

2007 Physics

Advanced Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2007

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Detailed Marking Instructions – AH Physics 2007

1. Numerical Marking

- (a) The fine divisions of marks shown in the marking scheme may be recorded within the body of the script beside the candidate's answer. If such marks are shown they must total to the mark in the inner margin.
- (b) Negative marks or marks to be subtracted should not be shown. An inverted vee may be used instead.
- (c) The number recorded should always be the marks being awarded. The number out of which a mark is scored SHOULD NEVER BE SHOWN AS A DENOMINATOR. (¹/₂ mark will always mean one half mark and never 1 out of 2.)
- (d) Where square ruled paper is enclosed inside answer books it should be clearly indicated that this item has been considered. Marks awarded should be transferred to the script booklet inner margin and marked G.
- (e) Fractional marks, if awarded to individual questions, should be recorded in the grid, but the total script mark must be rounded up to the next whole number when transferred to the box at the top of the script.

2. Other Marking Symbols which may be used

_	Correct point as detailed in scheme, includes data entry.
_	Any part of answer which is wrong. (For a block of
	wrong answer indicate zero marks.)
_	A point omitted which has led to a loss of marks.
-	Under an answer worth marks which is wrong only
	because a wrong answer has been carried forward from
	a previous part.
_	Reference to a graph on separate paper. You MUST
	show a mark on the graph paper and the SAME mark
	on the script.
_	Wrong Physics
-	Wrong order of marks
	-

3. Marking Symbols which may <u>not</u> be used.

"WP"	-	Marks not awarded because an apparently correct answer was due to the use of "wrong physics".
"ARITH"	_	Candidate has made an arithmetic mistake.
"SIG FIGS or SF"	_	Candidate has made a mistake in the number of
		significant figures for a final answer.

4. General Instructions (Refer to National Qualifications Booklet)

- No marks are allowed for a description of the wrong experiment or one which would not work.
 Full marks should be given for information conveyed correctly by a sketch.
- (b) Surplus answers: where a number of reasons, examples etc are asked for and a candidate gives more than the required number then wrong answers may be treated as negative and cancel out part of the previous answer.
- (c) Full marks should be given for a correct answer to a numerical problem even if the steps are not shown explicitly. The part marks shown in the scheme are for use in marking partially correct answers.
- (d) Where 1 mark is shown for the final answer to a numerical problem ¹/₂ mark may be deducted for an incorrect unit.
- (e) Where a final answer to a numerical problem is given in the form 3^{-6} instead of 3×10^{-6} then deduct $\frac{1}{2}$ mark.
- (f) Deduct $\frac{1}{2}$ mark if an answer is wrong because of an arithmetic slip.
- (g) No marks should be awarded in a part question after the application of a wrong physics principle (wrong formula, wrong substitution) unless specifically allowed for in the marking scheme.
- (h) In certain situations, a wrong answer to a part of a question can be carried forward within that part of the question. This would incur no further penalty provided that it is used correctly. Such situations are indicated by a horizontal dotted line in the marking instructions.

Wrong answers can always be carried forward to the next part of a question, over a solid line without penalty.

- (i) $\frac{1}{2}$ mark should be awarded for selecting a formula.
- (j) Where a triangle type "relationship" is written down and then not used or used incorrectly then any partial ½ mark for a formula should not be awarded.
- (k) In numerical calculations, if the correct answer is given then converted wrongly in the last line to another multiple/submultiple of the correct unit then deduct 1/2 mark.
- (1) Significant figures. Data in question is given to 3 significant figures. Correct final answer is 8·16J. Final answer 8·2J or 8·158J or 8·1576J – No penalty. Final answer 8J or 8·15761J – Deduct ¹/₂ mark. Candidates should be penalised for a final answer that includes:
 three or more figures too many
 - three or more figures too many **or**
 - two or more figures too few. ie accept two higher and one lower.

Max $\frac{1}{2}$ mark deduction per question. Max $2\frac{1}{2}$ deduction from question paper.

(m) Squaring Error

 $E_K = \frac{1}{2} mv^2 = \frac{1}{2} \times 4 \times 2^2 = 4J$ (-1/2, ARITH) $E_K = \frac{1}{2} mv^2 = \frac{1}{2} \times 4 \times 2 = 4J$ (1/2, formula) Incorrect substitution.

The General Marking Instructions booklet should be brought to the markers' meeting.

Physics – Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

	Answers	Mark + comment	Issue
1.	V=IR 7·5=1·5R R=5·0Ω	$\binom{1/2}{(1/2)}$ (1)	Ideal Answer
2.	5·0Ω	(2) Correct Answer	GMI 1
3.	5.0	(1 ¹ / ₂) Unit missing	GMI 2(a)
4.	4·0Ω	(0) No evidence/Wrong Answer	GMI 1
5.	Ω	(0) No final answer	GMI 1
6.	$R = \frac{V}{I} = \frac{7.5}{1.5} = 4.0\Omega$	(1 ¹ / ₂) Arithmetic error	GMI 7
7.	$R = \frac{V}{I} = 4.0\Omega$	(¹ / ₂) Formula only	GMI 4 and 1
8.	$\mathbf{R} = \frac{V}{I} = \underline{\qquad} \mathbf{\Omega}$	(¹ / ₂) Formula only	GMI 4 and 1
9.	$\mathbf{R} = \frac{V}{I} = \frac{7 \cdot 5}{1 \cdot 5} = \underline{\qquad} \Omega$	(1) Formula + subs/No final answer	GMI 4 and 1
10.	$R = \frac{V}{I} = \frac{7.5}{1.5} = 4.0$	(1) Formula + substitution	GMI 2(a) and 7
11.	$R = \frac{V}{I} = \frac{1.5}{7.5} = 5.0\Omega$	(¹ / ₂) Formula but wrong substitution	GMI 5
12.	$R = \frac{V}{I} = \frac{75}{1.5} = 5.0\Omega$	(¹ / ₂) Formula but wrong substitution	GMI 5
13.	$R = \frac{I}{V} = \frac{7.5}{1.5} = 5.0\Omega$	(0) Wrong formula	GMI 5
14.	V=IR $7.5=1.5 \times R$ R= 0.2Ω	(1 ¹ / ₂) Arithmetic error	GMI 7
15.	V=IR		
	$R = \frac{I}{V} = \frac{1.5}{7.5} = 0.2\Omega$	(¹ / ₂) Formula only	GMI 20

Data Sheet

Common Physical Quantities

Quantity	Symbol	Value	Quantity	Symbol	Value
Gravitational acceleration on Earth Radius of Earth Mass of Earth Mass of Moon Radius of Moon Mean Radius of Moon Orbit Universal constant of gravitation Speed of light in vacuum Speed of sound in air	$egin{array}{c} g \\ R_E \\ M_E \\ M_M \\ R_M \end{array}$	9.8 ms ⁻² 6.4×10^{6} m 6.0×10^{24} kg 7.3×10^{22} kg 1.7×10^{6} m 3.84×10^{8} m 6.67×10^{-11} m ³ kg ⁻¹ s ⁻² 3.0×10^{8} ms ⁻¹ 3.4×10^{2} ms ⁻¹	Mass of electron Charge on electron Mass of neutron Mass of proton Mass of alpha particle Charge on alpha particle Planck's constant Permittivity of free space Permeability of free space	m_e e m_n m_p m_∞ h ϵ_0 μ_0	9.11 x 10^{-31} kg -1.60 x 10^{-19} C 1.675 x 10^{-27} kg 1.673 x 10^{-27} kg 6.645 x 10^{-27} kg 3.20 x 10^{-27} kg 3.20 x 10^{-19} C 6.63 x 10^{-34} Js 8.85 x 10^{-12} Fm ⁻¹ 4π x 10^{-7} Hm ⁻¹

Refractive Indices

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K.

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Glycerol	1.47
Glass	1.51	Water	1.33
Ice	1.31	Air	1.00
Perspex	1.49	Magnesium Fluoride	1.38
		_	

Spectral Lines

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	656	Red	Cadmium	644	Red
	486	Blue-green		509	Green
	434	Blue-violet		480	Blue
	410	Violet		Lasers	
	397	Ultraviolet	Element	Wavelength/nm	Colour
	389	Ultraviolet	Element	" averengen min	Colour
Sodium	589	Yellow	Carbon dioxide	9550 10590	Infrared
			Helium-neon	633	Red

Properties of selected Materials

Substance	Density/	Melting	Boiling	Specific Heat	Specific Latent	Specific
	$kg m^{-3}$	Point/K	Point/K	Capacity/	Heat of	latent Heat of
	_			$Jkg^{-1}K^{-1}$	Fusion/Jkg ⁻¹	Vaporisation/
				_	_	Jkg^{-1}
Aluminium	$2.70 \ge 10^3$	933	2623	9.02×10^2	$3.95 \ge 10^5$	
Copper	8.96×10^3	1357	2853	$3.86 \ge 10^2$	2.05×10^5	
Glass	$2.60 \ge 10^3$	1400		$6.70 \ge 10^2$		
Ice	$9.20 \ge 10^2$	273		$2 \cdot 10 \ge 10^3$	$3.34 \ge 10^5$	
Gylcerol	$1.26 \ge 10^3$	291	563	2.43×10^3	$1.81 \ge 10^5$	$8.30 \ge 10^5$
Methanol	$7.91 \ge 10^2$	175	338	2.52×10^3	9·9 x 10 ⁴	$1.12 \ge 10^{6}$
Sea Water	1.02×10^3	264	377	3.93×10^3		
Water	$1.00 \ge 10^3$	273	373	$4 \cdot 19 \ge 10^3$	$3.34 \ge 10^5$	$2.26 \ge 10^6$
Air	1.29					
Hydrogen	$9.0 \ge 10^{-2}$	14	20	1.43×10^4		$4.50 \ge 10^5$
Nitrogen	1.25	63	77	$1.04 \text{ x } 10^3$		$2.00 \ge 10^5$
Oxygen	1.43	55	90	$9.18 \ge 10^2$		$2.40 \ge 10^5$

The gas densities refer to a temperature of 273 K and pressure of 1.01×10^5 Pa.

2007	AH P	Physics				
Samj	ple an	swer and mark allocation		Notes	Mar	gin
1.	(a)	$\frac{ds}{dt} = v$ $\int ds = \int (u + at) \cdot dt$ $s = ut + \frac{1}{2} at^{2} + c$ $at t = 0, s = 0, so c = 0$ $\therefore s = ut + \frac{1}{2} at^{2}$	(¹ / ₂) (¹ / ₂) (¹ / ₂) (¹ / ₂)	No c or limits $\Rightarrow \max(\frac{1}{2})$ If first line is W.P(0) eg WP = $\int s$, $\int \frac{ds}{dt}$, $\int v$ OR $\int_{o}^{s} ds = \int_{o}^{t} (u + at) dt$ (1/2) equation (1/2) limits $[s]_{o}^{s} = [ut + \frac{1}{2} at^{2}]_{o}^{t}$ (1/2)	2	6
	(b)	$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$	(1/2)	$s = ut + \frac{1}{2} at^2 (\frac{1}{2})$		
		$= \frac{1 \cdot 673 \times 10^{-27}}{\sqrt{1 - \frac{\left(2 \cdot 8 \times 10^8\right)^2}{\left(3 \cdot 0 \times 10^8\right)^2}}}$ $= 4 \cdot 66 \times 10^{-27} (kg)$	$\binom{1}{2}$ $\binom{1}{2}$ $\binom{1}{2}$	data ($\frac{1}{2}$) 1.673×10^{-27} data ($\frac{1}{2}$) 3×10^{8}		
		$E = mc^{2}$ = 4.66 × 10 ⁻²⁷ × (3.0 × 10 ⁸) ²	(1/2) (1/2) (1/2)			
		$= 4.2 \times 10^{-10} \text{ J}$	(1)		4	

Sam	ple answer	and mark allocation Notes	Margi	n
2.	(a) (i)	$I = \frac{1}{2} mr^{2} \qquad (\frac{1}{2}) \\ = \frac{1}{2} \times 0.60 \times 0.15^{2} \qquad (\frac{1}{2}) \\ = 6.8 \times 10^{-3} kgm^{2} \qquad (1)$	2	12
	(ii)	A $\omega = \underline{\text{no. of revs}} \times 2\pi$ (¹ / ₂)		
		$=\frac{45}{60} \times 2\pi$ (1/2)		
		$= (4.7 \text{ rads}^{-1})$	1	
		$B \qquad \alpha = \underbrace{\omega - \omega_{0}}{t} \qquad (\frac{1}{2})$		
		$=\frac{4\cdot7}{1\cdot5}$ (1/2)		
		$= 3 \cdot 1 \text{ rads}^{-2} \tag{1}$	2	
	(iii)	$I_{mass} = mr^2 \qquad (\frac{1}{2})$		
		$= 0.20 \times 0.10^2 $ (1/2)		
		$= 0.0020 \text{ (kgm}^2\text{)} 2.0 \text{ x } 10^{-3}$	kgm ²	
		$I_1 \omega_1 = I_2 \omega_2 \qquad (\frac{1}{2})$		
	6.8×10^{-3}	$\times 4.7 = (6.8 \times 10^{-3} + 2 \times 10^{-3})\omega_2 \qquad (1/2)$		
		$\omega_2 = 3.6 \text{ rads}^{-1} \tag{1}$	3	
	(iv)	centripetal force is supplied by friction (1) Outward f	orce – (0)	
		Force of friction is less than the required centripetal force (1)		
			2	
	(b) ω incr r (of a (⇒) Ι Ιω is α	reases(½)arms and legs) decreases(½)decreases(accept inertia)(½)(½)constant(½)	2	

Sample answer a	and mark allocation		Notes	Mar	gin
3. (a) (i)	$F = \frac{GMm}{r^2}$	(1/2)			13
	$= \frac{6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times 7.3 \times (3.84 \times 10^8)^2}{(3.84 \times 10^8)^2}$	$\frac{10^{22}}{(\frac{1}{2})}$			
	$= 2 \cdot 0 \times 10^{20} \mathrm{N}$	(1)		2	
(ii)	$F = \frac{mv^2}{r}$	(1/2)			
:	$2.0 \times 10^{20} = \frac{7.3 \times 10^{22} \times v^2}{3.84 \times 10^8}$	(1/2)			
	$\mathbf{v} = 1 \cdot 0 \times 10^3 \text{ ms}^{-1}$	(1)		2	
(iii)	work done in bringing unit mass from infinity (to a point in space)	(1)	1 or 0	1	
(iv)	$E_{P} = -\frac{GMm}{r}$	(1/2)	missing –ve sign in formula – (0)		
:	$= -\frac{6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times 7.3 \times 10^{2}}{3.84 \times 10^{8}}$	$\frac{2}{2}(\frac{1}{2})$	missing $-ve = wrong substitution$ (max $\frac{1}{2}$)		
:	$= -7.6 \times 10^{28} \text{ J}$	(1)		2	
(v)	$E_{T} = E_{K} + E_{P} or$ $E_{T} = \frac{1}{2} mv^{2} - 7 \cdot 6 \times 10^{28} J$	(1/2)	Or $E_T = - \frac{GMm}{2r}$		
:	$= \frac{1}{2} \times 7.3 \times 10^{22} \times (1.0 \times 10^3)^2 - 7.6 \times 10^{10}$	10 ²⁸ (¹ / ₂)	$= -3.8 \times 10^{28} \text{ J}$	2	
:	$= -4.0 \times 10^{28} \text{ J}$	(1)			

Sample answer and mark allocation	Notes	Marg	gin	
(b) (i) $E_P + E_K = 0$	(1/2)	$E_P = E_K \Longrightarrow (0)$ Wrong Physics		
$-\frac{GMm}{r} + \frac{1}{2}mv^2 = 0$	(1/2)			
$\frac{1}{2} pnv^2 = \underline{GMpn}_{\Gamma}$	(1/2)			
$v = \sqrt{\frac{2GM}{r}}$	(1/2)		2	
(ii) $v = \sqrt{\frac{2 \times 6.67 \times 10^{-11} \times 7.3 \times 10^{22}}{1.7 \times 10^6}}$	(1/2)			
data for r of moon	(1/2)			
$= 2 \cdot 4 \times 10^3 \text{ ms}^{-1}$	(1)			
			2	

Sam	Sample answer and mark allocation			Notes	Mar	gin
4.	(a)	force (or acceleration) is proportiona displacement and directed towards centre	l to (½) (½)	F = -ky (1) $F\alpha - y$	1	9
	(b)	$y = A \cos \omega t$	(1/2)	accept sine function		
		A = $0.10 \div 2 = 0.050$	(1/2)	A or ω wrong \Rightarrow max (1)		
		$\omega = 2\pi f = 628 = 200\pi$	(1/2)			
		$y = 0.050 \cos 628 t$	(1/2)		2	
	(c)	a = $(\pm) \omega^2 y$	(1/2)			
		$= 628^2 \times 0.050$	(1/2)			
		$= 2 \cdot 0 \times 10^4 \mathrm{ms}^{-2}$	(1)		2	
	(d)	F = ma	(1/2)	accept ±		
		$= 0.48 \times 2.0 \times 10^4$	(1/2)			
		$=9.6\times10^3\mathrm{N}$	(1)		2	
	(e)	$E_{\rm K} = \frac{1}{2} {\rm m}\omega^2 ({\rm A}^2 - {\rm y}^2)$	(1/2)			
		$= \frac{1}{2} \times 0.48 \times 628^2 \times 0.050^2$	(1/2)			
		= 240 J	(1)		2	

Sample answer and mark allocation	Notes	Mar	gin	
5. (a) (i) $V = \frac{Q}{4\pi\varepsilon_0 r}$	(1/2)	accept $\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9$		11
$=\frac{5\cdot1\times10^{-9}}{4\times3\cdot14\times8\cdot85\times10^{-12}\times0\cdot2}$	(¹ / ₂)			
= (230 V)			1	
(ii) potential difference = $V_A - V_B$				
$= 230 - \frac{Q}{4\pi\varepsilon_0 r}$	(1/2)	(¹ / ₂) for subtraction		
$= 230 - \frac{5 \cdot 1 \times 10^{-9}}{4 \times 3 \cdot 14 \times 8 \cdot 85 \times 10^{-12} \times 0 \cdot 5}$				
= 230 - 92	(1/2)	Accept 129 V		
= 140 V	(1)	Accept 158 V	2	
(b) bring rod close (or touching) earth (touch) sphere	(1) (1)	If rod removed before the earth, deduct 1 mark		
			2	
(c) (i) electric force	(1/2)	not gravity		
weight (or mg)	(1/2)		1	

Sample answer and mark allocation	Notes	Marg	gin
(ii) EQ= mg $(\frac{1}{2}) + (\frac{1}{2})$			
$E = V/d \qquad (1/2)$			
$Q = \frac{mgd}{V}$			
$=\frac{1\cdot 2\times 10^{-14}\times 9\cdot 8\times 0\cdot 08}{4900}$ (¹ / ₂)			
$= 1.92 \times 10^{-18} \mathrm{C}$	± accept		
(1)		3	
(iii) no. of electrons = $\frac{1.92 \times 10^{-18}}{1.6 \times 10^{-19}}$			
= 12 (1)		1	
(d) not an integer multiple of e (1)		1	

Sam	ple an	swer a	and mark allocation		Notes	Mar	gin
6.	(a)	${\rm B}_{\perp}$	= B sin 69	(1/2)			8
			$= 5 \times 10^{-5} \times \sin 69$	(1/2)			
			$= 4.7 \times 10^{-5} \mathrm{T}$		deduct ¹ / ₂ if wrong unit	1	
	(b)	(i)	$F = BIL \sin\theta$	(1/2)			
			$= 4.7 \times 10^{-5} \times 3 \times 1.5$	(1/2)			
			$= 2 \cdot 1 \times 10^{-4} \text{ N}$	(1)		2	
		(ii)	EAST	(1)		1	
	(c)	0 (N))	(1)	unit not needed	1	
	(d)	(i)	$B = \frac{\mu_0 I}{2\pi r}$	(1/2)			
			$\frac{1-\mu_0 \Gamma}{2\pi B}$				
			$=\frac{4\times3\cdot14\times10^{-7}\times3\cdot0}{2\times3\cdot14\times5\cdot0\times10^{-5}}$	(1/2)	1.2×10^{-2} m		
			$= 1.2 \times 10^{-2} \mathrm{m}$	(1)		2	
		(ii)	circular	(1)	accept cylindrical	1	

Sam	ple an	swer a	and mark allocation		Notes	Mar	gin
7.	(a)	(i)	changing current causes changing magnetic field producing back emf	$\binom{1}{2}$ (1) $\binom{1}{2}$		2	9
		(ii)	$I = \frac{P}{V}$ $= \frac{1 \cdot 5}{6}$		(1/2)		
			= 0·25 A	(1)		1	
		(iii)	$E = \frac{1}{2} LI^2$	(1/2)			
			$L = -\frac{E}{0 \cdot 5I^2}$				
			$= \frac{75 \times 10^{-3}}{0.5 \times (0.25)^2}$	(1/2)			
			= 2·4 H	(1)		2	
		(iv)	(A) smaller current(B) longer time	(1) (1)		2	
	(b)	B co large	llapses (rapidly) or \underline{dI} is large dt (back) emf induced or emf > 80V	(1) (1)	S closed, energy stored (1) S open, energy released (1)	2	

Samj	ole an	swer a	nd mark allocation	Notes	Mar	gin
8.	(a)	(i)	(A) $V_{\rm H} = V\cos\theta$ = 9.5 × 10 ⁷ × cos60			12
			$= 4.8 \times 10^7 \mathrm{ms}^{-1}$ (1)		1	
			(B) $V_V = V \sin \theta$			
			$=9.5\times10^7\times\mathrm{sin60}$			
			$= 8.2 \times 10^7 \mathrm{ms}^{-1}$ (1)		1	
		(ii)	perpendicular – results in circular motion (component) <u>or</u> central force (1) parallel – constant velocity (component) or no horizontal force			
			or equivalent		2	
			(1)			
	(b)	(i)				
		$\frac{mv^2}{r}$	$=$ Bqv $(\frac{1}{2}) + (\frac{1}{2})$	Accept r = $\frac{mv}{Bq}$ (1)		
	<u>m(v</u> r	$(\sin\theta)^2$	$= Bqv \sin\theta \qquad (1/2)$			
		r	$= \frac{mv \sin\theta}{Bq}$			
			$= \frac{9.11 \times 10^{-31} \times 9.5 \times 10^7 \times \text{sin60}}{0.22 \times 1.6 \times 10^{-19}} \qquad (\frac{1}{2})$			
			$= 2 \cdot 1 \times 10^{-3} \mathrm{m}$		2	
		(ii)	$Time = \frac{2\pi r}{v \sin \theta} $ (1/2)			
			$= \frac{2 \times 3 \cdot 14 \times 2 \cdot 1 \times 10^{-3}}{8 \cdot 2 \times 10^{7}} $ (¹ / ₂)			
			$= 1.6 \times 10^{-10} \mathrm{s} \tag{1}$		2	

Sample answer and mark allocation	Notes	Margin
(iii) pitch = $v\cos\theta \times time$ for 1 rev (1/2) = $4.75 \times 10^7 \times 1.6 \times 10^{-10}$ (1/2) = 7.6×10^{-3} m (1)		2
(c) bigger radius spirals in opposite sense (direction) bigger pitch	any 2 for 1 mark each greater period – (0) fewer loops – (0)	2

Sam	ple an	swer and mark allocation		Notes	Mar	gin
9.	(a)	$f = \frac{v}{\lambda}$				5
		$=\frac{0.06}{0.02}$				
		= 3 (Hz)	(1)			
		$y = 0.05 \sin 2\pi \left(3t - \frac{x}{0.02} \right)$		$(\frac{1}{2})$ for 0.05; (1) for 3; $(\frac{1}{2})$ for 0.02	2	
	(b)	$y = 0.05 \sin 2\pi \left(3t + \frac{x}{0.02} \right)$			1	
	(c)	$I \alpha A^2$	(1/2)			
		A^2 falls by 0.5 or A falls by $\sqrt{0.5}$	(½)			
		new amplitude = $\sqrt{0.5} \times 0.05$				
		= 0.04m	(1)	Accept 0.035m	2	

Sam	ple an	swer a	and mark allocation	Notes	Mar	gin
10.	(a)	(i)	(A) π (1/2) (B) π (1/2)		1	8
		(ii)	(reflected rays) interfere destructively(1) if optical path difference $=\frac{\lambda}{2}$ (1)		2	
		(iii)	so more light is transmitted (through the lens) (1)	brighter image – (1)	1	
		(iv)	$d = \frac{\lambda}{4n} \qquad (\frac{1}{2})$ $\lambda = 4dn$			
			$= 4 \times 1.05 \times 10^{-7} \times 1.38 $ (1/2)		2	
			$= 5.80 \times 10^{17} \mathrm{m} \tag{1}$		2	
	(b)	fring lengt wave	e separation $\binom{1/2}{2}$ h of glass plates $\binom{1}{2}$ elength of sodium light $\binom{1}{2}$			
		$\Delta x =$	$\frac{\lambda \ell}{2d}$ (¹ / ₂)		2	

Sam	ple an	swer and mark allocation		Notes	Mar	gin
11.	(a)	$\lambda = 2 \times 0.15$	(1)	numbers alone, no formula – (0)		
		$v = f\lambda$	(1/2)			
		$=250\times0.3$	(1/2)			
		$(= 75 \text{ ms}^{-1})$			2	
	(b)	% uncertainty in $\lambda = \frac{0.005}{0.150} \times 100$				
		= 3.3%	(1/2)			
		% uncertainty in f = $\frac{10}{250}$ x 100				
		= 4%	(1/2)			
		% uncertainty in v = $\sqrt{4^2 + 3 \cdot 3^2}$	(1/2)			
		= 5%	(1/2)			
		absolute uncertainty $= 75 \times \frac{5}{100}$	(½)			
		$= 4 \text{ ms}^{-1}$				
		$v = (75 \pm 4) \text{ ms}^{-1}$	(½)		3	
	(c)	(i) % uncertainty in λ will increase	(1)	accept distance between nodes in place of wavelength	1	
		(ii) measure the distance over several m and take an average	nodes (1)		1	

[END OF MARKING INSTRUCTIONS]