## 2015 Physics (Revised)

## Advanced Higher

## Finalised Marking Instructions

## © Scottish Qualifications Authority 2015

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purpose.

## COMMON PHYSICAL QUANTITIES



## REFRACTIVE INDICIES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K.

| Substance | Refractive index | Substance | Refractive index |
| :--- | :---: | :--- | :---: |
| Diamond | 2.42 | Glycerol | 1.47 |
| Glass | 1.51 | Water | 1.33 |
| Ice | 1.31 | Air | 1.00 |
| Perspex | 1.49 | Magnesium Fluoride | 1.38 |

## SPECTRAL LINES

| Element | Wavelength/nm | Colour | Element | Wavelength/nm | Colour |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Hydrogen | $\begin{aligned} & \hline 656 \\ & 486 \\ & 434 \end{aligned}$ | Red <br> Blue-green <br> Blue-violet <br> Violet <br> Ultraviolet <br> Ultraviolet | Cadmium | $\begin{aligned} & \hline 644 \\ & 509 \\ & 480 \\ & \hline \end{aligned}$ | Red Green Blue |
|  | 410 |  | Lasers |  |  |
|  | $\begin{aligned} & 397 \\ & 389 \end{aligned}$ |  | Element | Wavelength/nm | Colour |
| Sodium | 589 | Yellow | Carbon dioxide <br> Helium-neon | $\left.\begin{array}{r} 9550 \\ 10590 \\ 633 \end{array}\right\}$ | Infrared <br> Red |

## PROPERTIES OF SELECTED MATERIALS

$\left.\begin{array}{|l|c|c|c|c|c|c|}\hline \text { Substance } & \begin{array}{c}\text { Density/ } \\ \mathrm{kg} \mathrm{m}^{-3}\end{array} & \begin{array}{c}\text { Melting } \\ \text { Point/K }\end{array} & \begin{array}{c}\text { Boiling } \\ \text { Point/K }\end{array} & \begin{array}{c}\text { Specific Heat } \\ \text { Capacity/ } \\ \mathrm{J} \mathrm{kg}^{-1} \mathrm{~K}^{-1}\end{array} & \begin{array}{c}\text { Specific } \\ \text { Latent Heat } \\ \text { of Fusion/ } \\ \mathrm{J} \mathrm{kg}^{-1}\end{array} & \begin{array}{c}\text { Specific } \\ \text { Latent Heat } \\ \text { of }\end{array} \\ \text { Vaporisation } \\ / \mathrm{J} \mathrm{kg}^{-1}\end{array}\right]$

The gas densities refer to a temperature of 273 K and pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.

Part Two: Marking Instructions for each Question


| Question |  |  | Expected Answer/s | $\begin{gather*} \text { Max } \\ \text { Mark } \tag{1/2} \end{gather*}$ | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | d | ii |  | 3 <br> (13) |  |
| 2 | a |  | Massive objects curve spacetime <br> Other objects follow a curved path through this (distorted) spacetime | 2 | The Earth curves spacetime (because of its mass) <br> The moon follows a geodesic (1) Classical version |
| 2 | b | i | Curved path around massive object (curve must be shown) | 1 <br> Earth |  |
| 2 | b | ii | light beam from apparent position to observer | 1 |  |
| 2 | c |  | B <br> Time passes more slowly at lower altitudes (in a gravitational field). <br> or <br> Lower gravitational field strength at higher altitude. | 2 <br> (6) | Must have justification for first mark. |




| Question |  |  | Expected Answer/s | $\begin{gathered} \text { Max } \\ \text { Mark } \end{gathered}$ | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | a | i | $\left\lvert\, \begin{align*} & \mathrm{L}=1 \times 10^{-2} \text { solar luminosities (from diagram) }(1 / 2) \\ & \mathrm{L}=1 \times 10^{-2} \times 3.9 \times 10^{26}=3.9 \times 10^{24}(\mathrm{~W}) \quad(1 / 2) \tag{1/2} \end{align*}\right.$ | 1 |  |
| 5 | a | ii | $\begin{align*} & \mathrm{T}=3000 \mathrm{~K} \text { (from diagram) }  \tag{1/2}\\ & L=4 \pi r^{2} \sigma T^{4}  \tag{1/2}\\ & 3.9 \times 10^{24}=4 \pi \mathrm{r}^{2} \times 5.67 \times 10^{-8} \times 3000^{4}  \tag{1}\\ & \mathrm{r}=2.6 \times 10^{8} \mathrm{~m} \\ & =3 \times 10^{8} \mathrm{~m} 1 \text { s.f. } \end{align*}$ |  |  |
| 5 | a | iii | Difficult scale to read/information from diagram can only be read to 1 s.f. | 1 |  |
| 5 | b | i | $\begin{align*} & f_{\text {peak }}=\frac{2 \cdot 8 k_{b} \mathrm{~T}}{h} \\ & \mathrm{~T}=3000 \mathrm{~K}  \tag{1/2}\\ & f_{\text {peak }}=\frac{2 \cdot 8 \times 1 \cdot 38 \times 10^{-23} \times 3000}{6 \cdot 63 \times 10^{-34}}  \tag{1/2}\\ & f_{\text {peak }}=2 \times 10^{14} \mathrm{~Hz} \tag{1} \end{align*}$ | 2 |  |
| 5 | b | ii | $\begin{align*} & v=f \lambda  \tag{1/2}\\ & 3.0 \times 10^{8}=f \times 1.9 \times 10^{-3}  \tag{1/2}\\ & f=1.6 \times 10^{11}(\mathrm{~Hz})  \tag{1/2}\\ & f_{\text {peak }}=\frac{2 \cdot 8 k_{b} \mathrm{~T}}{h} \\ & 1.6 \times 10^{11}=\frac{2.8 \times 1 \cdot 38 \times 10^{-23} \mathrm{~T}}{6.63 \times 10^{-34}}  \tag{1/2}\\ & \mathrm{~T}=2.7 \mathrm{~K} \tag{1} \end{align*}$ | 3 |  |
| 5 | c |  | $\begin{align*} & \mathrm{M}_{\text {black hole }}=2 \cdot 0 \times 10^{30} \times 1 \cdot 0 \times 10^{-10}=2 \cdot 0 \times 10^{20}(\mathrm{~kg}) \\ & \mathrm{r}_{\text {Schwarrschild }}=\frac{2 \mathrm{GM}}{\mathrm{c}^{2}}  \tag{1}\\ & \mathrm{r}_{\text {schwarsschild }}=\frac{2 \times 6 \cdot 67 \times 10^{-11} \times 2 \cdot 0 \times 10^{20}}{\left(3 \cdot 0 \times 10^{8}\right)^{2}}  \tag{1/2}\\ & \mathrm{r}_{\text {schwarsschild }}=3 \cdot 0 \times 10^{-7} \mathrm{~m} \tag{1} \end{align*}$ | 3 <br> (12) |  |


| Question |  |  | Expected Answer/s | Max | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | a | i | Force acting on (acceleration of) object is directly proportional to and in the opposite direction to its displacement. (from equilibrium) <br> Mark is 1 or 0 . | 1 |  |
| 6 | a | ii | $\begin{align*} y & =\mathrm{A} \sin \omega t \\ \frac{d y}{d t} & =\mathrm{A} \omega \cos \omega \mathrm{t}  \tag{1/2}\\ \frac{d^{2} y}{d t^{2}} & =-\mathrm{A} \omega^{2} \sin \omega \mathrm{t}  \tag{1/2}\\ \frac{d^{2} y}{d t^{2}} & =-\omega^{2} \mathrm{y} \tag{1} \end{align*}$ | 2 |  |
| 6 | a | iii | (Cos used when at $t=0$ ) displacement is a maximum (A). | 1 |  |
| 6 | b | i | $\begin{align*} & \omega=\frac{2 \pi}{T} \text { or } \omega=2 \pi f  \tag{1/2}\\ & \omega=\left(\frac{2 \pi}{0 \cdot 50}=\right) 4 \pi(=12 \cdot 6)\left(\mathrm{rad} \mathrm{~s}^{-1}\right)  \tag{1/2}\\ & v=( \pm) \omega \sqrt{\mathrm{A}^{2}-\mathrm{y}^{2}}  \tag{1/2}\\ & \mathrm{v}=( \pm) 4 \pi \sqrt{0 \cdot 05^{2}-0^{2}}  \tag{1/2}\\ & v=0.63 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$ | 3 | Alternative : differentiate $\begin{align*} & y=A \sin \omega t \\ & v=A \omega \cos \omega t  \tag{1/2}\\ & =0.05 \times 4 \pi \times \cos (0.5 \times 4 \pi)  \tag{1/2}\\ & =0.63 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$ $\begin{align*} v_{\max } & =A \omega  \tag{1/2}\\ & =0.05 \times 4 \pi  \tag{1/2}\\ & =0.63 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$ |
| 6 | b | ii | $\begin{align*} \mathrm{a} & =( \pm) \omega^{2} \mathrm{y} \quad \text { or } \quad( \pm) \omega^{2} \mathrm{~A}  \tag{1/2}\\ & =(4 \pi)^{2} \times 0.050  \tag{1/2}\\ & =( \pm) 7.9 \mathrm{~m} \mathrm{~s}^{-2} \tag{1} \end{align*}$ | 2 |  |
| 6 | c |  |  | 1 <br> (10) |  |


| Question |  |  | Expected Answer/s | $\begin{gathered} \text { Max } \\ \text { Mark } \end{gathered}$ | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | a | i | $\begin{align*} & \lambda=\frac{h}{p} \\ & \lambda=\frac{h}{m v} \\ & \lambda=\frac{6 \cdot 63 \times 10^{-34}}{9 \cdot 11 \times 10^{-31} \times 3 \cdot 2 \times 10^{6}}  \tag{1/2}\\ & \lambda=2 \cdot 3 \times 10^{-10}(\mathrm{~m})  \tag{1/2}\\ & \hdashline-\cdots-\cdots-\cdots \frac{\mathrm{h}}{4 \pi}  \tag{1/2}\\ & 2 \cdot 3 \times 10^{-10} \Delta p \geq \frac{6 \cdot 63 \times 10^{-34}}{4 \pi}  \tag{1/2}\\ & \Delta p \geq 2 \cdot 3 \times 10^{-25} \mathrm{~kg} \mathrm{~ms}^{-1}(\mathrm{Ns}) \tag{1} \end{align*}$ | 3 |  |
| 7 | a | ii | $\lambda$ reduced (or f increased) for X-rays, or $>\mathrm{E}$ transferred <br> $\Delta x$ reduced for X-rays <br> Since $\Delta x \Delta p \geq \frac{\mathrm{h}}{4 \pi}$ <br> $\Delta p$ increases | 2 |  |
| 7 | b |  | Since $\begin{equation*} \Delta E \Delta t \geq \frac{\mathrm{h}}{4 \pi} \tag{1} \end{equation*}$ <br> Borrowing energy for a short period of time allows particles to escape | 2 <br> (7) |  |


| Question |  |  | Expected Answer/s | Max | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | a | i | Two sets of coherent waves are necessary (for an interference pattern) or (Interference patterns can be produced by) Division of wavefront. | 1 |  |
| 8 | a | ii | $\begin{align*} & \left(x=\frac{L}{6}\right)=0 \times 011(\mathrm{~m}) \\ & \Delta x=\frac{\lambda D}{d} \\ & 0 \cdot 011=\frac{\lambda \times 4.250}{0 \cdot 25 \times 10^{-3}}  \tag{1/2}\\ & \lambda=6.5 \times 10^{-7} \mathrm{~m} \tag{1} \end{align*}$ | 3 |  |
| 8 | a | iii | $\%$ unc in $D=\frac{0 \cdot 005}{4 \cdot 250} \times 100=0 \cdot 12 \%$ <br> $\%$ unc in $L=\frac{2}{67} \times 100=3 \cdot 0 \%$ <br> $\%$ unc in $d=\frac{0 \cdot 01}{0 \cdot 25} \times 100=4 \cdot 0 \%$ <br> Total $\%$ unc $=\left(3 \cdot 0^{2}+4 \cdot 0^{2}\right)^{1 / 2}$ $\begin{equation*} =5.0 \% \tag{1/2} \end{equation*}$ <br> Absolute unc $=0.05 \times 6.5 \times 10^{-7}$ $\begin{equation*} =3 \times 10^{-8} \mathrm{~m} \tag{1} \end{equation*}$ | 3 |  |
| 8 | b |  | $\%$ uncertainty in $\lambda$ is greater <br> $L$ (or $\Delta x$ ) will be less <br> or <br> \% uncertainty in $L$ (or $\Delta x$ ) will be greater | 2 <br> (9) |  |


| Question |  |  | Expected Answer/s | Max | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | a | i | Force acts on particle at right angles to the direction of its velocity/motion <br> or <br> a central force on particle. | 1 |  |
| 9 | a | ii | $\frac{m v^{2}}{r}=B q v$ <br> $(1 / 2)$ for both equations and $(1 / 2)$ for equality $\begin{align*} & r=\frac{m v}{B q} \\ & r=\frac{1 \cdot 673 \times 10^{-27} \times v}{B \times 1 \cdot 6 \times 10^{-19}}  \tag{1/2}\\ & r=\frac{1 \cdot 05 \times 10^{-8} v}{B} \tag{1/2} \end{align*}$ | 2 |  |
| 9 | b |  | (Component of) velocity at right angles to field $/ v$ $\sin \theta$, results in circular motion/central force. (1) (Component of) velocity parallel to field $/ v \cos \theta$ is constant/no unbalance force (in this direction). (1) | 2 |  |
| 9 | c | i | $\begin{equation*} f=4.0 \mathrm{~Hz}, T=1 / f=0.25 \mathrm{~s} \tag{1/2} \end{equation*}$ <br> time between mirror points $=0.125 \mathrm{~s}$ $\begin{align*} d & =v t  \tag{1/2}\\ & =1.2 \times 10^{7} \times 0.125  \tag{1/2}\\ & =1.5 \times 10^{6} \mathrm{~m} \end{align*}$ | 3 |  |
| 9 | c | ii | Magnetic field strength has decreased. | 1 |  |
| 9 | c | iii | $\begin{align*} & r=\frac{1 \cdot 05 \times 10^{-8} v}{B}  \tag{1/2}\\ & 1 \cdot 0 \times 10^{4}=\frac{1.05 \times 10^{-8} \times 1.2 \times 10^{7}}{B}  \tag{1/2}\\ & \quad B=1.3 \times 10^{-5} \mathrm{~T} \tag{1} \end{align*}$ | 2 <br> (11) |  |


| Question |  |  | Expected Answer/s | $\begin{gathered} \text { Max } \\ \text { Mark } \end{gathered}$ | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | a | i | Force exerted per (unit) charge is constant at any point in the field. | 1 |  |
| 10 | a | ii | $\mathrm{E}=$ gradient of line <br> or $\begin{align*} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}}  \tag{1/2}\\ & =\frac{3000-1000}{0 \cdot 124-0 \cdot 044}  \tag{1/2}\\ & =25000 \mathrm{~V} \mathrm{~m}^{-1} \tag{1} \end{align*}$ <br> (Care with units, $0.025 \mathrm{kVmm}^{-1}$ correct) | 2 |  |
| 10 | a | iii | $\begin{align*} & E=\frac{V}{d}  \tag{1/2}\\ & 25000=\frac{5000}{\mathrm{~d}}  \tag{1/2}\\ & \mathrm{~d}=0 \cdot 20 \mathrm{~m}(200 \mathrm{~mm}) \tag{1} \end{align*}$ | 2 |  |
| 10 | a | iv | Any suitable answer eg <br> - Systematic uncertainty in measuring $d$ or $V$ <br> - Alignment of metre stick <br> - The flame has a finite thickness so cannot get exactly to the zero point. <br> - Factors causing field to be non-uniform. <br> - A p.d. across the resistor for all readings. <br> - Poor calibration of instruments measuring $V$ or $d$. | 1 |  |
| 10 | b |  | Deflection is less  <br> E is less $(\mathbf{1})$ <br> Force/acceleration is less $(1 / 2)$ <br>  $(1 / 2)$ | 2 $(8)$ |  |



| Question |  |  | Expected Answer/s | Max | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | a | i | Circuit must be able to make required measurements as shown or zero marks. <br> Variable frequency supply, inductor, ammeter in series Voltmeter in parallel with supply to monitor constant voltage | 2 |  |
| 12 | a | ii | $\begin{array}{llllll}k \text { values are } & 5.9 & 6.1 & 6.1 & 5.8 & 6.0\end{array}$ <br> All k values correct <br> ( $1^{1 / 2}$ ) <br> I inversely proportional to f | 2 |  |
| 12 | b | i | $\begin{align*} V_{s} & =20(\mathrm{~V}) .  \tag{1/2}\\ V_{R} & =20-9  \tag{1/2}\\ & =11 \mathrm{~V} \tag{1} \end{align*}$ | 2 |  |
| 12 | b | ii | $\begin{align*} & E=-L d I / d t  \tag{1/2}\\ & -4 \cdot 2=-3 \times d I / d t  \tag{1/2}\\ & d I / d t=1.4 \mathrm{~A} \mathrm{~s}^{-1} \tag{1} \end{align*}$ | 2 |  |
| 12 | b | iii | Rate of change of current/magnetic field is at its maximum | 1 |  |


| Question |  |  | Expected Answer/s | $\begin{gathered} \text { Max } \\ \text { Mark } \end{gathered}$ | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | c | i | for eqns + for equality $\begin{align*} & 2 \pi f_{0} L=\frac{1}{2 \pi f_{0} C}  \tag{1}\\ & f_{0}=\frac{1}{2 \pi \sqrt{L C}} \end{align*}$ | 1 |  |
| 12 | c | ii | $\begin{align*} & f_{0}=\frac{1}{2 \pi \sqrt{L C}} \\ & f_{0}=\frac{1}{2 \pi \sqrt{2 \cdot 2 \times 10^{-3} \times 4 \cdot 7 \times 10^{-6}}}  \tag{1}\\ & =1600 \mathrm{~Hz} \tag{1} \end{align*}$ | 2 |  |
| 12 | c | iii | $4.0 \Omega$ | $1$ <br> (13) |  |

[END OF MARKING INSTRUCTIONS]

