2013 Physics

Advanced Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2013
The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Physics - Advanced Higher

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question.

GENERAL MARKING ADVICE: Physics - Advanced Higher

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

1. Numerical Marking

(a) The fine divisions of marks shown in the marking scheme may be recorded within the body of the script beside the candidate's answer. If such marks are shown they must total to the mark in the inner margin.
(b) The number recorded should always be the marks being awarded. The number out of which a mark is scored SHOULD NEVER BE SHOWN AS A DENOMINATOR. ($1 / 2$ mark will always mean one half mark and never 1 out of 2 .)
(c) Where square ruled paper is enclosed inside answer books it should be clearly indicated that this item has been considered. Marks awarded should be transferred to the script booklet inner margin and marked G.
(d) The total for the paper should be rounded up to the nearest whole number.

2. Other Marking Symbols which may be used

No other annotations are allowed on the scripts.

3. General Instructions (Refer to National Qualifications Marking Instructions Booklet)

(a) No marks are allowed for a description of the wrong experiment or one which would not work.
Full marks should be given for information conveyed correctly by a sketch.
(b) Surplus answers: where a number of reasons, examples etc are asked for and a candidate gives more than the required number then wrong answers may be treated as negative and cancel out part of the previous answer.
(c) Full marks should be given for a correct answer to a numerical problem even if the steps are not shown explicitly. The part marks shown in the scheme are for use in marking partially correct answers.

However, when the numerical answer is given or a derivation of a formula is required every step must be shown explicitly.

(d) Where 1 mark is shown for the final answer to a numerical problem $1 / 2$ mark may be deducted for an incorrect unit.
(e) Where a final answer to a numerical problem is given in the form 3^{-6} instead of 3×10^{-6} then deduct $1 / 2$ mark.
(f) Deduct $1 / 2$ mark if an answer is wrong because of an arithmetic slip.
(g) No marks should be awarded in a part question after the application of a wrong physics principle (wrong formula, wrong substitution) unless specifically allowed for in the marking scheme - eg marks can be awarded for data retrieval.
(h) In certain situations, a wrong answer to a part of a question can be carried forward within that part of the question. This would incur no further penalty provided that it is used correctly. Such situations are indicated by a horizontal dotted line in the marking instructions.

Wrong answers can always be carried forward to the next part of a question, over a solid line without penalty.

The exceptions to this are:

- where the numerical answer is given
- where the required equation is given.
(i) $1 / 2$ mark should be awarded for selecting a formula.
(j) Where a triangle type "relationship" is written down and then not used or used incorrectly then any partial $1 / 2$ mark for a formula should not be awarded.
(k) In numerical calculations, if the correct answer is given then converted wrongly in the last line to another multiple/submultiple of the correct unit then deduct $1 / 2$ mark.
(1) Significant figures.

Data in question is given to 3 significant figures.
Correct final answer is 8.16 J .
Final answer 8.2 J or 8.158 J or 8.1576 J - No penalty.
Final answer 8 J or $8 \cdot 15761 \mathrm{~J}$ - Deduct $1 / 2$ mark.
Candidates should be penalised for a final answer that includes:

- three or more figures too many
or
- two or more figures too few. ie accept two higher and one lower.

Max $1 / 2$ mark deduction per question. Max $\mathbf{2}^{1} / 2$ deduction from question paper.
(m) Squaring Error

$$
\begin{array}{ll}
E_{K}=1 / 2 m v^{2}=1 / 2 \times 4 \times 2^{2}=4 \mathrm{~J} & \text { Award } 11 / 2 \quad \text { Arith error } \\
E_{K}=1 / 2 m v^{2}=1 / 2 \times 4 \times 2=4 \mathrm{~J} & \text { Award } 1 / 2 \text { for formula. Incorrect substitution. }
\end{array}
$$

The General Marking Instructions booklet should be brought to the markers' meeting.

Physics - Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

	Answers	Mark + comment	Issue
1.	$V=I R$	(1/2)	Ideal Answer
	$7 \cdot 5=1 \cdot 5 R$	(1/2)	
	$R=5 \cdot 0 \Omega$	(1)	
2.	$5 \cdot 0 \Omega$	(2) Correct Answer	GMI 1
3.	$5 \cdot 0$	(1122) Unit missing	GMI 2(a)
4.	$4 \cdot 0 \Omega$	(0) No evidence/Wrong Answer	GMI 1
5.	$\ldots \Omega$	(0) No final answer	GMI 1
6.	$R=\frac{V}{I}=\frac{7.5}{1.5}=4.0 \Omega$	(1122) Arithmetic error	GMI 7
7.	$R=\frac{V}{I}=4.0 \Omega$	(1/2) Formula only	GMI 4 and 1
8.	$R=\frac{V}{I}=$ \qquad Ω	(1/2) Formula only	GMI 4 and 1
9.	$R=\frac{V}{I}=\frac{7.5}{1.5}=$ \qquad Ω	(1) Formula + subs/No final answer	GMI 4 and 1
10.	$R=\frac{V}{I}=\frac{7 \cdot 5}{1.5}=4 \cdot 0$	(1) Formula + substitution	GMI 2(a) and 7
11.	$R=\frac{V}{I}=\frac{1 \cdot 5}{7.5}=5 \cdot 0 \Omega$	(1⁄2) Formula but wrong substitution	GMI 5
12.	$R=\frac{V}{I}=\frac{75}{1.5}=5.0 \Omega$	(1/2) Formula but wrong substitution	GMI 5
13.	$R=\frac{I}{V}=\frac{7.5}{1.5}=5.0 \Omega$	(0) Wrong formula	GMI 5
14.	$\begin{aligned} & V=I R \quad 7 \cdot 5=1 \cdot 5 \times R \\ & R=0 \cdot 2 \Omega \end{aligned}$	(112) Arithmetic error	GMI 7
15.	$V=I R$		
	$R=\frac{I}{V}=\frac{1.5}{7.5}=0.2 \Omega$	(1/2) Formula only	GMI 20

Data Sheet

Common Physical Quantities

Quantity	Symbol	Value	Quantity	Symbol	Value
Gravitational acceleration on Earth Radius of Earth	$\begin{gathered} g \\ R_{E} \end{gathered}$	$\begin{aligned} & 9.8 \mathrm{~ms}^{-2} \\ & 6.4 \times 10^{6} \mathrm{~m} \end{aligned}$	Mass of electron Charge on electron	m_{e} e	$\begin{aligned} & 9.11 \times 10^{-31} \mathrm{~kg} \\ & -1.60 \times 10^{-19} \mathrm{C} \end{aligned}$
Mass of Earth	M_{E}	$6 \cdot 0 \times 10^{24} \mathrm{~kg}$	Mass of neutron	m_{n}	$1.675 \times 10^{-27} \mathrm{~kg}$
Mass of Moon	M_{M}	$7.3 \times 10^{22} \mathrm{~kg}$	Mass of proton	m_{p}	$1.673 \times 10^{-27} \mathrm{~kg}$
Radius of Moon	R_{M}	$1.7 \times 10^{6} \mathrm{~m}$	Mass of alpha particle	m_{∞}	$6.645 \times 10^{-27} \mathrm{~kg}$
Mean Radius of Moon Orbit		$3.84 \times 10^{8} \mathrm{~m}$	Charge on alpha particle		$3.20 \times 10^{-19} \mathrm{C}$
Universal constant of gravitation	G	$6 \cdot 67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$	Planck's constant	h	$6.63 \times 10^{-34} \mathrm{Js}$
Speed of light in vacuum	c	$3.0 \times 10^{8} \mathrm{~ms}^{-1}$	Permittivity of free space	ε_{0}	$8.85 \times 10^{-12} \mathrm{Fm}^{-1}$
Speed of sound in air	v	$3.4 \times 10^{2} \mathrm{~ms}^{-1}$	Permeability of free space	μ_{0}	$4 \pi \times 10^{-7} \mathrm{Hm}^{-1}$

Refractive Indices

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K.

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Glycerol	1.47
Glass	1.51	Water	1.33
Ice	1.31	Air	1.00
Perspex	1.49	Magnesium Fluoride	1.38

Spectral Lines

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	$\begin{aligned} & 656 \\ & 486 \\ & 434 \end{aligned}$	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	$\begin{aligned} & \hline 644 \\ & 509 \\ & 480 \\ & \hline \end{aligned}$	Red Green Blue
	410		Lasers		
	$\begin{aligned} & 397 \\ & 389 \end{aligned}$		Element	Wavelength/nm	Colour
Sodium	589	Yellow	Carbon dioxide Helium-neon	$\left.\begin{array}{r} 9550 \\ 10590 \\ 633 \end{array}\right\}$	Infrared Red

Properties of selected Materials

$\left.\begin{array}{|l|c|c|c|c|c|c|}\hline \text { Substance } & \begin{array}{c}\text { Density/ } \\ \mathrm{kg} \mathrm{m}^{-3}\end{array} & \begin{array}{c}\text { Melting } \\ \text { Point/K }\end{array} & \begin{array}{c}\text { Boiling } \\ \text { Point/K }\end{array} & \begin{array}{c}\text { Specific Heat } \\ \text { Capacity/ } \\ \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}\end{array} & \begin{array}{c}\text { Specific } \\ \text { Latent Heat } \\ \text { of Fusion/ } \\ \mathrm{Jkg}^{-1}\end{array} & \begin{array}{c}\text { Specific } \\ \text { latent Heat } \\ \text { of }\end{array} \\ \text { Vaporisatio } \\ \text { n/Jkg }\end{array}\right]$

The gas densities refer to a temperature of 273 K and pressure of $1 \cdot 01 \times 10^{5} \mathrm{~Pa}$.

Question			Expected Answer/s	Max Mark	Additional Guidance
1	b	i	During one attempt the car is moving at a speed of $\mathbf{9 . 0} \mathrm{m} \mathrm{s}^{-1}$ at point P. Draw a labelled diagram showing the vertical forces acting on the car at point P. weight $(1 / 2) \quad$ reaction $(1 / 2)$	1	
1	b	ii	Calculate the size of each force. $\frac{m v^{2}}{r}=11000 N \quad(1 / 2) \text { eqn }+(1 / 2) \text { value }$ $\begin{aligned} \text { Weight }=\mathrm{mg} & =870 \times 9 \cdot 8 \\ & =8500 \mathrm{~N} \quad(1 / 2) \text { eqn }+(1 / 2) \text { value } \end{aligned}$ $R=11000-8500 \quad(1 / 2)$ subtraction $\begin{equation*} =2500 \mathrm{~N} \tag{1/2} \end{equation*}$ Subtract $1 / 2$ if N does not appear on final answer	3	

	est	Expected Answer/s	$\begin{aligned} & \text { Max } \\ & \text { Mark } \end{aligned}$	Additional Guidance
1	c	When the car exits the loop the driver starts braking at point X. For one particular run the displacement of the car from point X until the car comes to rest at point Y is given by the equation $s=9 \cdot 1 t-3 \cdot 2 t^{2}$ Sketch a graph to show how the displacement of the car varies with time between points X and Y. Numerical values are required on both axes. By differentiation $\begin{align*} v & =9 \cdot 1-6 \cdot 4 \mathrm{t} \\ \text { for } v & =0, t=1 \cdot 4(\mathrm{~s}) \tag{1} \end{align*}$ Max displacement, $\begin{gather*} s=9 \cdot 1 t-3.2 t^{2} \\ s=(9.1 \times 1 \cdot 4)-\left(3.2 \times 1 \cdot 4^{2}\right) \\ s=6.5(\mathrm{~m}) \tag{1} \end{gather*}$ NB No units required.	3	

Question			Expected Answer/s	Max Mark	Additional Guidance
2	a		The entrance to a building is through a revolving system consisting of 4 doors that rotate around a central axis as shown in Figure 2A. Figure 2A The moment of inertia of the system about the axis of rotation is $54 \mathrm{~kg} \mathrm{~m}^{2}$. When it rotates, a constant frictional torque of 25 N m acts on the system. The system is initially stationary. On entering the building a person exerts a constant force F perpendicular to a door at a distance of $\mathbf{1 . 2} \mathbf{~ m}$ from the axis of rotation as shown in Figure 2B. Figure 2B The angular acceleration of the system is $2.4 \mathrm{rad} \mathrm{s}^{-2}$.		

Question			Expected Answer/s	Max Mark	Additional Guidance
2	a	i	(Cont.) Calculate the magnitude of the applied force F. Unbalanced torque $=\mathrm{I} \alpha$ (1/2) $=54 \times 2 \cdot 4$ $\begin{equation*} =129 \cdot 6(\mathrm{Nm}) \tag{1/2} \end{equation*}$ Applied torque $=129 \cdot 6+25$ $\begin{equation*} =154.6(\mathrm{Nm}) \tag{1/2} \end{equation*}$ $\begin{equation*} \text { Applied torque }=F \times r \tag{1/2} \end{equation*}$ $\begin{align*} 154 \cdot 6 & =F \times 1 \cdot 2 \\ F & =130 \mathrm{~N} \tag{1} \end{align*}$	3	
2	a	ii	The applied force is removed and the system comes to rest in 3.6 s . Calculate the angular displacement of the door during this time. $\begin{align*} & \alpha=\frac{T}{I}=\frac{(-) 25}{54}=(-) 0 \cdot 46\left(\mathrm{rads}^{-2}\right) \quad(1 / 2 \mathrm{eqn} \\ & +\quad 1 / 2 \text { answer }) \\ & \omega=\omega_{\mathrm{o}}+\alpha \mathrm{t} \\ & 0=\omega_{\mathrm{o}}+(-0.46 \times 3.6) \\ & \omega_{0}=1.67\left(\mathrm{rad} \mathrm{~s}^{-1}\right) \tag{1/2} \end{align*}$ both equations of motion $\begin{align*} \theta & =\omega_{0} t+1 / 2 \alpha t^{2} \\ & =(1.67 \times 3.6)+\left(0.5 \times-0.46 \times 3.6^{2}\right) \\ & =3.0 \mathrm{rad} \tag{1} \end{align*}$	3	

Question			Expected Answer/s Max Mark Planets outside our solar system are called exoplanets. One exoplanet moves in a circular orbit around a star as shown in Figure 3.		Additional Guidance
3	a	i	Planets outside our solar system are called exoplanets. One exoplanet moves in a circular orbit around a star as shown in Figure 3. Figure 3 The period of orbit is $\mathbf{1 4}$ days. The mass M_{s} of the star is $1.7 \times 10^{\mathbf{3 0}} \mathbf{~ k g}$. Show that the radius of the orbit can be given by the relationship $r^{3}=G M_{s} \frac{T^{2}}{4 \pi^{2}}$ where the symbols have their usual meaning.		

Question			Expected Answer/s	Max Mark	Additional Guidance
3	a	i	(Cont.) $\begin{array}{rrr} \frac{m v^{2}}{r} & =\frac{G M m}{r^{2}} & \text { Both equations }(1 / 2) \\ \frac{v^{2}}{r} & =\frac{G M}{r^{2}} & \end{array}$ MUST STATE $v=\frac{2 \pi r}{T}$ $r=\frac{G m}{v^{2}}=\frac{G M T^{2}}{4 \pi^{2} r^{2}}$ for correct substitution (1⁄2) $r^{3}=\frac{G M T^{2}}{4 \pi^{2}}$ SHOW THAT	2	OR $\begin{align*} & m \omega^{2} r=\frac{G M m}{r^{2}}(1 / 2)+(1 / 2) \\ & \omega^{2}=\frac{G M}{r^{3}} \tag{1/2} \end{align*}$ MUST ST ATE $\omega=\frac{2 \pi}{T}$ $\frac{4 \pi^{2}}{T^{2}}=\frac{G M}{r^{3}}$ for correct substitution (1/2) $r^{3}=\frac{G M T^{2}}{4 \pi^{2}}$
3	a	ii	Calculate the radius of this orbit. $\begin{gather*} r^{3}=G M \frac{T^{2}}{4 \pi^{2}} \\ =\frac{6 \cdot 67 \times 10^{-11} \times 1 \cdot 7 \times 10^{30} \times(14 \times 24 \times 3600)^{2}}{4 \times \pi^{2}} \tag{1/2}\\ \quad r=1.6 \times 10^{10} \mathrm{~m} \mathrm{(1/2)} \end{gather*}$	1	If time not converted to seconds then 0 marks

Question			Expected Answer/s	Max Mark	Additional Guidance
3	b		The radius of the exoplanet is $1.2 \times 10^{8} \mathrm{~m}$ and its mass is $\mathbf{5 . 4} \times \mathbf{1 0}^{\mathbf{2 6}} \mathbf{~ k g}$. Calculate the value of the gravitational field strength g on the surface of the exoplanet. $\begin{align*} & m g=\frac{G M m}{r^{2}} \\ & \begin{aligned} g=\frac{G M}{r^{2}}=\frac{6 \cdot 67 \times 10^{-11} \times 5 \cdot 4 \times 10^{26}}{\left(1 \cdot 2 \times 10^{8}\right)^{2}} \\ \text { equality } \end{aligned} \\ & =2.5 \mathrm{~N} \mathrm{~kg}^{-1} \end{align*}$	2	
3	c	i	Astrophysicists have identified many black holes in the universe. State what is meant by the term black hole. An object with an escape velocity greater than the speed of light.	1	
3	c	ii	A newly discovered object has a mass of $4.2 \times 10^{30} \mathrm{~kg}$ and a radius of $2.6 \times 10^{4} \mathrm{~m}$. Show by calculation whether or not this object is a black hole. $\begin{align*} & \text { escape velocity } v=\sqrt{\frac{2 G M}{r}} \\ & =\sqrt{\frac{2 \times 4 \cdot 2 \times 10^{30} \times 6 \cdot 67 \times 10^{-11}}{2 \cdot 6 \times 10^{4}}} \tag{1/2}\\ & =1.5 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \tag{1/2} \end{align*}$ not a black hole	2	

Question		Expected Answer/s	Max Mark	Additional Guidance
4		A "saucer" swing consists of a bowl shaped seat of mass 1.2 kg suspended by four ropes of negligible mass as shown in Figure 4A.		

Question			Expected Answer/s Calculate the velocity of the seat when its displacement is $\mathbf{0 . 1 0 ~ m}$. $\begin{align*} v & =(\pm) \omega \sqrt{A^{2}-y^{2}} \tag{1/2}\\ & =(\pm) 2 \cdot 1 \sqrt{0 \cdot 29^{2}-0 \cdot 10^{2}} \tag{1/2}\\ & =(\pm) 0.57 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	Max Mark	Additional Guidance
4	b	ii		2	
4	c		Calculate the displacement of the seat when the kinetic energy and potential energy are equal.	3	

	est		Expected Answer/s	$\begin{gathered} \hline \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Additional Guidance
5	a	i	Calculate the speed of the electron in orbit number 3. $\begin{align*} & m v r=\frac{n h}{2 \pi} \tag{1/2}\\ & 9.11 \times 10^{-31} \times v \times 4.8 \times 10^{-10}=\frac{3 \times 6 \cdot 63 \times 10^{-34}}{2 \times \pi} \tag{1/2}\\ & v=7.2 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$ Rounding might give $7.3 \times 10^{5} \mathrm{~ms}^{-1}$	2	Alternatively $\begin{aligned} & \frac{m v^{2}}{r}=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{o} r^{2}} \\ & =\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{\mathrm{o}} m r} \\ & 4 \times \pi \times 8 \cdot 85 \times 10^{-12} \times 9 \cdot 11 \times 10^{-31} \times 4.8 \times 10^{-10} \\ & v=7.3 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ Rounding might give $7.2 \times 10^{5} \mathrm{~ms}^{-1}$
5	a	ii	Calculate the de Broglie wavelength associated with this electron. $\begin{align*} \lambda & =\frac{h}{p} \\ & =\frac{h}{m v} \tag{1/2}\\ & =\frac{6 \cdot 63 \times 10^{-34}}{9 \cdot 11 \times 10^{-31} \times 7.2 \times 10^{5}} \tag{1/2}\\ & =1.0 \times 10^{-9} \mathrm{~m} \tag{1} \end{align*}$	2	
5	a	iii	What is the name given to the branch of physics that treats electrons as waves and predicts their position in terms of probability? Quantum mechanics	1	

Question			Expected Answer/s	Max	Additional Guidance
6	a	ii	In one test the researcher uses zirconium as the target. A proton of charge q and velocity v travels directly towards a zirconium nucleus as shown in Figure 6B. The zirconium nucleus has charge \boldsymbol{Q}. $\stackrel{q}{\mathrm{O}} \underset{v}{\longrightarrow}$ proton Figure 6B Show that the distance of closest approach r to the target is given by $r=\frac{q Q}{2 \pi \varepsilon_{\mathrm{o}} m v^{2}}$ where the symbols have their usual meaning.	metal	
			$\begin{equation*} 1 / 2 \times m \times v^{2}=\frac{q Q}{4 \pi \varepsilon_{0} r} \tag{1} \end{equation*}$ $r=\frac{q Q}{2 \times \pi \times \varepsilon_{0} \times \mathrm{m} \times \mathrm{v}^{2}}$	1	
6	a	iii	Calculate the distance of closest approach for a proton travelling towards a zirconium nucleus in the target. $\begin{align*} \mathrm{Q} & =40 \times 1.6 \times 10^{-19} \tag{1}\\ & =6.4 \times 10^{-18} \\ r & =\frac{q Q}{2 \times \pi \times \varepsilon_{0} \times \mathrm{m} \times \mathrm{v}^{2}} \\ & =\frac{1.60 \times 10^{-19} \times 6.4 \times 10^{-18}}{2 \times \pi \times 8.85 \times 10^{-12} \times 1.673 \times 10^{-27} \times\left(2.8 \times 10^{7}\right)^{2}} \tag{1}\\ = & 1.4 \times 10^{-14} \mathrm{~m} \tag{1} \end{align*}$	3	

	est	Expected Answer/s	Max Mark	Additional Guidance
7	b	Calculate the force acting on the 0.40 m length of sodium within the magnetic field. $\begin{align*} & F=B I l \tag{1/2}\\ & F=0.20 \times 2.5 \times 0.4 \tag{1/2}\\ & F=0.20 \mathrm{~N} \tag{1} \end{align*}$	2	
7	c	The pump is moved during maintenance and as a result the direction of the magnetic field is changed so that it is no longer perpendicular to the current. What effect does this have on the rate of flow of sodium passing through the pump? You must justify your answer. Flow rate will fall $\begin{equation*} F=B I l \sin \theta \text { explanation } \tag{1} \end{equation*}$ Force will be reduced	2	
7	d	An engineer must install a long, straight, current carrying wire $A B$ close to the pump and is concerned that the magnetic induction produced may interfere with the safe working of the pump. The wire is $\mathbf{7 5 0} \mathbf{~ m m}$ from the pump and carries a current of 0.60 A . Show by calculation that the magnetic induction at this distance is negligible. $\begin{align*} & B=\frac{\mu \circ I}{2 \pi r} \tag{1/2}\\ & B=\frac{4 \pi \times 10^{-7} \times 0.6}{2 \times \pi \times 0.75} \tag{1/2}\\ & B=1.6 \times 10^{-7} \mathrm{~T} \tag{1} \end{align*}$	2	

Question		Expected Answer/s	$\begin{gathered} \hline \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Additional Guidance
8		In 1909 Robert Millikan devised an experiment to investigate the charge on a small oil drop. Using a variable power supply he adjusted the potential difference between two horizontal parallel metal plates until an oil drop was held stationary between them as shown in Figure 8.		
	a	Figure 8 What was Millikan's main conclusion from this experiment? Charge is quantised		
8	b	Draw a labelled diagram showing the forces acting on the stationary oil drop.	1	

	est		Expected Answer/s	Max Mark	Additional Guidance
8	c		The parallel plates are fixed 16 mm apart. In one experiment the charge on the oil drop was found to be $2.4 \times 10^{-18} \mathrm{C}$. Calculate the mass of the oil drop. $\begin{align*} E & =\frac{V}{d} \tag{1/2}\\ E Q & =m g \quad(1 / 2 \text { for each equation }) \tag{1}\\ m & =\frac{Q V}{g d} \\ & =\frac{2.4 \times 10^{-18} \times 2000}{9.8 \times 0.016} \tag{1/2}\\ & =3.1 \times 10^{-14} \mathrm{~kg} \tag{1} \end{align*}$	3	$\mathrm{E}=\mathrm{V} / \mathrm{d}=125000\left(\mathrm{Vm}^{-1}\right)$ ($1 / 2$ eqn $+1 / 2$ answer) $\mathrm{F}=\mathrm{QE}=3.0 \times 10^{-13}(\mathrm{~N})$ ($1 / 2$ eqn $+1 / 2$ answer) $\mathrm{m}=\mathrm{F} / \mathrm{g}=3.1 \times 10^{-14} \mathrm{~kg}$ ($1 / 2$ eqn $+1 / 2$ answer) Equation $1 / 2$ marks are independent

	estion	Expected Answer/s	Max Mark	Additional Guidance
9	A	The charge Q on a hollow metal sphere is $(-15 \cdot 0 \pm 0 \cdot 4) \mu \mathrm{C}$. The sphere has a radius r of $(0.65 \pm 0.02) \mathrm{m}$. Figure 9 Calculate the electrostatic potential at the surface of the metal sphere. $\begin{align*} & V=\frac{Q}{4 \pi \varepsilon_{o} r} \tag{1/2}\\ & V=\frac{-15 \times 10^{-6}}{4 \times 3 \cdot 14 \times 8 \cdot 85 \times 10^{-12} \times 0 \cdot 65} \tag{1/2}\\ & V=-2 \cdot 1 \times 10^{5} \mathrm{~V} \tag{1} \end{align*}$	2	
9	B	Calculate the absolute uncertainty in the electrostatic potential. $\begin{align*} & \% \Delta r=\frac{0 \cdot 02}{0 \cdot 65} \times 100=3 \% \tag{1/22}\\ & \% \Delta Q=\frac{0 \cdot 4}{15} \times 100=2.7 \% \tag{1/2} \end{align*}$ $\begin{align*} & \% \Delta V=(\pm) \sqrt{\% \Delta r^{2}+\% \Delta Q^{2}} \\ & =(\pm) \sqrt{9+7 \cdot 1} \\ & =(\pm) 4 \cdot 0 \% \tag{1/2} \end{align*}$ $\begin{equation*} \Delta \mathrm{V}= \pm \frac{4 \cdot 0}{100} \times 2 \cdot 1 \times 10^{5}=(\pm) 8 \times 10^{3} \mathrm{~V} \tag{1/2} \end{equation*}$	2	Can be fractional

Question		Expected Answer/s	Max Mark	Additional Guidance
$\mathbf{9}$	\mathbf{c}	State the electrostatic potential at the centre of the sphere.		
$V=-2 \cdot 1 \times 10^{5} \mathrm{~V}$ Consistent with (a)	$\mathbf{1}$			

Question			Expected Answer/s	Max Mark	Additional Guidance
10	a	i	A 0.40 H inductor of negligible resistance is connected in a circuit as shown in Figure 10. Switch S is initially open. Figure 1 The switch S is closed. Sketch a graph of current against time giving numerical values on the current axis.	S	
10	a	ii	Explain fully the shape of the graph. Changing magnetic field Produces a back e.m.f in the inductor	2	

	sti	Expected Answer/s	Max Mark	Additional Guidance
10	b	Calculate the initial rate of change of current when switch S is closed. $\begin{align*} & E=-L \frac{d I}{d t} \tag{1/2}\\ & E=-9 \cdot 0(\mathrm{~V}) \\ & \frac{d I}{d t}=\frac{E}{-L}=\frac{-9 \cdot 0}{-0 \cdot 40} \tag{1/2}\\ & \frac{d I}{d t}=23 A s^{-1} \tag{1} \end{align*}$	2	Value comes out as $22.5 \mathrm{As}^{-1}$

Question			Expected Answer/s	Max Mark	Additional Guidance
11	c	i	Good quality optical flats often have a nonreflecting coating of magnesium fluoride applied to the surface as shown in Figure 11D. Figure 11D With the aid of a diagram explain fully how the coating reduces reflections from the flat for monochromatic light. The two reflected rays interfere destructively (1)	子	Phase change not required in answer but if phase change on reflection mentioned both rays must be considered and be correct or 1 mark max for correct diagram.
11	c	ii	Calculate the minimum thickness of magnesium fluoride required to make the flat nonreflecting for yellow light from a sodium lamp. $\begin{align*} d & =\frac{\lambda}{4 \mathrm{n}} \tag{1/2}\\ & =\frac{589 \times 10^{-9}}{4 \times 1.38} \tag{1/22}\\ & =1.07 \times 10^{-7} \mathrm{~m} \tag{1} \end{align*}$	2	

Question			Expected Answer/s	Max Mark	Additional Guidance
12	b	i	A second wave with double the frequency travels in the same direction through the water. This wave has five times the intensity of the wave in part (a). Calculate: the speed of this wave; $\begin{align*} \lambda & =0.25 \mathrm{~m} \\ v & =f \lambda \\ & =5.0 \times 0.25 \\ & =1.3 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	1	Or since speed is the same as in (a) $\begin{aligned} \mathrm{v} & =\mathrm{f} \lambda \\ & =2.5 \times 0.5 \\ & =1.3 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ Accept $1.25 \mathrm{~m} \mathrm{~s}^{-1}$ If units wrong then deduct $1 / 2$
12	b	ii	the amplitude of this wave. $\begin{equation*} \frac{I_{1}}{A_{1}{ }^{2}}=\frac{I_{2}}{A_{2}{ }^{2}} \tag{1/2} \end{equation*}$ Or I proportional to A^{2} $\begin{align*} & \frac{I_{1}}{0 \cdot 03^{2}}=\frac{5 I_{1}}{A_{2}^{2}} \tag{1/2}\\ & A_{2}=0.07 \mathrm{~m} \tag{1} \end{align*}$	2	Accept 0.067m

Question			Expected Answer/s	Max Mark	Additional Guidance
13	a		A student is investigating polarisation of waves. State what is meant by plane polarised light. In plane polarised light (the electric field vector of the light) vibrates/oscillates in one plane. (1)	1	
13	b		The student wishes to investigate polarisation of sound waves and asks a teacher for suitable apparatus. The teacher says that sound waves cannot be polarised. Why can sound waves not be polarised? Sound waves are not transverse waves. (1)	1	Accept sound waves are longitudinal.
13	c	i	While doing some background reading the student discovers that the Brewster angle i_{p} for the liquid solvent triethylamine is given as $54 \cdot 5^{\circ}$. Explain using a diagram what is meant by the Brewster angle.	2	1 mark for identifying the angle between the reflected and refracted ray as 90° angle. Second mark is dependent on getting the first mark correct. 90° must be marked. 1 mark for Brewster Angle (either incident or reflected angle)
13	c	ii	Calculate the refractive index of triethylamine. $\begin{align*} \mathrm{n} & =\tan \mathrm{i}_{\mathrm{p}} \tag{1/2}\\ & =\tan 54.5 \\ & =1 \cdot 40 \tag{1/2} \end{align*}$	1	

