2013 Physics (Revised)

Advanced Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2013
The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Physics (Revised) - Advanced Higher

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question.

GENERAL MARKING ADVICE: Physics (Revised) Advanced Higher

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

1. Numerical Marking

(a) The fine divisions of marks shown in the marking scheme may be recorded within the body of the script beside the candidate's answer. If such marks are shown they must total to the mark in the inner margin.
(b) The number recorded should always be the marks being awarded. The number out of which a mark is scored SHOULD NEVER BE SHOWN AS A DENOMINATOR. ($1 / 2$ mark will always mean one half mark and never 1 out of 2 .)
(c) Where square ruled paper is enclosed inside answer books it should be clearly indicated that this item has been considered. Marks awarded should be transferred to the script booklet inner margin and marked G.
(d) The total for the paper should be rounded up to the nearest whole number.
2. Other Marking Symbols which may be used

TICK	Correct point as detailed in scheme, includes data entry.
SCORE THROUGH	Any part of answer which is wrong. (For a block of wrong answer indicate zero marks.) Excess significant figures.
INVERTED VEE	A point omitted which has led to a loss of marks.
WAVY LINE	Under an answer worth marks which is wrong only because a wrong answer has been carried forward from a previous part.
"G"	- Reference to a graph on separate paper. You MUST show a mark on the graph paper and the SAME mark on the script.
"X"	- Wrong Physics
*	Wrong order of marks

No other annotations are allowed on the scripts.

3. General Instructions (Refer to National Qualifications Marking Instructions Booklet)

(a) No marks are allowed for a description of the wrong experiment or one which would not work.

Full marks should be given for information conveyed correctly by a sketch.
(b) Surplus answers: where a number of reasons, examples etc. are asked for and a candidate gives more than the required number then wrong answers may be treated as negative and cancel out part of the previous answer.
(c) Full marks should be given for a correct answer to a numerical problem even if the steps are not shown explicitly. The part marks shown in the scheme are for use in marking partially correct answers.

However, when the numerical answer is given or a derivation of a formula is

 required every step must be shown explicitly.(d) Where 1 mark is shown for the final answer to a numerical problem $1 / 2$ mark may be deducted for an incorrect unit.
(e) Where a final answer to a numerical problem is given in the form 3^{-6} instead of 3×10^{-6} then deduct $1 / 2$ mark.
(f) Deduct $1 / 2$ mark if an answer is wrong because of an arithmetic slip.
(g) No marks should be awarded in a part question after the application of a wrong physics principle (wrong formula, wrong substitution) unless specifically allowed for in the marking scheme - eg marks can be awarded for data retrieval.
(h) In certain situations, a wrong answer to a part of a question can be carried forward within that part of the question. This would incur no further penalty provided that it is used correctly. Such situations are indicated by a horizontal dotted line in the marking instructions.

Wrong answers can always be carried forward to the next part of a question, over a solid line without penalty.

The exceptions to this are:

- where the numerical answer is given
- where the required equation is given.
(i) $1 / 2$ mark should be awarded for selecting a formula.
(j) Where a triangle type "relationship" is written down and then not used or used incorrectly then any partial $1 / 2$ mark for a formula should not be awarded.
(k) In numerical calculations, if the correct answer is given then converted wrongly in the last line to another multiple/submultiple of the correct unit then deduct $1 / 2$ mark.
(1) Significant figures.

Data in question is given to 3 significant figures.
Correct final answer is 8.16 J .
Final answer 8.2 J or $8 \cdot 158 \mathrm{~J}$ or $8 \cdot 1576 \mathrm{~J}$ - No penalty.
Final answer 8 J or $8 \cdot 15761 \mathrm{~J}$ - Deduct $1 / 2$ mark.
Candidates should be penalised for a final answer that includes:

- three or more figures too many
or
- two or more figures too few. ie accept two higher and one lower.

Max $1 / 2$ mark deduction per question. Max $\mathbf{2}^{1} / 2$ deduction from question paper.
(m) Squaring Error

$$
\begin{array}{ll}
E_{K}=1 / 2 m v^{2}=1 / 2 \times 4 \times 2^{2}=4 \mathrm{~J} & \text { Award } 11 / 2 \quad \text { Arith error } \\
E_{K}=1 / 2 m v^{2}=1 / 2 \times 4 \times 2=4 \mathrm{~J} & \text { Award } 1 / 2 \text { for formula. Incorrect substitution. }
\end{array}
$$

The General Marking Instructions booklet should be brought to the markers' meeting.

Physics - Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

	Answers	Mark + comment	
1.	$V=I R$ $7 \cdot 5=1 \cdot 5 R$	Issue $R=5 \cdot 0 \Omega$	Ideal Answer

6. $R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0 \Omega$
7.

$$
R=\frac{V}{I}=4.0 \Omega
$$

(1/2) Formula only
GMI 4 and 1
8.

$$
R=\frac{V}{I}=_\Omega
$$

9.

$$
R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=
$$

\qquad Ω
(11/2) Arithmetic error
GMI 7
(1/2) Formula only
GMI 4 and 1
10.

$$
R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0
$$

11.

$$
R=\frac{V}{I}=\frac{1 \cdot 5}{7 \cdot 5}=5 \cdot 0 \Omega
$$

12.

$$
R=\frac{V}{I}=\frac{75}{1.5}=5 \cdot 0 \Omega
$$

13.

$$
R=\frac{I}{V}=\frac{7 \cdot 5}{1.5}=5.0 \Omega
$$

14.

$$
\begin{aligned}
& V=I R \quad 7 \cdot 5=1 \cdot 5 \times R \\
& R=0 \cdot 2 \Omega
\end{aligned}
$$

15. $V=I R$
$R=\frac{I}{V}=\frac{1 \cdot 5}{7 \cdot 5}=0 \cdot 2 \Omega$
(1/2) Formula only
GMI 20

Data Sheet

Common Physical Quantities

Quantity	Symbol	Value	Quantity	Symbol	Value
Gravitational acceleration on Earth	g	$9.8 \mathrm{~ms}^{-2}$	Mass of electron Charge on electron	m_{e}	$\begin{aligned} & 9.11 \times 10^{-31} \mathrm{~kg} \\ & -1.60 \times 10^{-19} \mathrm{C} \end{aligned}$
Radius of Earth	R_{E}	$6.4 \times 10^{6} \mathrm{~m}$	Mass of neutron	m_{n}	$1.675 \times 10^{-27} \mathrm{~kg}$
Mass of Earth	M_{E}	$6.0 \times 10^{24} \mathrm{~kg}$	Mass of proton	m_{p}	$1.673 \times 10^{-27} \mathrm{~kg}$
Mass of Moon	M_{M}	$7.3 \times 10^{22} \mathrm{~kg}$	Mass of alpha particle	$m_{\text {cx }}$	$6.645 \times 10^{-27} \mathrm{~kg}$
Radius of Moon Mean Radius of	R_{M}	$1.7 \times 10^{6} \mathrm{~m}$	Charge on alpha particle		$3.20 \times 10^{-19} \mathrm{C}$
Moon Orbit		$3.84 \times 10^{8} \mathrm{~m}$	Planck's constant	h	$6.63 \times 10^{-34} \mathrm{~J}$ S
Solar radius		$6.955 \times 10^{8} \mathrm{~m}$	Permittivity of free		
Mass of Sun		$2.0 \times 10^{30} \mathrm{~kg}$ $1.5 \times 10^{11} \mathrm{~m}$	space	ε_{0}	$8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1}$
1 AU	σ	$1.5 \times 10^{11} \mathrm{~m}$ $5.67 \times 10-8 \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$	Permeability of free space	$\mu 0$	$4 \pi \times 10^{-7} \mathrm{H} \mathrm{m}^{-1}$
constant Universal constant			Speed of light in Vacuum	c	$3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
of gravitation	G	$6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$	Speed of sound in air	v	$3.4 \times 10^{2} \mathrm{~m} \mathrm{~s}^{-1}$

Refractive Indices

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K.

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Glycerol	1.47
Glass	1.51	Water	1.33
Ice	1.31	Air	1.00
Perspex	1.49	Magnesium Fluoride	1.38

Spectral Lines

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	$\begin{aligned} & \hline 656 \\ & 486 \\ & 434 \\ & 410 \\ & 397 \\ & 389 \end{aligned}$	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	$\begin{aligned} & \hline 644 \\ & 509 \\ & 480 \\ & \hline \end{aligned}$	Red Green Blue
				Lasers	
			Element	Wavelength/nm	Colour
Sodium	589	Yellow	Carbon dioxide Helium-neon	$\left.\begin{array}{c} 9550 \\ 10590 \\ 633 \end{array}\right\}$	Infrared Red

Properties of selected Materials

$\left.\begin{array}{|l|c|c|c|c|c|c|}\hline \text { Substance } & \begin{array}{c}\text { Density/ } \\ \mathrm{kg} \mathrm{m}^{-3}\end{array} & \begin{array}{c}\text { Melting } \\ \text { Point/K }\end{array} & \begin{array}{c}\text { Boiling } \\ \text { Point/K }\end{array} & \begin{array}{c}\text { Specific Heat } \\ \text { Capacity/ } \\ \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}\end{array} & \begin{array}{c}\text { Specific } \\ \text { Latent Heat } \\ \text { of Fusion/ } \\ \mathrm{Jkg}^{-1}\end{array} & \begin{array}{c}\text { Specific } \\ \text { latent Heat } \\ \text { of }\end{array} \\ \text { Vaporisation } \\ / \mathrm{Jkg}^{-1}\end{array}\right]$

The gas densities refer to a temperature of 273 K and pressure of $1 \cdot 01 \times 10^{5} \mathrm{~Pa}$.

Part Two: Marking Instructions for each Question

	esti	Expected Answer/s	$\begin{gathered} \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Additional Guidance
1	c	When the car exits the loop the driver starts braking at point X . For one particular run the displacement of the car from point X until the car comes to rest at point Y is given by the equation $s=9 \cdot 1 t-3 \cdot 2 t 2$ Sketch a graph to show how the displacement of the car varies with time between points \mathbf{X} and \mathbf{Y}. Numerical values are required on both axes. By differentiation $\begin{gather*} v=9 \cdot 1-6 \cdot 4 \mathrm{t} \\ \text { for } v=0, t=1 \cdot 4(\mathrm{~s}) \tag{1} \end{gather*}$ Max displacement, $\begin{gather*} s=9 \cdot 1 t-3.2 t^{2} \\ s=(9 \cdot 1 \times 1 \cdot 4)-\left(3.2 \times 1 \cdot 4^{2}\right) \\ s=6 \cdot 5(\mathrm{~m}) \tag{1} \end{gather*}$ NB No units required.	3	

Question		Expected Answer/s	Max Mark	Additional Guidance
2	a	The entrance to a building is through a revolving system consisting of 4 doors that rotate around a central axis as shown in Figure 2 A . Figure 2A The moment of inertia of the system about the axis of rotation is $54 \mathbf{~ k g ~ m}^{2}$. When it rotates a constant frictional torque of 25 N m acts on the system. The system is initially stationary. On entering the building a person exerts a constant force F perpendicular to a door at a distance of 1.2 m from the axis of rotation as shown in Figure 2B. Figure 2B The angular acceleration of the system is $\mathbf{2 . 4}$ $\operatorname{rad~s}{ }^{-2}$.		

Question			Expected Answer/s	Max Mark	Additional Guidance
2	a	i	(Cont.) Calculate the magnitude of the applied force F. Unbalanced torque $=\mathrm{I} \alpha$ (1/2) $\begin{equation*} =54 \times 2.4 \tag{1/2} \end{equation*}$ $=130(\mathrm{Nm})$ Applied torque $=129 \cdot 6+25$ $\begin{equation*} =154.6(\mathrm{Nm}) \tag{1/2} \end{equation*}$ Applied torque $=F \times r$ $\begin{align*} 154.6 & =F \times 1 \cdot 2 \tag{1/2}\\ F & =130 \mathrm{~N} \tag{1} \end{align*}$	3	
2	a	ii	The applied force is removed and the system comes to rest in $\mathbf{3 . 6}$ s. Calculate the angular displacement of the door during this time. $\begin{align*} & \alpha=\frac{T}{I}=\frac{(-) 25}{54}=(-) 0 \cdot 46\left(\mathrm{rads}^{-2}\right) \quad(1 / 2 \mathrm{eqn}+ \\ & 1 / 2 \text { answer }) \\ & \omega=\omega_{0}+\alpha \mathrm{t} \\ & 0=\omega_{0}+(-0.46 \times 3.6) \\ & \omega_{0}=1.67\left(\mathrm{rad} \mathrm{~s}^{-1}\right) \tag{1/2}\\ & \text { both equations of motion } \tag{1/22}\\ & \theta=\omega_{0} t+1 / 2 \alpha t^{2} \\ & =(1.67 \times 3.6)+\left(0.5 \times-0.46 \times 3.6^{2}\right) \\ & =3.0 \mathrm{rad} \end{align*}$	3	

Question		Expected Answer/s	Max Mark	Additional Guidance
$\mathbf{3}$		(Cont.) 2 marks The student has demonstrated a reasonable understanding of the physics involved and has made some statements) which is/are relevant to the situation, showing that the physics within the problem is understood.	3 marks The maximum available mark would be awarded to a student who has demonstrated a good understanding of the physics involved. The student has demonstrated a good comprehension of the physics of the situation and has provided a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the appropriate application of these to the problem. This does not mean the answer has to be what might be termed 'excellent' or 'complete'.	

Question		Expected Answer/s		Max Mark	Additional Guidance
The world lines for three objects A, B and C are					
shown in Figure 4A.					

Question		Expected Answer/s	Max	Additional Guidance
4	c	Part of an astronaut's training is to experience the effect of "weightlessness". This can be achieved inside an aircraft that follo Figure 4 Use the equivalence principle to explain how this The effects of gravity are exactly equivalent to the effect of acceleration. (1) The plane accelerating downwards exactly "cancels out" the effects of being in a gravitational field (1) Or Plane and passengers are falling at the same rate due to the gravitational field (are in "free fall").	a pat weigh (2)	own in Figure 4C. s" is achieved.

	est	Expected Answer/s	Max Mark	Additional Guidance
5	b	Estimate the radius in metres of Betelgeuse. $\begin{align*} & \text { Radius }=\text { No. of } \mathrm{SR} \times 1 \mathrm{SR} \tag{1/2}\\ & \text { Radius }=1000 \times 6.955 \times 10^{8} \tag{1/2}\\ & \text { Radius }=6.955 \times 10^{11} \mathrm{~m} \tag{1} \end{align*}$	2	Accept 900SR-1000SR 900 gives $6.260 \times 10^{11} \mathrm{~m}$ 950 gives $6.607 \times 10^{11} \mathrm{~m}$
5	c	Ross 128 and Barnard's Star have a similar temperature but Barnard's Star has a slightly greater luminosity. What other information does this tell you about the two stars? Bernard's star larger in size (or converse) (1)	1	Ross 128 has a greater lifetime than Bernard's Star (or converse) Accept greater mass

	est	Expected Answer/s	Max Mark	Additional Guidance
5	d	During the life cycle of the Sun its position in the H-R diagram is expected to change as shown by the arrowed line in Figure 5B. Figure 5B Describe the changes that occur to the Sun during its expected life cycle. Sun is main sequence, hydrogen burning/ fusing star Or Thermal pressure balances gravitational Fuel/hydrogen used up, thermal pressure greater than gravity, star expands (to Red Giant) Loses mass then (inert) core cools, becomes White Dwarf Or Sun will become White Dwarf / black dwarf because of its mass.	Sun) \qquad - 3	

Question			Expected Answer/s	Max Mark	Additional Guidance
5	e	i	Hydrogen fusion in a star is a result of a proton-proton chain. The process eventually results in the production of a helium-4 nucleus. Show that the percentage loss of mass from four protons to one helium-4 nucleus is $\mathbf{0 . 7 \%}$. $\begin{align*} & 4 \text { protons' mass }=4 \times 1.673 \times 10^{-27} \tag{1/2}\\ & =6.692 \times 10^{-27} \end{align*}$ $\begin{equation*} \text { Mass of He nucleus }=6.645 \times 10^{-27} \mathrm{~kg} \tag{1/2} \end{equation*}$ mass to energy $6.692 \times 10^{-27}-6.645 \times 10^{-27}$ $\begin{equation*} =0.047 \times 10^{-27} \mathrm{~kg} \tag{1/2} \end{equation*}$ $\begin{equation*} \text { Percentage loss }=0.047 / 6.692 \times 100 \tag{1/2} \end{equation*}$ $=0.7 \%$ SHOW ME QUESTION	2	
5	e	ii	The luminosity of the Sun is $\mathbf{3 . 8} \times 10^{26} \mathrm{~W}$. Using Einstein's energy equation, show that the mass of hydrogen lost per second in the Sun is $4.2 \times 10^{9} \mathrm{~kg}$. In one second, $\begin{align*} & \mathrm{E}=\mathrm{mc}^{2} \tag{1/2}\\ & 3.8 \times 10^{26}=\mathrm{m}\left(3 \times 10^{8}\right)^{2} \tag{1/2}\\ & \left(\mathrm{~m}=4.2 \times 10^{9} \mathrm{~kg}\right) \end{align*}$	1	
5	e	iii	Estimate the lifetime of the Sun in seconds. Assume the mass of hydrogen in the Sun to be the same as the mass of the Sun. Lifetime $\begin{align*} & =2.0 \times 10^{30} / 4.2 \times 10^{9} \tag{1/2}\\ & =4.8 \times 10^{20}(\mathrm{~s}) \tag{1/2} \end{align*}$	1	Accept $\begin{array}{\|l} 4.762 \times 10^{20} \mathrm{~s} \\ 4.76 \times 10^{20} \mathrm{~s} \\ 5 \times 10^{20} \mathrm{~s} \end{array}$

	uest	Expected Answer/s	Max Mark	Additional Guidance
5	f	The "no greenhouse" temperature of a planet is the average surface temperature of a planet in the absence of any greenhouse effect. The "no greenhouse" temperature of a planet in kelvin in given by $\boldsymbol{T}=\mathbf{2 8 0}\left(\frac{(1-\text { reflectivit })}{d^{2}}\right)^{\frac{1}{4}}$ where d is the distance from the Sun in astronomical units (AU). The reflectivity is a measure of the percentage of energy reflected from the surface, 1 represents 100% reflectivity and 0 represents no reflectivity. Mercury has a reflectivity of 0.12 and is $5.8 \times$ $10^{10} \mathrm{~m}$ from the Sun. Calculate its "no greenhouse" temperature. $\text { Reflectivity }=0 \cdot 12$ $\begin{equation*} \mathrm{d}=0.387 \mathrm{AU} \tag{1/2} \end{equation*}$ $\left(1 \mathrm{AU}=1.5 \times 10^{11} \mathrm{~m}\right)$ $T=280\left(\frac{1-\text { reflectivity }}{d^{2}}\right)^{\frac{1}{4}}$ $\begin{equation*} T=280\left(\frac{1-0.12}{(0.387)^{2}}\right)^{\frac{1}{4}} \tag{1/22} \end{equation*}$ $\begin{equation*} =440 \mathrm{~K} \tag{1} \end{equation*}$	2	

	est	Expected Answer/s	Max Mark	Additional Guidance
7	a	A "saucer" swing consists of a bowl shaped seat of mass 1.2 kg suspended by four ropes of negligible mass as shown in Figure 7A. Figure 7A When the empty seat is pulled back slightly from its rest position and released its motion approximates to simple harmonic motion. Define the term simple harmonic motion. Acceleration/unbalanced force is directly proportional to displacement And in the opposite direction/directed towards the equilibrium position.	1	

	est		Expected Answer/s	Max Mark	Additional Guidance
7	b	ii	Calculate the velocity of the seat when its displacement is $\mathbf{0 . 1 0 ~ m}$. $\begin{align*} v & =(\pm) \omega \sqrt{A^{2}-y^{2}} \tag{1/2}\\ & =(\pm) 2 \cdot 1 \sqrt{0 \cdot 29^{2}-0 \cdot 10^{2}} \tag{1/2}\\ & =(\pm) 0.57 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	2	
7	c		Calculate the displacement of the seat when the kinetic energy and potential energy are equal. $\begin{align*} &\left(E_{k}=E_{p}\right) \\ & 1 / 2 m \omega^{2} A^{2}-1 / 2 m \omega^{2} y^{2}=1 / 2 m \omega^{2} y^{2} \\ &(1 / 2) \text { for } \mathbf{E}_{\mathbf{k}} \quad(1 / 2) \text { for } \mathbf{E}_{\mathbf{p}} \\ & \text { OR } \quad 1 / 2 m \omega^{2} \mathrm{~A}^{2}=m \omega^{2} y^{2} \\ & 1 / 2 A^{2}=y^{2} \\ & y^{2}=0.5 \times 0.29^{2} \quad(1 / 2) \\ & y=0.21 \mathrm{~m} \tag{1/2} \end{align*}$	3	

Question		Expected Answer/s	Max Mark	Additional Guidance
8	a	High quality optical flats made from glass are often used to test components of optical instruments. A high quality optical flat has a very smooth and flat surface. During the manufacture of an optical flat, the quality of the surface is tested by placing it on top of a high quality flat. This results in a thin air wedge between the flats as shown in Figure 8A. The thickness d of the air wedge is $\mathbf{6 . 2} \times 10^{-5} \mathrm{~m}$. Monochromatic light is used to illuminate the flats from above. When viewed from above using a travelling microscope, a series of interference fringes is observed as shown in Figure 8B. Figure 8B Calculate the wavelength of the monochromatic light. $\begin{align*} & \Delta x=\frac{1 \cdot 2 \times 10^{-3}}{5}=2 \cdot 4 \times 10^{-4} \tag{1}\\ & \Delta x=\frac{\lambda \mathrm{L}}{2 \mathrm{~d}} \tag{1/2}\\ & 2.4 \times 10^{-4}=\frac{\lambda \times 0 \cdot 05}{2 \times 6 \cdot 2 \times 10^{-5}} \\ & \lambda=6.0 \times 10^{-7} \mathrm{~m} \tag{1} \end{align*}$	$\xrightarrow{\text { th }}$	to scale wedge

	est	Expected Answer/s	Max Mark	Additional Guidance
8	b	A second flat is tested using the same method as in part (a). This flat is slightly curved as shown in Figure 8C. Figure 8C Draw the fringe pattern observed. Accept Spacing of fringes decreases from left to right or Width of fringes decreases from left to right.	1	

Question			Expected Answer/s	Max Mark	Additional Guidance
8	c	i	Good quality optical flats often have a nonreflecting coating of magnesium fluoride applied to the surface as shown in Figure 8D. Figure 8D With the aid of a diagram explain fully how the coating reduces reflections from the flat for monochromatic light. The two reflected rays interfere destructively (1)	.	Phase change not required in answer but if phase change on reflection mentioned both surfaces must be considered and correct or 1 mark max for correct diagram.
8	c	ii	Calculate the minimum thickness of magnesium fluoride required to make the flat nonreflecting for yellow light from a sodium lamp. $\begin{align*} d & =\frac{\lambda}{4 \mathrm{n}} \tag{1/2}\\ & =\frac{589 \times 10^{-9}}{4 \times 1.38} \tag{1/2}\\ & =1.07 \times 10^{-7} \mathrm{~m} \tag{1} \end{align*}$	2	

	sti		Expected Answer/s	Max Mark	Additional Guidance
9	b	i	A second wave with double the frequency travels in the same direction through the water. This wave transfers five times the energy of the wave in part (a). Calculate: the speed of this wave; $\begin{align*} \lambda & =0.25 \mathrm{~m} \\ v & =f \lambda \\ & =5.0 \times 0.25 \\ & =1.3 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	1	Or since speed is the same as in (a) $\begin{aligned} \mathrm{v} & =\mathrm{f} \lambda \\ & =2.5 \times 0.5 \\ & =1.3 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ Accept $1.25 \mathrm{~m} \mathrm{~s}^{-1}$
9	b	ii	the amplitude of this wave. $\begin{equation*} \frac{I_{1}}{A_{1}^{2}}=\frac{I_{2}}{A_{2}^{2}} \tag{1/2} \end{equation*}$ Or I proportional to A^{2} $\begin{align*} & \frac{I_{1}}{0 \cdot 03}=\frac{5 I_{1}}{A_{2}{ }^{2}} \tag{1/2}\\ & \mathrm{~A}_{2}=0.07 \mathrm{~m} \tag{1} \end{align*}$	2	

Question			Expected Answer/s The Bohr model of the atom suggests that the angular momentum of an electron orbiting a nucleus is quantised. A hydrogen atom consists of a single electron orbiting a single proton. Figure 10A shows some of the possible orbits for the electron in a hydrogen atom.		Max Mark	Addit
10						

	esti	Expected Answer/s	$\begin{gathered} \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Additional Guidance
10	a	Calculate the speed of the electron in orbit number 3. $\begin{align*} & m v r=\frac{n h}{2 \pi} \tag{1/2}\\ & 9.11 \times 10^{-31} \times v \times 4.8 \times 10^{-10}=\frac{3 \times 6 \cdot 63 \times 10^{-34}}{2 \times \pi} \tag{1/2}\\ & v=7.2 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1} \end{align*}$ Rounding might give $7.3 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$	2	Alternatively $\begin{align*} & \frac{m v^{2}}{r}=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{o} r^{2}} \\ & \mathrm{v}^{2}=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{\mathrm{o}} m r} \tag{1}\\ & =\frac{\left(1 \cdot 6 \times 10^{-19}\right)^{2}}{4 \times \pi \times 8 \cdot 85 \times 10^{-12} \times 9 \cdot 11 \times 10^{-31} \times 4 \cdot 8 \times 10^{-10}} \\ & \quad v=7 \cdot 3 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1} \end{align*}$
10	b	Calculate the de Broglie wavelength associated with this electron. $\begin{align*} \lambda & =\frac{h}{p} \\ & =\frac{h}{m v} \tag{1/2}\\ & =\frac{6 \cdot 63 \times 10^{-34}}{9 \cdot 11 \times 10^{-31} \times 7 \cdot 2 \times 10^{5}} \tag{1/2}\\ & =1.0 \times 10^{-9} \mathrm{~m} \tag{1} \end{align*}$	2	

Question			Expected Answer/s	Max	Additional Guidance
10	c	ii	(Cont.) Greatest probability of being found at approx. $1 \times 10^{-10} \mathrm{~m} /$ at the peak. We cannot predict exactly the position of the electron No probability of electron being at a radius greater than $5 \times 10^{-10} \mathrm{~m}$ Greater probability of electron being at a lower orbital radius than a higher orbital radius No probability that an electron orbits at a radius of 0 m Any 2	2	Quantum mechanics allows the probability that an electron will be found at a particular place at a particular time to be calculated

	est	Expected Answer/s	Max Mark	Additional Guidance
11	b	The pump is moved during maintenance and as a result the direction of the magnetic field is changed so that it is no longer perpendicular to the current. What effect does this have on the rate of flow of sodium passing through the pump? You must justify your answer. Flow rate will fall $\begin{equation*} F=B I l \sin \theta \text { explanation } \tag{1/2} \end{equation*}$ Force will be reduced	2	
11	c	An engineer must install a long, straight, current carrying wire close to the pump and is concerned that the magnetic induction produced may interfere with the safe working of the pump. The wire is 750 mm from the pump and carries a current of 0.60 A . Show by calculation that the magnetic induction at this distance is negligible. $\begin{align*} & B=\frac{\mu \circ I}{2 \pi r} \tag{1/2}\\ & B=\frac{4 \pi \times 10^{-7} \times 0.6}{2 \times \pi \times 0.75} \tag{1/2}\\ & B=1.6 \times 10^{-7} \mathrm{~T} \tag{1} \end{align*}$	2	

	est	Expected Answer/s	$\begin{gathered} \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Additional Guidance
13		(Cont.) Figure 13		
13	a	Determine the time constant from the graph. $\begin{equation*} 0.37 \tag{1} \end{equation*}$ $0.37 \times 12=4.44 \mathrm{~V}$. Reading 4.44 V from graph (accept 4.4-4.5V) This gives 9.5 ms from graph	2	Accept ($9 \cdot 0-10) \mathrm{ms}$
13	b	Calculate the resistance of resistor R. $t=R C$ $\begin{equation*} \mathrm{RC}=9.5 \times 10^{-3} \tag{1/2} \end{equation*}$ $\begin{equation*} \mathrm{R} \times 385 \times 10^{-6}=9.5 \times 10^{-3} \tag{1/2} \end{equation*}$ $\begin{equation*} \mathrm{R}=25 \Omega \tag{1} \end{equation*}$	2	Follow through consistent with (a)

Question			Expected Answer/s	$\begin{gathered} \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Additional Guidance
14	a	i	A 0.40 H inductor of negligible resistance is connected in a circuit as shown in Figure 14. Switch S is initially open. Figure Sketch a graph of current against time after the switch S is closed. Numerical values are required on the current axis.	S 2	
		ii	Explain fully the shape of the graph. Changing magnetic field Produces a back e.m.f in the inductor	2	

	est	Expected Answer/s	Max Mark	Additional Guidance
14	b	Calculate the initial rate of change of current when switch S is closed. $\begin{align*} & E=-L \frac{d I}{d t} \tag{1/2}\\ & E=-9 \cdot 0(\mathrm{~V}) \\ & \frac{d I}{d t}=\frac{E}{-L}=\frac{-9 \cdot 0}{-0 \cdot 40} \tag{1/2}\\ & \frac{d I}{d t}=23 \mathrm{~A} \mathrm{~s}^{-1} \tag{1} \end{align*}$	2	Value comes as $22.5 \mathrm{~A} \mathrm{~s}^{-1}$

Figure 15B

Question		Expected Answer/s	Max Mark	Additional Guidance
15	a	Show that the resonant frequency f_{0} is given by $f_{\mathrm{o}}=\frac{1}{2 \pi \sqrt{L C}}$ $2 \pi f_{o} L=\frac{1}{2 \pi f_{o} C} \quad(1 / 2) \text { for both eqns }+(1 / 2) \text { equality }$	1	
15	b	The capacitance of \mathbf{C} is $\mathbf{2 \cdot 0} \boldsymbol{\mu} \mathrm{F}$. Calculate the inductance of L. $\begin{align*} & f_{\mathrm{o}}=25000 \tag{1/2}\\ & f_{\mathrm{o}}=\frac{1}{2 \pi \sqrt{L C}} \\ & 25000=\frac{1}{2 \pi \sqrt{L \times 2 \times 10^{-6}}} \tag{1/2}\\ & L=2.0 \times 10^{-5} \mathrm{H} \tag{1} \end{align*}$	2	
15	c	The student wants to change the design of this circuit in order to double the resonant frequency. Describe, in detail, a change the student could make to achieve this. Reduce L or reduce C (1) by a factor of $4\left(\times^{1 / 4}\right)$ (1)	2	

	es	Expected Answer/s	Max Mark	Additional Guidance
16	a	A student is investigating polarisation of waves. State what is meant by plane polarised light. In plane polarised light (the electric field vector of the light) vibrates/oscillates in one plane.	1	
16	b	While doing some background reading the student discovers that the Brewster angle i_{p} for the liquid solvent triethylamine is given as $54 \cdot 5^{\circ}$. Explain using a diagram what is meant by the Brewster angle.		1 mark for identifying the angle between the reflected and refracted ray as 90° angle. Second mark is dependent on getting the first mark correct. 90° must be marked. 1 mark for Brewster Angle (either incident or reflected angle)

