2010 Physics

Advanced Higher

Marking Instructions

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from the External Print Team, Centre Services, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's External Print Team, Centre Services, at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Physics - Advanced Higher

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader/Principal Assessor. You can do this by posting a question on the Marking Team forum or by e-mailing/phoning the e-marker Helpline. Alternatively, you can refer the issue directly to your Team Leader by checking the 'Referral' box on the marking screen.

1. Numerical Marking

(a) The fine divisions of marks shown in the marking scheme may be recorded within the body of the script beside the candidate's answer. If such marks are shown they must total to the mark in the inner margin.
(b) The number recorded should always be the marks being awarded. The number out of which a mark is scored SHOULD NEVER BE SHOWN AS A DENOMINATOR. ($1 / 2$ mark will always mean one half mark and never 1 out of 2.)
(c) Where square ruled paper is enclosed inside answer books it should be clearly indicated that this item has been considered. Marks awarded should be transferred to the script booklet inner margin and marked G.
(d) The total for the paper should be rounded up to the nearest whole number.
2. Other Marking Symbols which may be used

TICK	-	Correct point as detailed in scheme, includes data entry.
SCORE THROUGH	-	Any part of answer which is wrong. (For a block of wrong answer indicate zero marks.)
		Excess significant figures
INVERTED VEE	-	A point omitted which has led to a loss of marks.
WAVY LINE	-	Under an answer worth marks which is wrong only because a wrong answer has been carried forward from a previous part.
"G"	-	Reference to a graph on separate paper. You MUST show a mark on the graph paper and the SAME mark on the script.
"X"	-	Wrong Physics
*	-	Parts or all of questions in the wrong sequence for adding for EMC entry.

No other annotations are allowed on the scripts. DO NOT WRITE ANY COMMENTS ON THE SCRIPT.

3. General Instructions (Refer to National Qualifications Marking Instructions Booklet)

(a) No marks are allowed for a description of the wrong experiment or one which would not work.
Full marks should be given for information conveyed correctly by a sketch.
(b) Surplus answers: where a number of reasons, examples etc are asked for and a candidate gives more than the required number then wrong answers may be treated as negative and cancel out part of the previous answer.
(c) Full marks should be given for a correct answer to a numerical problem even if the steps are not shown explicitly. The part marks shown in the scheme are for use in marking partially correct answers. To obtain the $1 / 2$ mark for substitution the numerical values of constants must be substituted with the exception of π.
However, when the numerical answer is given or a derivation of a formula is required every step must be shown explicitly.
(d) Where 1 mark is shown for the final answer to a numerical problem $1 / 2$ mark may be deducted for an incorrect unit.

In a numerical show question if the candidate gives the incorrect unit in the final answer deduct $1 / 2$ mark. If no unit is given, no deduction.
(e) Where, for example, a final answer to a numerical problem is given in the form 3^{-6} instead of 3×10^{-6}, then deduct $1 / 2$ mark.
(f) Deduct $1 / 2$ mark if an answer is wrong because of an arithmetic slip.
(g) No marks should be awarded in a part question after the application of a wrong physics principle (eg. wrong formula, wrong substitution) unless specifically allowed for in the marking scheme - eg. marks can be awarded for data retrieval. Failure to convert units correctly should be treated as a unit error at the end and not wrong substitution.
(h) In certain situations, a wrong answer to a part of a question can be carried forward within that part of the question. This would incur no further penalty provided that it is used correctly. Such situations are indicated by a horizontal dotted line in the marking instructions.

Wrong answers can always be carried forward to the next part of a question, over a solid line without penalty.

The exceptions to this are:

- where the numerical answer is given
- where the required equation is given.
(i) $1 / 2$ mark should be awarded for selecting a formula.
(j) Where a triangle type "relationship" is written down and then not used or used incorrectly then any partial $1 / 2$ mark for a formula should not be awarded.
(k) In numerical calculations, if the correct answer is given then converted wrongly in the last line to another multiple/submultiple of the correct unit then deduct $1 / 2$ mark.
(1) Significant figures.

Data in question is given to 3 significant figures.
Correct final answer is 8.16 J .
Final answer $8 \cdot 2 \mathrm{~J}$ or $8 \cdot 158 \mathrm{~J}$ or $8 \cdot 1576 \mathrm{~J}$ - No penalty.
Final answer 8 J or $8 \cdot 15761 \mathrm{~J}$ - Deduct $1 / 2$ mark.
Candidates should be penalised for a final answer that includes:

- three or more figures too many

or

- two or more figures too few. ie accept two higher and one lower.

Max $1 / 2$ mark deduction per question. Max $21 / 2$ deduction from question paper.
(m) Squaring Error

$$
E_{K}=1 / 2 m v^{2}=1 / 2 \times 4 \times 2^{2}=4 \mathrm{~J} \quad \text { Award } 11 / 2 \quad \text { Arith error }
$$

$E_{K}=1 / 2 m v^{2}=1 / 2 \times 4 \times 2=4 \mathrm{~J} \quad$ Award $1 / 2$ for formula. Incorrect substitution.
The General Marking Instructions booklet should be brought to the Markers' Meeting.

Physics - Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

Answers

1. $\quad V=I R$

$$
7 \cdot 5=1 \cdot 5 R
$$

$$
R=5 \cdot 0 \Omega
$$

2.

$$
5 \cdot 0 \Omega
$$

3.

$5 \cdot 0$
4.
$4 \cdot 0 \Omega$
5. \qquad Ω

$$
R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4.0 \Omega
$$

7.

$$
R=\frac{V}{I}=4 \cdot 0 \Omega
$$

8.

$R=\frac{V}{I}=$ \qquad Ω
9. $R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=\square \Omega$
10. $R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0$
11.
$R=\frac{V}{I}=\frac{1 \cdot 5}{7 \cdot 5}=5 \cdot 0 \Omega$
12.
$R=\frac{V}{I}=\frac{75}{1 \cdot 5}=5 \cdot 0 \Omega$
13.
$R=\frac{I}{V}=\frac{7 \cdot 5}{1 \cdot 5}=5 \cdot 0 \Omega$
14.

$$
\begin{aligned}
& V=I R \quad 7 \cdot 5=1 \cdot 5 \times R \\
& R=0 \cdot 2 \Omega
\end{aligned}
$$

15. $\quad V=I R$
$R=\frac{I}{V}=\frac{1 \cdot 5}{7 \cdot 5}=0 \cdot 2 \Omega$
16.

$$
R=\frac{7.5}{1.5}=4 \Omega
$$

Mark + comment
(1/2)
(1/2)
(1)
(2) Correct Answer
(1½) Unit missing
(0) No evidence/Wrong Answer
(0) No final answer

Issue

Ideal Answer

GMI 1
GMI 2(a)

GMI 1
GMI 1

GMI 7

GMI 4 and 1

GMI 4 and 1

GMI 4 and 1

GMI 2(a) and 7

GMI 5

GMI 5

GMI 5

GMI 7

GMI 20

GMI 12

Data Sheet

Common Physical Quantities

Refractive Indices

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K.

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Glycerol	1.47
Glass	1.51	Water	1.33
Ice	1.31	Air	1.00
Perspex	1.49	Magnesium Fluoride	1.38

Spectral Lines

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	$\begin{aligned} & 656 \\ & 486 \\ & 434 \end{aligned}$	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	$\begin{aligned} & 644 \\ & 509 \\ & 480 \end{aligned}$	Red Green Blue
	410		Lasers		
	$\begin{aligned} & 397 \\ & 389 \end{aligned}$		Element	Wavelength/nm	Colour
Sodium	589	Yellow	Carbon dioxide Helium-neon	$\left.\begin{array}{r} 9550 \\ 10590 \\ 633 \end{array}\right\}$	Infrared Red

Properties of selected Materials

Substance	$\begin{gathered} \hline \text { Density/ } \\ \mathrm{kg} \mathrm{~m}^{-3} \end{gathered}$	Melting Point/K	Boiling Point/K	Specific Heat Capacity/ $\mathrm{J} \mathrm{kg}^{-1} \mathrm{~K}^{-1}$	Specific Latent Heat of Fusion/ $\mathrm{J} \mathrm{kg}^{-1}$	Specific latent Heat of Vaporisation/ J kg ${ }^{-1}$
Aluminium	2.70×10^{3}	933	2623	9.02×10^{2}	3.95×10^{5}	\ldots
Copper	8.96×10^{3}	1357	2853	3.86×10^{2}	2.05×10^{5}	\ldots.
Glass	2.60×10^{3}	1400	6.70×10^{2}	
Ice	9.20×10^{2}	273	$2 \cdot 10 \times 10^{3}$	3.34×10^{5}	
Gylcerol	1.26×10^{3}	291	563	2.43×10^{3}	1.81×10^{5}	8.30×10^{5}
Methanol	7.91×10^{2}	175	338	2.52×10^{3}	9.9×10^{4}	$1 \cdot 12 \times 10^{6}$
Sea Water	1.02×10^{3}	264	377	3.93×10^{3}	\ldots	
Water	1.00×10^{3}	273	373	$4 \cdot 19 \times 10^{3}$	$3 \cdot 34 \times 10^{5}$	2.26×10^{6}
Air	1.29	\ldots	\ldots	
Hydrogen	9.0×10^{-2}	14	20	1.43×10^{4}	4.50×10^{5}
Nitrogen	1.25	63	77	1.04×10^{3}	2.00×10^{5}
Oxygen	1.43	55	90	9.18×10^{2}	\ldots	2.40×10^{5}

The gas densities refer to a temperature of 273 K and pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.

Part Two: Marking Instructions for each Question

Section A

Question			Expected Answer/s	Max Mark	Additional Guidance
1	a		$\begin{align*} & \mathrm{v}=\frac{s}{t} \tag{1/2}\\ & \mathrm{v}=\frac{2 \pi \mathrm{r}}{\mathrm{~T}} \quad(1 / 2) \text { for } \mathrm{s}=2 \pi \mathrm{r}, \quad(1 / 2) \text { for sub } \tag{1}\\ & \begin{array}{ll} \omega=\frac{2 \pi}{\mathrm{~T}} & \text { Must be stated } \\ \mathrm{v}=\mathrm{r} \omega & \text { Acceptable to use t or } \mathrm{T} \end{array} \\ & \begin{array}{ll} \text { In proofs, each step must be shown explicitly } \end{array} \tag{1/2} \end{align*}$	2	$\mathrm{v}=\frac{s}{t}$ Accept d for \mathbf{s}. $\mathrm{v}=\frac{\mathrm{r} \theta}{\mathrm{t}}$ $(1 / 2)$ for $s=r \theta \quad(1 / 2)$ for sub $\omega=\frac{\theta}{\mathrm{t}}$ Must be stated $\mathrm{v}=\mathrm{r} \omega$ No mark for final line $\begin{aligned} & \mathrm{s}=\mathrm{r} \theta \quad\left(\frac{1}{2}\right) \\ & \frac{\mathrm{ds}}{\mathrm{dt}}=\frac{\mathrm{rd} \theta}{\mathrm{dt}} \quad\left(\frac{1}{2}\right) \\ & \mathrm{v}=\frac{\mathrm{ds}}{\mathrm{dt}} \quad\left(\frac{1}{2}\right) \\ & \omega=\frac{\mathrm{d} \theta}{\mathrm{dt}}\left(\frac{1}{2}\right) \text { All } 4 \text { explicitly shown } \end{aligned}$
1	b	i	$\begin{align*} & \omega=\frac{\theta}{\mathrm{t}} \tag{1/2}\\ & =\frac{3 \cdot 1}{4 \cdot 5}=0.69 \tag{1/2} \end{align*}$ $\begin{align*} & \mathrm{v}=\mathrm{r} \omega \\ & =0.69 \times 0.148 \\ & =0.10 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	2	1

Question			Expected Answer/s	Max Mark	Additional Guidance
1	b	ii	$\begin{align*} & \% \Delta \theta=\frac{0 \cdot 1}{3 \cdot 1} \times 100=3 \cdot 2 \% \\ & \% \Delta t=\frac{0 \cdot 1}{4 \cdot 5} \times 100=2 \cdot 2 \% \\ & \% \Delta r=\frac{0 \cdot 001}{0 \cdot 148} \times 100=0 \cdot 68 \% \tag{1} \end{align*}$ Check correct rounding $\begin{align*} \% \Delta \omega & =\sqrt{ }\left(\% \Delta \theta^{2}+\% \Delta \mathrm{t}^{2}+\% \Delta \mathrm{r}^{2}\right) \tag{1/2}\\ & =\sqrt{ }\left(3 \cdot 2^{2}+2 \cdot 2^{2}+0 \cdot 68^{2}\right) \\ & =3 \cdot 9(\%) \tag{1/2} \end{align*}$	2	Fractional uncertainties okay, but must convert to $\%$ in final line for the $(1 / 2)$
1	b	iii	(A) velocity changing or changing direction (B) towards centre (of turntable)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	

	sti	Expected Answer/s		Max Mark	Additional Guidance
3	a	$\begin{aligned} \alpha & =\frac{\omega-\omega_{0}}{\mathrm{t}} \\ & =\frac{35-0}{0 \cdot 55} \\ & =64 \mathrm{rad} \mathrm{~s}^{-2} \end{aligned}$	(1/2) (1/2) (1)	2	$\begin{gathered} \alpha=-64 \mathrm{rad} \mathrm{~s}^{-2}\left(\frac{1}{1} 2\right) \text { for equation } \\ \text { only } \end{gathered}$
3	b	$\begin{align*} \theta & =\text { area under graph } \tag{1/2}\\ & =1 / 2 \times \mathrm{b} \times \mathrm{h} \tag{1/2}\\ & =1 / 2 \times 0.55 \times 35 \\ & =9.6 \mathrm{rad} \tag{1/2}\\ \mathrm{~s} & =\mathrm{r} \times \theta \tag{1/2}\\ & =0.14 \times 9.6 \\ & =1.3 \mathrm{~m} \end{align*}$ Leniency with rounding in this question.	(1/2) (1/2) (1/2) (1/2) (1/2) (1/2)	3	Show question $\begin{aligned} \theta & =\bar{\omega} \mathrm{t} \\ \bar{\omega} & =35 / 2=17.5 \\ \theta & =17.5 \times 0.55 \\ & =9.6 \mathrm{rad} \end{aligned}$ Or $a_{t}=r \alpha$ $=0.14 \times 64=8.96 \quad(1 / 2)+(1 / 2)$ $\mathrm{s}=\mathrm{ut}+1 / 2 \mathrm{at}^{2}$ $=0+1 / 2 \times 8.96 \times 0.55^{2}$ Rounding to 64 gives 1.4 m - Do not penalise as no mark for final line. $\begin{align*} & \theta=\omega_{o} t+\frac{1}{2} \alpha t^{2} \tag{1}\\ & \theta=0 \times 0.55+\frac{1}{2} \times 64 \times 0.55^{2} \tag{1}\\ & \theta=9.68 \quad\left(\frac{1}{2}\right) \text { accept } 9.6 \\ & s=r \theta \quad\left(\frac{1}{2}\right) \\ & \mathrm{s}=0.14 \times 9.68 \quad\left(\frac{1}{2}\right) \end{align*}$ gives 1.36 m

	sti	Expected Answer/s	$\begin{gathered} \hline \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Additional Guidance
3	c	$\begin{equation*} \operatorname{mgh}=2 \cdot 5 \times 9.8 \times 1 \cdot 3 \tag{1} \end{equation*}$ $\begin{align*} \mathrm{v} & =\omega \times \mathrm{r} \tag{1/2}\\ & =35 \times 0 \cdot 14 \\ & =4 \cdot 9 \mathrm{~ms}^{-1} \tag{1/2} \end{align*}$ $\begin{aligned} & \operatorname{mgh}=1 / 2 \mathrm{mv}^{2}+1 / 2 \times 2.5 \times 4.9^{2}+1 / 2 \times \mathrm{I} \times 35^{2} \\ & 2.5 \times 9 \cdot 8 \times 1.3=1 / 2 \times 2{ }^{2} \\ & 31 \cdot 85=30.01+612.5 \times \mathrm{I} \\ & \mathrm{I}=\left(\frac{1.84}{612.5}\right) \end{aligned}$ $\begin{equation*} =3.0 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{2} \tag{1} \end{equation*}$	4	

Question			Expected Answer/s	Max Mark		Additional Guidance
4	a		Total angular momentum before (an event) = total angular momentum after (an event) in the absence of external torques	(1/2) $(1 / 2)$	1	
4	b	i	$\begin{aligned} \mathrm{L} & =\mathrm{I} \times \omega \\ & =4 \cdot 1 \times 2 \cdot 7 \\ & =11 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1} \text { or } \mathrm{kg} \mathrm{~m}^{2} \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$	(1/2) (1/2) (1)	2	
4	b	ii	$\begin{aligned} & \mathrm{I}_{\mathrm{m}}=\mathrm{m} \mathrm{r}^{2}=\left(2.5 \times 0.60^{2}\right)=\mathbf{0 . 9 0} \mathrm{kg} \mathrm{~m}^{2} \\ & \mathrm{I}_{\mathrm{T}}=(4.1+0.90)=\mathbf{5 . 0} \mathrm{kg} \mathrm{~m}^{2} \\ & \mathrm{I}_{0} \times \omega_{0}=\mathrm{I}_{\mathrm{T}} \times \omega_{\mathrm{T}} \\ & 11 \end{aligned}$	(1/2) (1/2) (1/2) (1/2) (1)	3	
4	b	iii	ω increased r reduced / I reduced since L or $\mathrm{I} \omega$ constant	$\begin{aligned} & (1) \\ & (1 / 2) \\ & (1 / 2) \end{aligned}$	2	
4	c		$\begin{aligned} \alpha & =\frac{\omega-\omega_{0}}{\mathrm{t}} \\ & =\frac{0-1.5}{0.75} \\ & =-2.0 \mathrm{rad} \mathrm{~s}^{-2} \end{aligned}$	(1/2) $(1 / 2)$	3	$\alpha=+2.0(1 / 2)$ max possible for equation
			$\begin{aligned} \tau & =\mathrm{I} \times \alpha \\ & =4.5 \times-2 \\ & =-9 \mathrm{Nm} \end{aligned}$	(1/2) (1/2) (1)		

Question			Expected Answer/s		Max Mark	Additional Guidance
6	a		$\begin{aligned} & \mathrm{E}=\frac{\mathrm{Q}}{4 \pi \varepsilon_{0} \mathrm{r}^{2}} \\ & \mathrm{E}=\frac{(-) 1.92 \times 10^{-12}}{4 \times \pi \times 8.85 \times 10^{-12} \times\left(1.00 \times 10^{-3}\right)^{2}} \\ & \mathrm{E}=(-) 1.73 \times 10^{4} \mathrm{NC}^{-1} \end{aligned}$	(1/2) (1/2) (1)	2	
6	b	i	Student A	(1)	1	
6	b	Ii	E-field is zero inside a hollow conductor. E-field has inverse square dependence outside the conductor.	(1) (1)	2	
6	c	i	$\begin{aligned} & \mathrm{F}=\frac{\mathrm{Q}_{1} \mathrm{Q}_{2}}{4 \pi \varepsilon_{0} \mathrm{r}^{2}} \\ & \mathrm{~F}=\frac{(-) 2.97 \times 10^{-8} \times(-) 1.92 \times 10^{-12}}{4 \times \pi \times 8.85 \times 10^{-12} \times\left(4.12 \times 10^{-2}\right)^{2}} \\ & \mathrm{~F}=3.02 \times 10^{-7} \mathrm{~N} \end{aligned}$	(1/2) (1/2) (1)	2	
6	c	Ii	$\begin{aligned} \sin \theta & =\frac{30 \cdot 0}{41 \cdot 2} \\ \theta & =46 \cdot 7^{\circ} \end{aligned}$ $\begin{aligned} & \mathrm{F}=\mathrm{F} \times \sin \theta \\ & \mathrm{F}=3.02 \times 10^{-7} \times \sin 46.7^{\circ} \\ & \mathrm{F}=2.20 \times 10^{-7} \mathrm{~N} \end{aligned}$	(1/2) (1/2) (1)	2	Accept 47° or accept 43°

Question			Expected Answer/s			$\begin{gathered} \hline \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Additional Guidance
6	c	iii	$\begin{aligned} \text { Resultant } \mathrm{F} & = \\ & = \end{aligned}$	$\begin{aligned} & 4 \times \mathrm{F} \\ & 8.80 \times 10^{-7} \mathrm{~N} \end{aligned}$	(1)	1	
6	c	iv	Resultant $\mathrm{F}=$ $8.80 \times 10^{-7}=$ $\mathrm{m}=$	$\begin{aligned} & \mathrm{m} \times \mathrm{g} \\ & \mathrm{~m} \times 9 \cdot 8 \\ & 9.0 \times 10^{-8} \mathrm{~kg} \end{aligned}$	$(1 / 2)$ $(1 / 2)$ (1)	2	

Question			Expected Answer/s		$\begin{gathered} \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Additional Guidance
7	a		Magnetic field is out of the page	(1)	1	
7	b		$\begin{aligned} & \stackrel{(1 / 2)}{\mathrm{q} \times \mathrm{v} \times \mathrm{B}} \quad \begin{array}{l} (1 / 2) \\ \\ \\ = \\ \mathrm{m} \times \frac{(1 / 2)}{\mathrm{r}} \\ \mathrm{r} \end{array} \\ &=\frac{\mathrm{m} \times \mathrm{v}}{\mathrm{q} \times \mathrm{B}} \\ &=\frac{1.673 \times 10^{-27} \times 6.0 \times 10^{6}}{1.6 \times 10^{-19} \times 0.75} \\ & \mathrm{r}=8.4 \times 10^{-2} \mathrm{~m} \end{aligned}$	($1^{1 / 2}$) (1/2) sub (1)	3	
7	c		$\begin{aligned} \mathrm{q} \times \mathrm{E} & =\mathrm{q} \times \mathrm{v} \times \mathrm{B} \\ \mathrm{E} & =\mathrm{v} \times \mathrm{B} \\ & =6.0 \times 10^{6} \times 0.75 \\ \mathrm{E} & =4.5 \times 10^{6} \mathrm{Vm}^{-1} \end{aligned}$	(1/2) (1/2) (1)	2	
7	d	i	$\begin{aligned} 1 / 2 \times \mathrm{m} \times \mathrm{v}^{2} & =\frac{\mathrm{qQ}}{4 \pi \varepsilon_{0} \mathrm{r}} \\ \mathrm{r} & =\frac{\mathrm{qQ}}{2 \times \pi \times \varepsilon_{0} \times \mathrm{m} \times \mathrm{v}^{2}} \end{aligned}$	(1)	1	Both equations correctly equated for one mark (1) or (0)
7	d	ii	$\begin{gathered} \mathrm{r}=\frac{\mathrm{qQ}}{2 \times \pi \times \varepsilon_{0} \times \mathrm{m} \times \mathrm{v}^{2}} \\ =\frac{1.60 \times 10^{-19} \times\left(29 \times 1.6 \times 10^{-19}\right)}{2 \times \pi \times 8.85 \times 10^{-12} \times 1.673 \times 10^{-27} \times\left(6 \cdot 0 \times 10^{6}\right)^{2}} \\ \mathrm{r}=2.2 \times 10^{-13} \mathrm{~m} \end{gathered}$	(2) (1)	3	(1/2) for substitution ($1 / 2$) for proton mass data (1) for atomic no. copper data (gives $4.64 \times 10^{-18} \mathrm{C}=\mathrm{Q}_{\mathrm{Cu}}$)

Question		Expected Answer/s	Max Mark	Additional Guidance	
$\mathbf{7}$	d	iii	Strong (nuclear) force.	(1)	$\mathbf{1}$
$\mathbf{7}$	e		Reverse direction of magnetic field.	(1)	$\mathbf{2}$

Question			Expected Answer/s		Max Mark	Additional Guidance
8	a		$\begin{aligned} \mathrm{q} \times \mathrm{V} & =1 / 2 \times \mathrm{m} \times \mathrm{v}^{2} \\ 1.60 \times 10^{-19} \times 2400 & =1 / 2 \times 9.11 \times 10^{-31} \times \mathrm{v}^{2} \\ \mathrm{v}^{2} & =8.43 \times 10^{14} \\ \mathrm{v} & =2.90 \times 10^{7} \mathrm{~ms}^{-1} \end{aligned}$	(1/2) (1/2) (1)	2	Must have both equations.
8	b	i	(Constant) force / acceleration / electric force / electric field in vertical direction / upwards / downwards (Constant) motion / speed in horizontal direction	$(1 / 2)$ $(1 / 2)$	1	
8	b	ii	No (unbalanced) force / field / attraction acting on electron.	(1)	1	
8	c	i	$\begin{aligned} \mathrm{E} & =\frac{\mathrm{V}}{\mathrm{~d}} \\ & =100 / 0.01 \\ & =\left(10^{4} \mathrm{Vm}^{-1}\right) \\ \mathrm{F} & =\mathrm{QE} \\ & =1.60 \times 10^{-19} \times 100 / 0.01 \\ & =1.60 \times 10^{-15} \mathrm{~N} \\ \mathrm{a} & =\frac{\mathrm{F}}{\mathrm{~m}} \\ & =\frac{1.60 \times 10^{-15}}{9 \cdot 11 \times 10^{-31}} \\ \mathrm{a} & =1.76 \times 10^{15} \mathrm{~ms}^{-2} \end{aligned}$	(1/2) (1/2) (1/2) (1/2)	2	
8	c	ii	$\begin{aligned} \mathrm{t} & =\frac{\mathrm{s}_{\mathrm{H}}}{\mathrm{v}_{\mathrm{H}}} \\ & =5.17 \times 10^{-10} \mathrm{~s} \\ \mathrm{v}_{\mathrm{v}} & =\mathrm{u}_{\mathrm{v}}+\mathrm{a}_{\mathrm{v}} \times \mathrm{t} \\ & =0+1.76 \times 10^{15} \times 5.17 \times 10^{-10} \\ \mathrm{v}_{\mathrm{v}} & =9.10 \times 10^{5} \mathrm{~ms}^{-1} \end{aligned}$	(1/2) (1/2) (1/2) (1/2) (1)	3	

Question		Expected Answer/s		Max Mark	Additional Guidance
9	a	$\mathrm{f}=2.4 \mathrm{~Hz}$	(1)	1	
9	b	$\begin{align*} \lambda & =0.5 \mathrm{~m} \\ v & =f \lambda \\ & =2.4 \times 0.5 \\ & =1.2 \mathrm{~ms}^{-1} \tag{1} \end{align*}$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \end{aligned}$	2	
9	c	$y=4 \cdot 3 \times 10^{-2} \sin 2 \pi(2 \cdot 4 t+2 \cdot 0 x)$ (1) (1)	(2)	2	

Question			Expected Answer/s		Max Mark	Additional Guidance
10	a		Fringes produced by interference of light reflected from top and bottom surfaces of the film. Different thicknesses / wavelengths / positions / angles affect colours seen.	$\begin{aligned} & (1) \\ & (1 / 2) \\ & (1 / 2) \end{aligned}$	2	
10	b		For non-reflecting coating, Optical P.D. $=\lambda / 2$ for destructive interference Optical P.D. $=2$ nd 2 nd $=\lambda / 2$ $\begin{equation*} \mathrm{d}=\frac{\lambda}{4 \times \mathrm{n}} \tag{1/22} \end{equation*}$		2	
10	c		$\begin{aligned} 2 \times \mathrm{n} \times \mathrm{d} & =(11 / 2) \times \lambda \\ 2 \times 1.3 \times \mathrm{d} & =1.5 \times 7.80 \times 10^{-7} \\ \mathrm{~d} & =4.50 \times 10^{-7} \mathrm{~m} \end{aligned}$	(1/2) (1/2) (1)	2	$\begin{aligned} & \text { or } \\ & \lambda \text { in material }=7.80 \times 10^{-7} / 1.3 \\ & =6.0 \times 10^{-7} \mathrm{~m},(1 / 2) \\ & \text { so add } 3.0 \times 10^{-7} \mathrm{~m}(1 / 2) \end{aligned}$
10	d	i	$\begin{aligned} \mathrm{E}_{\mathrm{k}} & =1 / 2 \times \mathrm{m} \times \mathrm{v}^{2} \\ 4 \cdot 12 \times 10^{-21} & =1 / 2 \times 1.43 \times 10^{-25} \times \mathrm{v}^{2} \\ \mathrm{v} & =\sqrt{\frac{2 \times 4.12 \times 10^{-21}}{1.43 \times 10^{-25}}} \\ \mathrm{v} & =240 \mathrm{~ms}^{-1} \end{aligned}$	(1/2) (1/2) $(1 / 2)$	3	
			$\begin{aligned} \mathrm{p}_{\mathrm{ru}} & =\mathrm{m} \times \mathrm{v} \\ & =1.43 \times 10^{-25} \times 240 \\ \mathrm{p}_{\mathrm{ru}} & =3.43 \times 10^{-23} \mathrm{~kg} \mathrm{~ms}^{-1} \end{aligned}$	$(1 / 2)$ (1)		

Question			Expected Answer/s			Max Mark	Additional Guidance
10	d	ii	$\mathrm{p}_{\mathrm{ph}}=$ $=$ $\mathrm{p}_{\mathrm{ph}}=$	$\frac{\mathrm{h}}{\lambda}$ $\frac{6 \cdot 63 \times 10^{-34}}{7 \cdot 80 \times 10^{-7}}$ $\begin{equation*} 8.50 \times 10^{-28} \mathrm{~kg} \mathrm{~ms}^{-1} \tag{1} \end{equation*}$	$(1 / 2)$ $(1 / 2)$	2	
10	d	iii	$\begin{aligned} \mathrm{N} \times \mathrm{p}_{\mathrm{ph}} & = \\ \mathrm{N} \times 8 \cdot 50 \times 10^{-28} & = \\ \mathrm{N} & = \end{aligned}$	$\begin{aligned} & \mathrm{p}_{\mathrm{ru}} \\ & 3.43 \times 10^{-23} \\ & 4.04 \times 10^{4} \text { photons } \end{aligned}$	$(1 / 2)$ $(1 / 2)$	1	

[END OF MARKING INSTRUCTIONS]

