or by common sense, namely that the frequency is higher if the source is moving towards the observer.

Figure W13: Observer moving
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If the observer is moving towards a stationary source of sound waves with velocity v0, the apparent velocity of the sound waves reaching the observer will be (v+v0).  The observed frequency will be higher than the true frequency emitted by the source:
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If the observer is moving away, the frequency observed is smaller.  In general,



[image: image372.wmf](

)

v

v

v

f

f

0

±

=

¢


(W12)

where again the sign relevant to the problem is best deduced from an understanding of the physics of the result.

The frequency observed when the observer is moving is different from that for the case of the source moving.  This is to be expected because both the speed of the source and of the observer are relative to the medium through which the sound travels.  For this reason the case of a source moving through a medium in which the observer is at rest is quite different from that of an observer moving through a medium in which the source is at rest.
Sound reflected from a moving object
The formulae for this situation are not in the syllabus.

If the source emits sound of frequency f0 , the moving object will 

receive sound of frequency 
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 , the + and – signs 

corresponding to the source and object approaching or receding from each other respectively.  The moving object should be considered to emit this frequency by reflecting the received sound but, because the object is moving, the reflected frequency perceived is not the one above.  The reflected frequency, frefl , is obtained by applying the relationship for the case of the moving source to the frequency f′.  The speed of the moving source is that of the reflecting object in this case, that is vs = v0 .  The cases of the reflecting object moving towards and away from the stationary source will be treated separately. If they are approaching,
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If they are moving away from each other
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Clearly, if the source and object are approaching, the frequency reflected is increased and if they are moving away from each other, it is decreased.

Doppler effect and electromagnetic waves
The above formulae for the Doppler effect must not be applied to light.  The speed of light is the same for all observers in inertial reference frames and is not measured relative to a medium.  The case of the source travelling towards the observer and the observer travelling towards the source are physically identical.  The Doppler Effect for light depends only on the relative motion between the source and the observer.  

Einstein’s Theory of Special Relativity shows that the Doppler frequency for light is
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where vrel is the relative velocity of source and observer.  If the source and observer are travelling towards each other, the + sign should be used and if they are travelling away from each other, the – sign should be used.  As before, the sign relevant to the problem should be clear from an understanding of the physical result, namely that the observed frequency will be smaller and the observed wavelength longer if the source and observer are receding from each other.  In astronomy, the light arriving at the Earth from distant stars and galaxies is found to be shifted towards the red, indicating that they are moving away from us.

Approximations

If the source and observer are approaching each other with relative speed vappr which is small compared with the wave speed (sound or light as appropriate), by using the binomial theorem, the relevant relationships above can be shown to approximate to the same relationship to first order:
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Similar relationships hold for the case of the source and observer travelling away from each other, (vappr) being replaced with (–vappr).

Interference

It is useful to understand the model of light being used to describe this topic of interference and how it relates to other models of light that are more useful in other circumstances.  The models of a monochromatic light source, for example a mercury or sodium discharge lamp, and of light from a laser are described briefly.  Of course, it is also necessary to understand how to add two travelling waves together when both exist at the same place at the same time – the Principle of Superposition.

Light from a single atom or molecule

When an excited atom or molecule de-excites, the energy released, ∆E, is radiated as a photon of electromagnetic energy.  The energy of this photon is 
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(W13)

where h is Planck’s Constant and f is the frequency of the wave associated with the photon. In describing the photoelectric effect, for example, this 

‘particle’ description is commonly used.  However, the uncertainty principle tells us that the energy levels of the de-exciting atoms cannot be precisely defined and therefore a continuous range of frequencies will be emitted in the form of a wave packet.  However, to discuss interference one further step must be taken.  The wave packet is of finite length and duration, consisting of electromagnetic waves of all frequencies but with one frequency dominating.  The length of the wave packets from a mercury or sodium discharge lamp is approximately 0.03 m, or of duration about 10–10 seconds.  For laser light, the wave packets are more than 100 times longer.

Figure W14: Wave packet
[image: image379.png]



Figure W14 illustrates what a snapshot of a wave packet would look like.  The number of complete cycles of the waveform shown in the above figure is very small and should be approximately one million.  Although only an infinitely long wave packet can be strictly of one frequency, a wave packet of duration 10–10 seconds has a very large number of oscillations and one frequency dominates: the frequency f calculated from 
[image: image380.wmf]E

D

 = hf.  The wave packet can be treated as having only this single frequency in discussing interference.  However, the finite length is important; the difference in path length between waves must be substantially less than the length of the wave packet for interference effects to be visible.  For this reason, in interference experiments, the optical path lengths must not differ by more than a few millimetres if discharge lamps are used and by no more than 10–20 cm if a 

helium–neon laser is used.

The Principle of Superposition applies to electromagnetic waves just as it does to mechanical waves. This principle has been discussed already in the section on waves.

It is important to realise that all types of waves, including light waves, travel through each other, forming interference patterns where the waves overlap 

but, if unimpeded, they emerge from this region unaffected.  If a screen is placed in the region of overlap of the light waves, or if there is a scattering medium in this region (see Laser Fringe (Doppler) Anemometry) the interference effects can be observed.

Light from a normal light source

The light from a light source such as a mercury or sodium discharge lamp comes from the summation of wave packets from a very large number of de-exciting atoms or molecules.  Assume that each microscopic source emits light of the same amplitude a and of the same frequency f.  In general, the phase 
[image: image381.wmf]f

 of each wave packet will be different and can be assumed to vary randomly, that is the individual atoms de-excite independently.  The summation will be

y = 
[image: image382.wmf]S

iasin(wt + 
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i)

For random phase differences, the resultant intensity is (n × a2), where n is the number of microscopic light sources emitting at any one time.  A monochromatic light source can be considered as emitting electromagnetic waves of angular frequency w = 2πf with a coherence length of a few mm.

The light from a laser originates as wave packets from the de-excitation of individual atoms as above, but with a constant phase relationship resulting in an intensity (n × a)2, that is, the stimulated emission of radiation mechanism keeps the phase relationship constant and gives the light from the laser much greater coherence length and greater intensity.

Coherence

Two waves are coherent if there is a constant phase difference between them.  It is easy to produce two coherent sound waves by driving two loudspeakers with the same signal, but it is not possible to drive two light sources in the same way.

As explained above, the light from normal light sources is emitted as very short wave packets.  The eye and other normal light detectors only respond to intensity levels corresponding to many wave packets arriving per second for a period that is long compared to the length of a wave packet in seconds.  Two coherent light waves can be produced by splitting one light wave, for example by reflection and transmission at an interface (division of amplitude) 

or by splitting one light wave by allowing two sections of the wavefront to pass through, for example, two slits (division of wavefront).  The light from each slit or the reflected and transmitted light will be coherent and exhibit interference effects if combined, provided the path difference is not too large.

Interference – Division of amplitude
Although the Principle of Superposition holds for waves of any frequency, interference phenomena can only be observed when the light waves have the same frequency.  It is also necessary for the phase relationship between the light waves to remain constant and this is achieved by having one light source and splitting the light into two beams, usually the reflected beam and the transmitted beam at a surface between two media of different refractive indices.  This is an example of two beams being generated by division of amplitude.  The two beams are coherent because they have the same frequency and a constant phase difference.

If the amplitudes of the two beams are the same:

y = y1 + y2
y = asin(wt – kx +
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y = 2asin 
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If the phase difference is zero, the resultant amplitude is 2a.  If the phase difference is 180° (that is, π radians), the resultant amplitude of the wave is zero.

If the amplitudes are not equal:


y = a1sin(wt – kx + 
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1) + a2sin(wt – kx + 
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2)


y2 = a12 + a22 + 2a1a2cos(
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2 – 
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1)(sin (wt – kx + 
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This shows that there is a maximum of intensity when the phase difference is zero and a minimum, but non-zero, intensity when the phase difference is 1800 or π radians as before.

Laser fringe anemometry

Figure W15
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In recent years, a method of measuring the velocity of flow of a liquid without physical contact with the liquid has been developed.  In Figure W15, the laser beam is split in two and these two beams are brought to a focus as shown.  At the region of intersection, the laser beams interfere and form fringes; a bright fringe will form when the path difference is zero or an integral number of wavelengths, and a dark fringe will form when the difference is an odd number of half wavelengths.  An expanded view of the region of intersection is shown at the bottom left of the diagram with the fringe pattern.  Note the orientation of the fringes as shown by the labelling AB.  A few small particles carried by the flow of the liquid through these fixed fringes will scatter light.  The intensity of the scattered light will vary at a frequency which depends on the fringe separation and the velocity of flow of the liquid.  The main laser beams are stopped as shown before reaching the detector.  Only the scattered light, shown as dotted lines, reaches the detector at D, which measures the frequency of the intensity variation.

Please note that this method requires expensive and advanced apparatus and should not be attempted with standard school equipment.

Optical path length 

Figure W16 illustrates the passage of an electromagnetic wave through a vacuum (top) and the same wave travelling an equivalent distance in a transparent medium of refractive index 1.5.  Note that in each case the wave starts with the same phase but, because the wavelength in the transparent medium is shorter (wavelength = 
[image: image395.wmf]l

/n), the phase on leaving is different.

Figure W16: Optical path length
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If the geometrical path length is L, the number of wavelengths is L/(
[image: image397.wmf]l

/n), that is nL/
[image: image398.wmf]l

, where 
[image: image399.wmf]l

 is the wavelength in a vacuum.

The equivalent distance travelled in a vacuum for the same number of wavelengths is the optical path length, which is equal to the refractive index multiplied by the geometrical path length.  Optical path lengths should always be used when comparing the phases of two waves travelling different paths to a common position.  The relative phase of one compared with the other is


phase difference = 
[image: image400.wmf]l
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2

 × optical path difference
(W14)

Phase change of π

The statement that ‘there is a phase change of π on reflection at an interface where there is an increase in optical density or refractive index but no phase change on reflection at an interface where there is a decrease’ is useful when explaining interference experiments.  For example when explaining a dark fringe or band when the geometrical path difference between interfering beams is zero.  However, the statement is deceptively simple and should be considered carefully.  The explanation below requires an understanding of polarisation, a topic considered later.

Figure W17 
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On reflection at a ‘rare-to-dense’ interface, there is a phase change of π of the component of the electric field perpendicular to the plane of incidence but no phase change of the component in the plane of incidence.  An observer viewing the component of the electric field in the plane of incidence immediately before and after reflection would see the electric field point in the same direction relative to the direction of travel.  However, the geometry of the situation gives rise to a standing wave (Figure W18), that is, the wave acts just as if there were a phase change.  The magnitude of the ratio of reflected amplitude to incident amplitude for the two components is approximately the same for angles of incidence up to about 15°.

Figure W18: Wiener’s experiment
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In Wiener’s experiment the photographic film was only a small fraction of a wavelength thick and placed at a small angle to the mirror.  Light is shone through the film.  A system of dark and light bands corresponding to activated and non-activated regions on the photographic plate was produced.  The reflected and incident light waves form a standing wave.  The dark regions correspond to maximum electric field oscillation, that is the antinodes of the standing wave.  As shown in the figure, the standing waves have a node at the surface of the reflecting mirror.  This confirms that the electric field is the more important, at least in so far as its effect on photographic film is concerned.  Both components act as if there is a phase change of π on reflection by a mirror.

Thin films

Figure W19: Thin film
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In Figure W19, when rays GF and DE are brought to a focus, interference fringes will be formed because the optical path travelled to D is greater than that travelled to G by 2n2dcos r; this equation is derived below.  When


2n2dcos r = m
[image: image404.wmf]l


(W15)

where m is an integer, an interference fringe will be formed.  If the medium is the same on both sides of the film, one reflection will be rare-to-dense and the other dense-to-rare; a phase difference of π is introduced and the above expression corresponds to a minimum of light intensity.  The fringes formed are fringes of equal inclination, the only variable in the expression being r, the angle of refraction in the thin film of refractive index n2.  The shape of the fringes will be circular.
The optical path difference is n2(BC + CD) – n1(2G).  The derivation of the above expression is as follows.

n2 (BC + CD) – n1(BG) = 2n2 BC – n1 BG

= 
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(W16)

where Snell’s law, n1sin i = n2sin r, has been used.  The expression appears to be determined by the properties of the thin film alone, that is, to be independent of the properties of the surrounding medium.  However, the optical path difference expressed in terms of the angle of incidence i is 
2n2d 
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 .  This shows that the refractive index

n1 of the surrounding medium is important.

Figure W20
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Figure W20 shows how fringes can be seen in a thin air film between glass plates.  The eye should be relaxed and focused at infinity.  Circular rings should then be seen.  The axis of the system is the line joining the eye to the thin film and this line passes through the centre of the circular fringes.

The light rays entering the top glass plate are refracted, travel through the plate and are refracted again so that they enter the thin air film parallel to the original direction.  Now the angle r in 2n2dcos r = m
[image: image410.wmf]l

 is the angle of incidence in air on the top glass plate.

Thin wedge-shaped film

The division of amplitude takes place at the lower surface of the first glass slide (Figure W21), where the incident beam is reflected and also transmitted.  This transmitted beam is reflected at the upper surface of the second glass slide and the two coherent beams emerge at B and C.  

Figure W21


These beams appear to originate from a position located at or near the plane of the thin film.  If the film is viewed from above and the eye is focused on the thin film directly or using a microscope, a series of straight line fringes with a sin2 distribution of intensity will be seen.  These are fringes of equal thickness.  When the optical path difference between these two beams is an integral number of wavelengths, a dark fringe will be seen; this is because of the π phase difference on reflection.  The condition for bright fringes is therefore


2nd(x) = (m + ½)
[image: image411.wmf]l


(W17)

where m is an integer.  The change in geometrical thickness of the thin wedge-shaped film from one fringe to the next is

(d2(x+
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D

) – d1(x))

which is obtained from

2n(d2(x+
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) – d1(x)) = (m + 1 + ½)
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 – (m + ½)
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and 
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 is the distance between fringes.

Figure W22

The small opening angle of the wedge can be written as
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Figure W23
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Of course, the distance between fringes should be determined by measuring the separation of a large number and dividing by the number of fringes.  Microscope slides in contact at one end and separated by a human hair or a sheet of paper at the other make a suitable wedge for this experiment.

Figure W23 shows the experimental set-up to view the fringes.  The microscope should be focused on a plane lying in the wedge.

If fringes of equal inclination formed using a thin film between glass plates are observed to be circular, one can infer that the glass plates are flat to better than a fraction of a wavelength over relatively large distances.  Similarly if fringes of equal thickness formed using a wedge are equally spaced and straight, the same inference can be made.

Anti-reflection coatings

The surfaces of many spectacle lenses are coated with a multi-layer anti-reflection coating.  The effect of this is easily seen by holding the lens so that a white light source is reflected from the surface; the image of the light source will usually be green, or less often blue, showing that all other wavelengths are not being reflected.  In both cases, these coatings are broad-band, multi-layer coatings, they may be composed of seven layers, and treatment of such coatings is beyond the syllabus.  However, the principle of single layer, anti-reflection coatings is easily explained.

Figure W24


Figure W24 shows a single layer of coating on one surface of a flat piece of glass.  The refractive index of the coating is chosen to have a value between that of air and of the glass – details below – and therefore there is a phase change of π at the first surface and at the second, both being rare-to-dense reflections.  For angles of incidence near to the normal, the difference in the optical path travelled by rays A and B is  2ncd  and the two rays will cancel when


2ncd = 
[image: image421.wmf]2
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that is, when the two rays are out of phase by π.

Note that this condition can be satisfied for only one wavelength and that all other wavelengths will be partially reflected.  The wavelength chosen is usually in the middle of the wavelength range of white light and light at both ends of the spectrum, that is red and blue light, is partially reflected.  Light reflected from camera and binocular lenses exhibits a characteristic magenta/purple hue if coated with a single-layer anti-reflection coating.  Note that anti-reflection coatings minimise reflections from the outside surfaces of a lens and increase the intensity of the light transmitted; this improves the performance of cameras by reducing the required exposure time.  However, this is a relatively insignificant improvement.

Light reflected from the inside surface of a camera lens or from both surfaces of a multi-component camera lens does not contribute to the image formed on the film.  This scattered light reduces the contrast.  Coatings on the inside surfaces of multi lens systems on cameras are particularly important when taking a photograph in the direction of light from a strong source.  Similarly, anti-reflection coatings on the surface of spectacle lenses next to the eyes decrease the possibility of glare when a strong light source is behind the wearer of the spectacles.  However not all spectacles lenses are coated on both sides.

In more detail, the refractive index of the coating is chosen so that the amplitude reflection coefficient is the same at both surfaces.  The reflection coefficient is determined by the refractive indices of the material on either side of the surface and at normal incidence has the simple form:
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where n1 and n2 are the refractive indices on either side of the surface.  This shows that if n1 is less than n2 , the amplitude reflection coefficient is negative, corresponding to the phase change of π on reflection at a rare-to-dense interface.

The reflection coefficient at the air-to-coating interface will be the same as that at the coating-to-glass interface if
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that is, when nc = (nair ng)½.  An example is a coating of magnesium fluoride with a refractive index nc = 1.33, which reasonably closely satisfies the requirements for an air/glass boundary: 

nair =1.00 and ng = 1.51.

Although making the reflection coefficients the same by choosing the refractive index of the coating as above seems a logical step, a fuller discussion is given below.

The two rays reflected from the air-to-coating and coating-to-glass interfaces only cancel completely if the amplitudes are the same.  This requirement suggests that the reflection coefficients should be made equal.  However, the amplitude reaching the second interface is smaller than that incident on the first (because of the reflection at the first interface) and the amplitude of ray B will be less than the amplitude of ray A if the reflection coefficients are made equal.  However, it can be shown that there is no reflection if multiple reflections in the coating are taken into account by summing all of the reflected beams and if the above conditions are satisfied.

Colours in thin films

Single-layer anti-reflection coatings are designed to minimise the reflected light of one wavelength but it is easily shown that if the thin film is twice as thick, the reflection will be enhanced rather than diminished for that wavelength.  If a thin film of oil is formed on water, the light reflected shows the colours corresponding to the different thicknesses of the oil.  The colour seen will be the result of some wavelengths being enhanced and others diminished.  Because the coherence length of white light is very small, colours will only be seen when the oil film is less than a few wavelengths thick.  When the thickness of the oil film is much less than the wavelength, the film appears dark in reflected light.  If the oil film is viewed from different angles, the difference in path length alters and the colours shift and change.

Iridescence

The word iridescence is defined as ‘the spectrum of colours that shimmer and change due to interference and scattering as the observer’s position changes’.  An example of this is the colours seen in an oil film.  Iridescence also occurs elsewhere in nature, for example in the wings of some butterflies and moths, in the scales of fish and beetles, and the skin of snakes.  Sir Isaac Newton put forward a reason for these colours in the feathers of peacocks in the book Opticks in 1704 and the topic has been extensively studied since then.  A particularly striking example is the top surface of the wings of the Morpho family of butterflies.  The light reflected from the surface is a glimmering blue-green colour and the hue of this colour changes with the angle at which the wing is observed.

These surfaces have an ordered series of parallel thin films, not just one as in the case of the oil film, and the light reflected from each layer is in phase for one particular wavelength.  Just as for the oil film, this wavelength changes because the path difference changes as the angle of observation changes.  For a fuller explanation and full colour images, see the website http://newton.ex.ac.uk/quick-tour.html (University of Exeter).

Interference – Division of wavefront
Although Fraunhofer diffraction is not mentioned in the syllabus, the expected treatment of interference by division of wavefront assumes that the conditions for this are satisfied. A Fraunhofer diffraction pattern is observed when the source of light and the screen are effectively at infinite distances from the diffracting object.

All points on a wavefront of light emitted by a source have the same phase.  The wavefront corresponding to a parallel beam of light will be plane and can be produced experimentally by placing a point source at the focal point of a lens or, approximately, by using a small source a very long distance away.  When a parallel beam of light is incident normally on two slits, the light leaving the slits will be in phase.  On a distant screen or on a screen in the focal plane of a lens (Figure W25) the light from the two slits will give interference fringes because the phase difference between the two will be determined by the difference in the optical paths.

If an extended source is used, each point on the extended source will produce a different plane wavefront incident on the slits (or other diffracting objects) at a different angle.  Each point source will produce a fringe pattern but it will be displaced relative to that formed by light from another point on the extended source.  The individual point sources on the extended light source act independently; that is, the light emitted is not coherent and so the total intensity is obtained by summing the intensities.  Unless the extended source is very small, effectively a point, or very far away such that the angular size of the source is negligible, the diffraction pattern will not be clear and may be lost altogether when the intensity of the patterns is summed.  One exception to this is when the extended source is a line source parallel to the diffracting slit or slits.
Figure W25
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When d << D, to reach the same distant point on the screen the light leaves each slit at approximately the same angle
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.  The distances must be such that the approximations 
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 expressed in radians.  The difference in path length from slits to screen is 
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for small angle 
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.  If the difference in path is an integral number of wavelengths, 
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Example

If light of wavelength 
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 = 546 nm illuminates two narrow slits separated by a distance d = 0.12 mm, the fringe separation on a screen at a distance D = 55 cm is 
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D

= 2.5 mm.

Line source

A clear Fraunhofer diffraction pattern of a diffracting object will be observed only if the wavefront of the light arriving at the object is plane.  However, if the diffracting object is a long slit or slits, the pattern is spread out on the screen in the direction perpendicular to the length of the slit(s) and is very compact in the other direction.  It is possible to use a line source parallel to the direction of the slit(s) if the information about the pattern in this latter direction is not required.

Figure W26
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In Figure W26, the effective line source should be placed at one focal length from the next lens. This lens makes the light from the centre point of this source parallel as shown.  This parallel beam will give the Fraunhofer diffraction pattern of the slits along the y-axis with very little spread along the x-axis if the slits are very long.  Other points on the line source will form parallel beams at an angle to the plane of the figure and replicate the diffraction pattern at different values of x, giving the pattern shown.

Interference and polarised light

It should be noted that the Principle of Superposition applies to all types of wave and to all states of polarisation.  In this discussion of interference, it has been assumed, without making it explicit, that the light was either unpolarised or linearly polarised with both interfering beams being polarised in the same plane (see Polarisation below).  If two linearly polarised beams are superimposed but have orthogonal planes of polarisation, no interference effects will be observed.  The waves add as vectors, taking account of the different planes of oscillation of the electric field.  For example, the two waves travelling in the x-direction, linearly polarised in the xy-plane and the xz-plane respectively can be written as 

Ey = E0sin(wt – kx)
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Ez = E0sin(wt – kx)
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where 
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 are unit vectors in the y- and z-directions.  The resultant is

E = √2 E0sin(wt – kx)(
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which represents a linearly polarised wave travelling in the x-direction, the polarisation plane being at 45° to the xy-plane.

Figure W27
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In Figure W27, the two components are represented by the arrows along the y and z directions and the resultant is represented by the dashed arrow at 45°.  The waves are drawn as seen by an observer in front of the approaching waves, that is, looking back along the negative x-axis.

Polarisation

The electromagnetic waves emitted by a normal light source are unpolarised, that is the electric field is always at right angles to the direction of travel of the waves but the plane of oscillation of the field changes direction randomly and very frequently, too frequently to be measured or observed directly.  All planes of oscillation are represented in any period of time accessible to an experimenter.  If the oscillation of the electric field is always in one plane, the electromagnetic waves are said to be linearly or plane polarised.

Figure W28
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Figure W28 shows a snapshot of the orthogonal electric and the magnetic fields of a linearly polarised, electromagnetic wave travelling along the x-axis.  The plane of oscillation is taken to be that of the electric field, in this case the xy-plane.

Unpolarised light has all planes of oscillation present equally and is usually represented by showing the planes of oscillation ‘head-on’ (see Figure W29).  Alternatively, the components along two orthogonal axes are taken and the unpolarised light represented by means of the superposition of the two equal orthogonal components with a randomly changing phase difference between the components.

Figure W29: Representation of unpolarised light

[image: image453.png]



Linearly polarised light has only one plane of oscillation and would be represented by only one of the two components in Figure W29.  Obviously, the components of a vector (the oscillation direction of the electric field) can then be taken along any two orthogonal directions; if this is done for linearly polarised light, the components are always in phase and this distinguishes the two-component representation of linearly polarised and of unpolarised light.

The waves carrying the TV signals from the main transmitters to roof-top aerials are polarised in the horizontal plane and the receiving rods of the aerials are horizontal to receive the signal most efficiently. In regions of poor direct reception from the main transmitters, relay stations receive the horizontally polarised signals and retransmit these as vertically polarised waves.  The TV aerials in these areas have the set of rods vertical instead of horizontal.

Standard laboratory 3 cm microwave transmitters send out plane-polarised microwaves.  This can be shown by placing a fence of parallel metal rods in front of the transmitter and showing that the microwaves are transmitted only when the plane of oscillation is perpendicular to the direction of the rods.  When the plane of oscillation is parallel to the rods, the wave causes the electrons to oscillate up and down the rods.  These oscillating electrons re-radiate in all directions perpendicular to the rods.  In the forward direction the re-radiated waves are π out of phase with the incident radiation and cancel in this forward direction.  Hence, the intensity transmitted straight through the fence is very low.  However, there is strong reflection in the backward direction.  

Longitudinal waves cannot be polarised because they are effectively one-dimensional, that is the oscillation is along the direction of travel.  Any type of transverse wave can be polarised because the oscillation is perpendicular to the direction of travel.

Some materials have the property of transmitting only one plane of oscillation of light waves.  These sheets are sold commercially as Polaroid© sheets.  The sheet consists of long molecules aligned parallel to the surface of the sheet and transmits a light wave with the electric field in one direction only, the oscillation in the perpendicular direction being absorbed.  A sheet of Polaroid has one direction of transmission assigned to it, the electric field of the light wave transmitted by the sheet oscillating only in the plane containing this direction.

Figure W30: Polaroid sheet

A sheet of Polaroid used to polarise light is called a ‘polariser’.  A sheet of Polaroid can also be used to investigate the state of polarisation of a beam of light by determining the intensity transmitted at different orientations of the sheet.  In this case, the sheet would be called an ‘analyser’.  Clearly, an analyser also has a direction of transmission associated with it.

Figure W31: Polariser and analyser

Consider linearly polarised light of amplitude a0 leaving a polariser.  If the direction of transmission of the analyser is set at angle 
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 to that of the polariser, the linearly polarised light incident on the analyser will have its plane of oscillation at angle 
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 to the transmission direction of the analyser.  Only a component of the amplitude of the linearly polarised light incident on the analyser will be transmitted.  The transmitted amplitude will be the component of the amplitude a0 along the direction of transmission of the analyser.  The amplitude and intensity of the light transmitted will be


a(
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) = a0cos
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I(
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) = I0cos2
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The second expression, in terms of intensity, is called the Law of Malus after Étienne Louis Malus who discovered the law experimentally in 1809.

If 
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 = 90°, no light is transmitted because the direction of oscillation transmitted by the polariser is absorbed by the analyser.  If 
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 = 0°, the analyser transmits the incident intensity fully.

The above expression shows that if the transmission direction of an analyser is at 90° to that of the polariser, no light is transmitted through the combination.  What is the intensity of light transmitted if a third sheet of Polaroid is added between the polariser and the analyser?

Assume that the transmission direction of this sheet is at angle 
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 to that of the polariser.  If the intensity of the light entering the polariser is I0, the intensity transmitted by the polariser is ½I0, because half of the light is absorbed by the polariser.  This linearly polarised light has its plane of oscillation at angle 
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 to the transmission direction of the middle sheet.  The intensity transmitted is ½I0 cos2 
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.

The linearly polarised light will now have its plane of oscillation at angle 

(90 – 
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)° to the transmission direction of the analyser.  The intensity transmitted by the analyser will be ½I0 cos2 
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))2, that is 
½I0(cos 
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)2.  This can be written as ½I0 × (½sin2
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)2 and is zero only for 
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 = 0°, 
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 = 90° or equivalent.  When 
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 = 45°, the intensity of the light transmitted through the three sheets is a maximum.

This shows that light can be transmitted though crossed polariser and analyser if a third sheet of Polaroid is placed between them.

Some transparent materials have refractive indices that depend on the plane of vibration of the electric vector of the light.  When thin films of such materials, for example Sellotape©, are placed between crossed polariser and analyser sheets, light is also transmitted though this combination.  The effect of the Sellotape depends on the wavelength and this can be the basis of some colourful demonstrations.

The above is not easy and has been included because it offers an opportunity for demonstration or investigation.

Malus’ experiment

Malus discovered in 1809 that light can be partially or completely polarised by reflection.  Polaroid sheets and Polaroid sunglasses were not available then and experiments were much more difficult.  Malus carried out a series of experiments in his studies of reflection and polarisation of light but one is usually described to convey his understanding of the phenomenon.

Figure W32: Experiment by Malus
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In this experiment Malus investigated how the intensity of the light reflected by two glass plates varied with the angle of incidence and the orientation of the plates.  He found that when the angles of incidence at B and at C were about 57°, the light intensity at D varied from a maximum with the plates as shown in Figure W32 to zero when the top plate was rotated through 90° about the ray from B to C.  Of course, we now understand that the angle of incidence of 57° is approximately Brewster’s angle for glass and the ray from B to C is plane polarised in the plane at right angles to the diagram.  When the top plate is rotated through 90°, light with this plane of polarisation is not reflected by the second plate (see Reflection from a dielectric, below).

Reflection from a dielectric

When unpolarised light is reflected from a dielectric medium (in this context, a dielectric can be taken as an electrical non-conductor), the two components of oscillation of the electric field, parallel to and perpendicular to the plane of incidence, are not reflected equally except at the limiting angles of incidence of 0° and 90°.  At one other special angle determined by the refractive indices of the media, the reflected light has no component of oscillation parallel to the plane of incidence.  This angle is Brewster’s angle, named after Sir David Brewster who discovered this phenomenon 

experimentally in 1812.  Light reflected at Brewster’s angle is linearly polarised in the direction perpendicular to the plane of incidence.  The special angle is such that the reflected beam and the refracted beam at the surface are at right angles.

Figure W33: Reflection at Brewster’s angle
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In Figure W33, the two components of the unpolarised light incident on the surface are shown as a line in the plane of incidence and a circle indicating oscillations parallel and perpendicular to the plane of incidence, respectively.  The figure is drawn to show the special angle of incidence iP, Brewster’s angle, at which the light reflected is linearly polarised.  This can be explained as follows.  The light incident on the second medium interacts with the charges near to the surface and oscillating charged dipoles are set up in the surface layer.  These re-radiate light of the same frequency and, in general, generate the reflected and the refracted beam.  However, at Brewster’s angle of incidence, the reflected beam would be at right angles to the refracted beam and, for those dipoles in the plane of incidence, at right angles to the axes of the oscillating dipoles in the second medium.  Although not in the syllabus, it is helpful to know that an oscillating electric charge does not re-radiate along the axis of oscillation.  Therefore there is no re-radiation in this direction from these dipoles and so the component of the electromagnetic field in the plane of incidence is missing.  The component perpendicular to the plane of incidence is re-radiated in the direction of the reflected beam and so the reflected light is linearly polarised in this plane at this special angle,
iP , called the polarising angle.  It should be noted that it follows that if light waves polarised parallel to the plane of incidence are reflected, they must be 100% transmitted at this special, Brewster’s angle of incidence.

ip + r = 90°


n1sin ip = n2sin r


n1sin ip = n2sin(90 – ip)


n = 
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When the light from the Sun is reflected off a flat water surface at an angle of incidence close to Brewster’s angle, the reflected light is very nearly linearly polarised.  Polaroid sunglasses are designed to absorb the component of the electric field oscillating in the plane perpendicular to the plane of incidence and therefore absorb most of the reflected light from the water surface, at least when worn normally and the wearer is upright.  Polaroid sunglasses therefore reduce reflected glare.

Rainbows

The primary bow of a rainbow is formed at an angle of about 42° to the incident sunlight, that is, the sunlight is deflected though an angle of 138° in the interaction with the spherical water droplets.  The path of the light ray contributing to the formation of a primary rainbow through a single droplet at the top of the bow is shown in Figure W34.

Figure W34: The rainbow
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The ray is partially internally reflected at B and the angle of incidence at the water to air surface is approximately Brewster’s angle.  This is a coincidence, having nothing to do with the physics of the formation of the rainbow.  The light reflected at B will be almost completely linearly polarised and will be polarised in the horizontal plane as shown in Figure W34.  The plane of polarisation will vary along the arc of the rainbow.

Consider a semi-circular rainbow.  At the extreme end of the bow near to the surface of the Earth, the light will be refracted on entering the drop, 

internally reflected and refracted when it leaves the drop as before.  However, the plane of the rays will now be horizontal and the light in the rainbow from near to the end of the arc will be polarised in a plane near to vertical.

This can be readily investigated by looking at the different parts of the arc of a rainbow through a sheet of Polaroid.  If Polaroid sunglasses are used, the top section of the rainbow is not seen because these sunglasses transmit light only with the plane of polarisation vertical.

The LASER

The acronym LASER (Light Amplification by Stimulated Emission of Radiation) is well known and most physics laboratories have access to the most common gas laser, the helium–neon gas laser.  The basis of operation of the laser requires an understanding of atomic energy levels and the quantum interaction of radiation and excited atoms.  However, two important experimental requirements of the design of a laser can be explained using a knowledge of standing waves and of Brewster’s Law.  Only these two requirements are described below.

Figure W35: The laser


Electrons collide with helium atoms in the 20%:80%, helium–neon mixture which, by collision with the neon atoms, transfer their excitation energy to the neon atoms by collison with them.  The energy released in the de-excitation from the second to the first excited level of the neon atoms, 1.96 eV, gives the emitted radiation at a wavelength of 632.8 nm.  The helium–neon mixture is contained within the discharge tube, which is often sealed with end windows set at Brewster’s angle to the axis of the tube as shown.  The light is reflected between the mirrors shown and a standing wave is set up between the mirrors.  The number of complete half cycles between the nodes at the surfaces of the mirrors

can be calculated from 
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 , where L is the distance between the mirrors 

and 
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 is the wavelength of the light.  Typically this would be approximately equal to 30 000.  One of the mirrors has a reflection coefficient less than 

100% to allow the laser beam to escape.

If windows set at Brewster’s angle are used as above, the light polarised in the plane of the diagram will be transmitted by the windows with no losses because there is no reflection for this plane of polarisation at this special angle.  Light with the orthogonal plane of polarisation will be partially reflected at these windows and be lost.  These reflection losses result in only one plane of polarisation being present in the laser beam and the beam is plane polarised in the plane of the diagram.

Polarised and unpolarised laser beams

If a laser is fitted with Brewster windows, the laser beam will be plane polarised.  The orientation of the mirrors and therefore the plane of polarisation of the beam is usually such that tubes mounted in rectangular boxes emit a beam that is plane polarised in the vertical plane (Figure W36).  This can easily be checked by reflecting the laser beam off a glass slide at an angle of incidence of approximately Brewster’s angle.  If the reflection is strong, the beam is unpolarised but if there is no or very little reflection, the beam is plane polarised in the vertical plane.

Figure W36: A laser
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Some helium–neon lasers and other types are not fitted with Brewster windows and the beam from these is unpolarised.  When first switched on, the beam may be found to be plane polarised but the plane of polarisation will change unpredictably during the warm-up period of 

15 – 20 minutes.  Only when fully warmed up will the beam stabilise and contain all planes of polarisation, that is be unpolarised.

Polarisation by scattering

The Rayleigh law of scattering of light by small particles, that is small compared with the wavelength of light, states that the intensity scattered is proportional to
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–4, where 
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 is the wavelength of the light.  Thus the intensity of the light scattered at the blue end of the visible spectrum is about five times that at the red end.  Sunlight is scattered by the air molecules in the atmosphere and the greater scattering at small wavelengths explains the 

blue appearance of the sky.  Where there is no atmosphere, as on the Moon, the sky is black in full sunlight.

It is less well known that the scattered light from the sky is partially polarised.

Figure W37: Scattering
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Figure W37 shows sunlight being scattered through an angle close to 90° towards an observer.  The sunlight will be unpolarised as shown by the two components indicated by the arrowed lines and the circles marked on the incoming rays.  The oscillations of the electric field will interact with the air molecules and the re-radiation in the direction shown will be linearly polarised.  This is because no re-radiation takes place along the axis of the induced oscillating dipole.  Note that a similar explanation applies to reflection from a dielectric at Brewster’s angle of incidence.  In fact, multiple scattering before the light reaches the observer results in the light being only partially polarised, that is, there is more of one plane of polarisation than the other and this effect can readily be observed with the aid of a sheet of Polaroid.

Bees have eyes that detect the polarisation of the light from the sky and can establish the direction of the Sun in this way even when it is hidden by a cloud layer.  They also have a sense of time and this, combined with the direction of the Sun, is one of their methods of navigation.

Optical activity

When a beam of plane-polarised light is directed along a special direction in crystalline quartz, called the optic axis, the plane of polarisation turns continuously about the direction of the beam.  The beam emerges from the quartz vibrating in a different plane from the one it had when it entered the quartz.  The angle though which the plane is rotated is found to be proportional to the distance travelled in the quartz.  Many other substances exhibit the same effect, for example turpentine, sugar in solution and sodium chlorate.  Some substances rotate the plane to the right and some to the left.  This property is caused by the helical structure of quartz.  Chemically, quartz is silicon dioxide, and the silicon and oxygen atoms are arranged in helices.  A qualitative explanation is that the plane of polarisation of the light beam follows the twist of the structure if the light beam is directed along the axis of the helix, the optic axis of the crystal.

Figure W38: Optical activity
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In Figure W38, the distance travelled in the crystal is such that the incident, vertically plane-polarised light is rotated through 90° and leaves the crystal polarised horizontally.

In the case of liquids, the rotation is attributable to the helical structure of the molecules of the liquid.  The molecules are randomly distributed in a liquid and the molecules are constantly moving.  The rotation is an average effect of all the molecules and is the same for any direction of beam through the liquid.  It might be thought that the random orientations of the molecules in the liquid would cancel out and there would be no overall rotation of the plane of polarisation.  However, a helix has the same direction of twist or screw from each end.  A slinky can be used to show this clearly.  

It is possible to illustrate the optical activity of a liquid using 3 cm microwaves.  If a cardboard box is filled with helices of insulated copper wire, for example 1 cm long and about 0.5 cm diameter, the plane of polarisation of the 3 cm microwaves will be rotated when the waves travel through the box.

Obviously the rotatory power of substances differs.  Some values are:


Quartz
21.7° per mm

Turpentine
3.7° per cm

Corn syrup
12° per cm

If a plane-polarised laser beam is shone along the axis of a glass tube containing colourless corn syrup, the light scattered out of the beam at right angles is a maximum every 15 cm.  This is because the interaction of the electromagnetic wave with the syrup causes re-radiation (scattering) most strongly in the direction at right angles to the plane of polarisation of the laser beam and this is rotated through 180° every 15 cm.  If the tube is viewed from two orthogonal directions, a maximum is seen from one direction and a minimum is seen from the other, and vice-versa.

Do not look directly into the laser beam and avoid specular reflections.

Some substances exist in two different helical forms, right-handed and left-handed screw directions.  These two forms have very different physical behaviour but in most chemical reactions behave identically.  They are called isomers.

Liquid crystal displays

In addition to the solids and liquids above, another class of substance can be set up to rotate the plane of oscillation of the light passing through.  This is the liquid crystal state.  Liquid crystals can flow, as a liquid does, and yet maintain their molecular orientations, that is, the molecules do not take up random orientations even in macroscopic volumes.  They have one other very important property relevant to their use in displays, calculators, mobile telephones, etc. if a small electric field is set up, the molecules align themselves along the electric field.

Figure W39: Liquid crystal display
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In Figure W39, unpolarised ambient light is shown entering the display.  The light beam is plane polarised by the first Polaroid sheet.  If no electric field is applied, E = 0, the liquid crystal rotates the plane of polarisation of the light in travelling through it by 90°.  The second Polaroid sheet transmits this beam and it is reflected by the mirror back through the layers.  With no voltage applied across the liquid crystal layer, the display is bright because of the reflected light.  This light is, however, plane polarised and this can easily be demonstrated with a sheet of Polaroid.

If a potential difference of a few volts is applied across the liquid crystal, the molecules line up along this field and the layer is no longer optically active.  The light reaching the second sheet of Polaroid has not been rotated through 90° and is not transmitted by this sheet.  These regions of the display are dark.

Examine the liquid crystal display on a calculator or digital watch using a piece of Polaroid.  Cover the display with the sheet of Polaroid and observe that the display remains quite bright and clear when the sheet is at one orientation but dark and almost  unreadable when the sheet is rotated through 90° from this position.
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Optical tweezers.
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