2015 Physics

Advanced Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2015
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Physics - Advanced Higher

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader/Principal Assessor.

GENERAL MARKING ADVICE: Physics - Advanced Higher

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

1. Numerical Marking

(a) The fine divisions of marks shown in the marking scheme may be recorded within the body of the script beside the candidate's answer. If such marks are shown they must total to the mark in the inner margin.
(b) The number recorded should always be the marks being awarded. The number out of which a mark is scored SHOULD NEVER BE SHOWN AS A DENOMINATOR. ($1 / 2$ mark will always mean one half mark and never 1 out of 2.)
(c) Where square ruled paper is enclosed inside answer books it should be clearly indicated that this item has been considered. Marks awarded should be transferred to the script booklet inner margin and marked G.
(d) The total for the paper should be rounded up to the nearest whole number.

2. Other Marking Symbols which may be used

TICK $\quad-\quad$ Correct point as detailed in scheme, includes data entry.

SCORE THROUGH - Any part of answer which is wrong. (For a block of wrong answer indicate zero marks.) Excess significant figures.

INVERTED VEE	$-\quad$ A point omitted which has led to a loss of marks.
WAVY LINE	$-\quad$Under an answer worth marks which is wrong only because a wrong answer has been carried forward from
"G"	a previous part.
"X"	Reference to a graph on separate paper. You MUST show a mark on the graph paper and the SAME mark on the script.
*	$-\quad$Wrong Physics

No other annotations are allowed on the scripts.

3. General Instructions (Refer to National Qualifications Marking Instructions Booklet)

(a) No marks are allowed for a description of the wrong experiment or one which would not work.
Full marks should be given for information conveyed correctly by a sketch.
(b) Surplus answers: where a number of reasons, examples etc are asked for and a candidate gives more than the required number then wrong answers may be treated as negative and cancel out part of the previous answer.
(c) Full marks should be given for a correct answer to a numerical problem even if the steps are not shown explicitly. The part marks shown in the scheme are for use in marking partially correct answers.

However, when the numerical answer is given or a derivation of a formula is required every step must be shown explicitly.
(d) Where 1 mark is shown for the final answer to a numerical problem $1 / 2$ mark may be deducted for an incorrect unit.
(e) Where a final answer to a numerical problem is given in the form 3^{-6} instead of 3×10^{-6} then deduct $1 / 2$ mark.
(f) Deduct $1 / 2$ mark if an answer is wrong because of an arithmetic slip.
(g) No marks should be awarded in a part question after the application of a wrong physics principle (wrong formula, wrong substitution) unless specifically allowed for in the marking scheme - eg marks can be awarded for data retrieval.
(h) In certain situations, a wrong answer to a part of a question can be carried forward within that part of the question. This would incur no further penalty provided that it is used correctly. Such situations are indicated by a horizontal dotted line in the marking instructions.

Wrong answers can always be carried forward to the next part of a question, over a solid line without penalty.

The exceptions to this are:

- where the numerical answer is given
- where the required equation is given.
(i) $1 / 2$ mark should be awarded for selecting a formula.
(j) Where a triangle type "relationship" is written down and then not used or used incorrectly then any partial $1 / 2$ mark for a formula should not be awarded.
(k) In numerical calculations, if the correct answer is given then converted wrongly in the last line to another multiple/submultiple of the correct unit then deduct $1 / 2$ mark.
(1) Significant figures.

Data in question is given to 3 significant figures.
Correct final answer is 8.16 J .
Final answer $8 \cdot 2 \mathrm{~J}$ or $8 \cdot 158 \mathrm{~J}$ or $8 \cdot 1576 \mathrm{~J}$ - No penalty.
Final answer 8 J or $8 \cdot 15761 \mathrm{~J}$ - Deduct $1 / 2$ mark.
Candidates should be penalised for a final answer that includes:

- three or more figures too many
or
- two or more figures too few
ie accept two higher and one lower.
Max $1 / 2$ mark deduction per question.
Max $\mathbf{2}^{1 / 2}$ deduction from question paper.
(m) Squaring Error

$$
\begin{array}{ll}
E_{K}=1 / 2 m v^{2}=1 / 2 \times 4 \times 2^{2}=4 \mathrm{~J} & \text { Award } 11 / 2 \quad \text { Arith error } \\
E_{K}=1 / 2 m v^{2}=1 / 2 \times 4 \times 2=4 \mathrm{~J} & \text { Award } 1 / 2 \text { for formula. Incorrect } \\
\text { substitution. } &
\end{array}
$$

The General Marking Instructions booklet should be brought to the markers' meeting.

Physics - Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

Answers

1. $\quad V=I R$
$7 \cdot 5=1 \cdot 5 R$

$$
R=5 \cdot 0 \Omega
$$

2.

$5 \cdot 0 \Omega$
3.

$$
5 \cdot 0
$$

4.

$4 \cdot 0 \Omega$
5. \qquad Ω
6. $R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0 \Omega$
7.

$$
R=\frac{V}{I}=4 \cdot 0 \Omega
$$

8.

$$
R=\frac{V}{I}=
$$

9.

$$
R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=
$$

10. $R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0$
11.

$$
R=\frac{V}{I}=\frac{1 \cdot 5}{7.5}=5 \cdot 0 \Omega
$$

12.

$$
R=\frac{V}{I}=\frac{75}{1.5}=5.0 \Omega
$$

13.

$$
R=\frac{I}{V}=\frac{7 \cdot 5}{1.5}=5.0 \Omega
$$

14. $\quad V=I R \quad 7.5=1.5 \times R$ $R=0 \cdot 2 \Omega$
15.

$V=I R$
$R=\frac{I}{V}=\frac{1 \cdot 5}{7 \cdot 5}=0 \cdot 2 \Omega$

Mark + comment

(1/2)
(1/2)
(1)
(2) Correct Answer
($11 / 2$) Unit missing
(0) No evidence/Wrong Answer
(0) No final answer
(11/2) Arithmetic error
(1/2) Formula only
(1⁄2) Formula only
(1) Formula + subs/No final answer
(1) Formula + substitution
(1/2) Formula but wrong substitution
(1/2) Formula but wrong substitution
(0) Wrong formula
(11/2) Arithmetic error
(1/2) Formula only

Issue

Ideal Answer

GMI 1
GMI 2(a)
GMI 1
GMI 1

GMI 7

GMI 4 and 1

GMI 4 and 1

GMI 4 and 1

GMI 2(a) and 7

GMI 5

GMI 5

GMI 5

GMI 7

GMI 20

DATA SHEET

COMMON PHYSICAL QUANTITIES

Quantity	Symbol	Value	Quantity	Symbol	Value
Gravitational acceleration on Earth Radius of Earth	$\begin{gathered} g \\ R_{E} \end{gathered}$	$\begin{aligned} & 9.8 \mathrm{~ms}^{-2} \\ & 6.4 \times 10^{6} \mathrm{~m} \end{aligned}$	Mass of electron Charge on electron	m_{e}	$\begin{aligned} & 9.11 \times 10^{-31} \mathrm{~kg} \\ & -1.60 \times 10^{-19} \mathrm{C} \end{aligned}$
Mass of Earth	M_{E}	$6.0 \times 10^{24} \mathrm{~kg}$	Mass of neutron	m_{n}	$1.675 \times 10^{-27} \mathrm{~kg}$
Mass of Moon	M_{M}	$7.3 \times 10^{22} \mathrm{~kg}$	Mass of proton	m_{p}	$1.673 \times 10^{-27} \mathrm{~kg}$
Radius of Moon	R_{M}	$1.7 \times 10^{6} \mathrm{~m}$	Mass of alpha particle	m_{∞}	$6.645 \times 10^{-27} \mathrm{~kg}$
Mean Radius of Moon Orbit		$3.84 \times 10^{8} \mathrm{~m}$	Charge on alpha particle		$3.20 \times 10^{-19} \mathrm{C}$
Universal constant of gravitation	G	$6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$	Planck's constant	h	$6.63 \times 10^{-34} \mathrm{Js}$
Speed of light in vacuum	c	$3.0 \times 10^{8} \mathrm{~ms}^{-1}$	Permittivity of free space	ε_{0}	$8.85 \times 10^{-12} \mathrm{Fm}^{-1}$
Speed of sound in air	v	$3.4 \times 10^{2} \mathrm{~ms}^{-1}$	Permeability of free space	μ_{0}	$4 \pi \times 10^{-7} \mathrm{Hm}^{-1}$

REFRACTIVE INDICIES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K.

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Glycerol	1.47
Glass	1.51	Water	1.33
Ice	1.31	Air	1.00
Perspex	1.49	Magnesium Fluoride	1.38

SPECTRAL LINES

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	$\begin{aligned} & 656 \\ & 486 \\ & 434 \\ & 410 \\ & 397 \\ & 389 \end{aligned}$	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	$\begin{aligned} & 644 \\ & 509 \\ & 480 \\ & \hline \end{aligned}$	Red Green Blue
			Lasers		
			Element	Wavelength/nm	Colour
Sodium	589	Yellow	Carbon dioxide Helium-neon	$\left.\begin{array}{r} 9550 \\ 10590 \\ 633 \end{array}\right\}$	Infrared Red

$\left.\begin{array}{|l|c|c|c|c|c|c|}\hline \text { Substance } & \begin{array}{c}\text { Density/ } \\ \mathrm{kg} \mathrm{m}^{-3}\end{array} & \begin{array}{c}\text { Melting } \\ \text { Point/K }\end{array} & \begin{array}{c}\text { Boiling } \\ \text { Point/K }\end{array} & \begin{array}{c}\text { Specific Heat } \\ \text { Capacity/ } \\ \mathrm{J} \mathrm{kg}^{-1} \mathrm{~K}^{-1}\end{array} & \begin{array}{c}\text { Specific } \\ \text { Latent Heat } \\ \text { of Fusion/ } \\ \mathrm{J} \mathrm{kg}^{-1}\end{array} & \begin{array}{c}\text { Specific } \\ \text { Latent Heat } \\ \text { of }\end{array} \\ \text { Vaporisation } \\ / \mathrm{J} \mathrm{kg} \mathrm{g}^{-1}\end{array}\right]$

The gas densities refer to a temperature of 273 K and pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.

Part Two: Marking Instructions for each Question

Question		Expected Answer/s		Max Mark	Additional Guidance
1	a	$\begin{aligned} & \mathrm{m}=\frac{m_{0}}{\sqrt{\left(1-\frac{v^{2}}{c^{2}}\right)}} \\ & \mathrm{m}=\frac{1 \cdot 673 \times 10^{-27}}{\sqrt{\left(1-\frac{\left[2 \cdot 99 \times 10^{8}\right]^{2}}{\left[3 \cdot 0 \times 10^{8}\right]^{2}}\right)}} \\ & \mathrm{m}=\frac{1 \cdot 673 \times 10^{-27}}{0 \cdot 0816} \\ & \mathrm{~m}=2 \cdot 1 \times 10^{-26} \mathrm{~kg} \end{aligned}$	(1/2) (1/2) (1)	2	
1	b	$\begin{aligned} \mathrm{E} & =\mathrm{mc}^{2} \\ & =\left(2.1 \times 10^{-26}\right) \times\left(3.0 \times 10^{8}\right)^{2} \\ & =1.9 \times 10^{-9} \mathrm{~J} \end{aligned}$	(1/2) (1/2) (1)	2 (4)	

Question			Expected Answer/s			Max	Additional Guidance
2	a		$\text { I }=\frac{1}{2} n$ $16 \times$ $=0.7$	m^{2}	(1/2) (1/2) (1)	2	
2	b	i	$\begin{aligned} & \omega=\frac{v}{r}= \\ & \omega^{2}=\omega_{0}^{2} \\ & 0=10^{2} \\ & \alpha=-1 . \end{aligned}$	$=10\left(\mathrm{rad} \mathrm{~s}^{-1}\right)$ θ $x \times(2 \pi \times 5)$	(1) (1/2) (1/2) (1)	3	Alternative method possible: Calculate linear displacement (9.42 m), use to find acceleration, then convert to angular at end.
2	b	ii	Torque	$\begin{aligned} & =\mathrm{I} \alpha \\ & =0.72 \times 1.6 \\ & =(-) 1.2 \mathrm{~N} \mathrm{~m} \end{aligned}$	(1/2) (1/2) (1)	2	
2	c		The speed Second n \bullet F - m - S - $\quad \mathrm{M}$	the mass will be for correct justifi eel has greater m eel will be more g er acceleration of energy required to ar velocity.	$\left.0 \mathrm{~m} \mathrm{~s}^{-1}\right)$ (1) rtia tart me (1)	2	
2	d	i	$\begin{aligned} & \mathrm{I}=1 / 2 \times(\\ & \mathrm{I}=0 \cdot 19 \end{aligned}$	$\left(0 \cdot 15^{2}+0 \cdot 20^{2}\right)$	$\begin{aligned} & (1 / 2) \\ & (1 / 2) \end{aligned}$	1	
2	d	ii	$\begin{aligned} & \omega=\frac{\theta}{t} \\ & \omega=\frac{6 \cdot 0}{\omega} \begin{aligned} & \omega=2000 \\ & \begin{aligned} \mathrm{E}_{\text {krot }} & =1 / 2 \\ & =1 / 2 \\ & =3 . \end{aligned} \end{aligned} \text {. } 1 / 2 \end{aligned}$	${ }^{4} \times 2 \pi$ $\mathrm{ad} \mathrm{s}^{-1}$) $\begin{aligned} & 19 \times(2000 \pi)^{2} \\ & 10^{6} \mathrm{~J} \end{aligned}$	(1/2) (1/2) (1/2) (1/2) (1)	3 (13)	

Question			Expected Answer/s	$\begin{gathered} \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Additional Guidance
3	a	i	$\mathrm{m} \omega^{2} \mathrm{r}=\frac{G M m}{r^{2}}$ $(1 / 2)$ for both equations and $(1 / 2)$ for equality $\begin{align*} & \omega=\frac{2 \pi}{T} \tag{1/2}\\ & \frac{\mathrm{~m} 4 \pi^{2} \mathrm{r}}{T^{2}}=\frac{G M m}{r^{2}} \tag{1/2} \end{align*}$ $\mathrm{M}=\frac{4 \pi^{2} r^{3}}{G T^{2}}$ needed.	2	
3	a	ii	$\begin{align*} \mathrm{M} & =\frac{4 \pi^{2} r^{3}}{G T^{2}} \\ & =\frac{\left(4 \times \pi^{2} \times\left(1.77 \times 10^{11}\right)^{3}\right)}{6 \cdot 67 \times 10^{-11} \times(525 \cdot 8 \times 24 \times 60 \times 60)^{2}} \tag{1/2}\\ & =1.6 \times 10^{30} \mathrm{~kg} \tag{1} \end{align*}$	2	

Question			Expected Answer/s	$\begin{gathered} \hline \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Additional Guidance
3	b	i	$\begin{align*} & F=\frac{G M m}{r^{2}} \tag{1/2}\\ & =\frac{6 \cdot 67 \times 10^{-11} \times 6 \cdot 0 \times 10^{24} \times 2.0}{\left(3.00 \times 10^{8}\right)^{2}} \tag{1/2}\\ & =8.89 \times 10^{-3}(\mathrm{~N}) \tag{1/2}\\ & F=\frac{G M m}{r^{2}} \\ & =\frac{6 \cdot 67 \times 10^{-11} \times 7.3 \times 10^{22} \times 2.0}{\left(0.84 \times 10^{8}\right)^{2}} \\ & =1.38 \times 10^{-3}(\mathrm{~N}) \tag{1/2} \end{align*}$ Then subtraction gives $\begin{equation*} \mathrm{F}=7.5 \times 10^{-3} \mathrm{~N} \tag{1} \end{equation*}$	3	
3	b	ii	$\begin{align*} V & =-\frac{G M}{r} \tag{1/2}\\ & =-\frac{6 \cdot 67 \times 10^{-11} \times 6 \cdot 0 \times 10^{24}}{3 \cdot 00 \times 10^{8}} \tag{1/2}\\ & =-1 \cdot 3 \times 10^{6} \mathrm{~J} \mathrm{~kg}^{-1} \tag{1} \end{align*}$	2	
3	b	iii	Potential is work done (per unit mass) moving from infinity to that point. or Infinity defined as zero potential. Work will be done by the field on the mass. or A negative amount of work will be done to move an object from infinity to any point. or W_{D} by gravity in moving to that point or Force acts in opposite direction to r. Any valid alternative explanation gets second mark.	2 (11)	

Question			Expected Answer/s	Max Mark	Additional Guidance
4	a	i	Force acting on (acceleration of) object is directly proportional to and in the opposite direction to its displacement. (from equilibrium) Mark is 1 or 0 .	1	
4	a	ii	$\begin{align*} y & =A \sin \omega t \\ \frac{d y}{d t} & =\mathrm{A} \omega \cos \omega \mathrm{t} \tag{1⁄2}\\ \frac{d^{2} y}{d t^{2}} & =-\mathrm{A} \omega^{2} \sin \omega \mathrm{t} \tag{1⁄2}\\ \frac{d^{2} y}{d t^{2}} & =-\omega^{2} y \tag{1} \end{align*}$	2	
4	a	iii	(Cos used when at $t=0$) displacement is a maximum (A).	1	
4	b	i	$\begin{align*} & \omega=\frac{2 \pi}{T} \text { or } \omega=2 \pi f \tag{1/2}\\ & \omega=\left(\frac{2 \pi}{0 \cdot 50}=\right) 4 \pi(=12 \cdot 6)\left(\mathrm{rad} \mathrm{~s}^{-1}\right) \tag{1/2}\\ & \mathrm{v}=(\pm) \omega \sqrt{\mathrm{A}^{2}-\mathrm{y}^{2}} \tag{1/2}\\ & \mathrm{v}=(\pm) 4 \pi \sqrt{0 \cdot 05^{2}-0^{2}} \tag{1/2}\\ & \mathrm{v}=0.63 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	3	Alternative : differentiate $\begin{align*} & y=A \sin \omega t \\ & v=A \omega \cos \omega t \tag{1/2}\\ & =0.05 \times 4 \pi \times \cos (0.5 \times 4 \pi) \tag{1/2}\\ & =0.63 \mathrm{~m} \mathrm{~s}^{-1} \tag{1}\\ & v_{\max }=A \omega \tag{1/2}\\ & \quad=0.05 \times 4 \pi \tag{1/2}\\ & \quad=0.63 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$
4	b	ii	$\begin{align*} \mathrm{a} & =(\pm) \omega^{2} \mathrm{y} \quad \text { or } \quad(\pm) \omega^{2} \mathrm{~A} \tag{1/2}\\ & =(4 \pi)^{2} \times 0.050 \tag{1/2}\\ & =(\pm) 7.9 \mathrm{~m} \mathrm{~s}^{-2} \tag{1} \end{align*}$	2	
4	c			1 (10)	

Question			Expected Answer/s	$\begin{gathered} \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Additional Guidance
5	a	i	$\begin{align*} & V_{\mathrm{y}}=V_{\mathrm{p}}+V_{\mathrm{q}} \tag{1/2}\\ & V=\frac{Q}{4 \pi \varepsilon_{\mathrm{o}} r} \tag{1/2} \end{align*}$ $\begin{equation*} \text { OR } V_{y}=\frac{Q_{\mathrm{p}}}{4 \pi \varepsilon_{0} r_{1}}+\frac{Q_{\mathrm{q}}}{4 \pi \varepsilon_{0} r_{2}} \tag{1} \end{equation*}$ (this statement combines both available formula $1 / 2$ marks) $=\frac{-3 \cdot 0 \times 10^{-9}}{4 \pi \times 8 \cdot 85 \times 10^{-12} \times 0 \cdot 15}+\frac{8 \cdot 0 \times 10^{-9}}{4 \pi \times 8 \cdot 85 \times 10^{-12} \times 0 \cdot 15}$ $(1 / 2)$ for both substitutions. $\begin{equation*} =-180+480 \tag{1/2} \end{equation*}$ (cannot award this $1 / 2$ mark unless $V_{\mathrm{y}}=V_{\mathrm{p}}+V_{\mathrm{q}}$ has been indicated) $\begin{aligned} & (=-179 \cdot 8+479 \cdot 6) \\ & =300 \mathrm{~V} \end{aligned}$	2	
5	a	ii	Potential will reduce (to zero) and (then) become negative	2	
5	b		one more up quark (in daughter element) one less down quark (in daughter element)	2 (6)	

Question			Expected Answer/s	Max Mark	Additional Guidance
6	a	i	Force exerted per (unit) charge is constant at any point in the field.	1	
6	a	ii	$\mathrm{E}=$ gradient of line or $\begin{align*} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \tag{1/2}\\ & =\frac{3000-1000}{0 \cdot 124-0 \cdot 044} \tag{1/2}\\ & =25000 \mathrm{~V} \mathrm{~m}^{-1} \tag{1} \end{align*}$	2	
6	a	iii	$\begin{align*} & E=\frac{V}{d} \tag{1/2}\\ & 25000=\frac{5000}{\mathrm{~d}} \tag{1/2}\\ & \mathrm{~d}=0.20 \mathrm{~m}(200 \mathrm{~mm}) \tag{1} \end{align*}$	2	
6	a	iv	Any suitable answer eg - Systematic uncertainty in measuring d / V - Alignment of metre stick - The flame has a finite thickness so cannot get exactly to the zero point. - Factors causing field to be non-uniform. - A p.d. across the resistor for all readings. - Poor calibration of instruments measuring V/d.	1	

Question			Expected Answer/s		Additional Guidance
7	a	i	Force acts on particle at right angles to the direction of its velocity/motion or a central force on particle.	1	
7	a	ii	$\frac{m v^{2}}{r}=B q v$ $(1 / 2)$ for both equations and $(1 / 2)$ for equality $\begin{align*} & r=\frac{m v}{B q} \tag{1/2}\\ & r=\frac{1 \cdot 673 \times 10^{-27} \times v}{B \times 1 \cdot 6 \times 10^{-19}} \tag{1/2}\\ & r=\frac{1 \cdot 05 \times 10^{-8} v}{B} \end{align*}$	2	
7	b		(Component of) velocity at right angles to field $/ v$ $\sin \theta$, results in circular motion/central force. (Component of) velocity parallel to field $v \cos \theta$ is constant/no unbalance force (in this direction). (1)	2	
7	c	i	$\begin{equation*} f=4.0 \mathrm{~Hz}, T=1 / f=0.25 \mathrm{~s} \tag{1/2} \end{equation*}$ time between mirror points $=0.125 \mathrm{~s}$ $\begin{align*} d & =v t \tag{1/2}\\ & =1.2 \times 10^{7} \times 0.125 \tag{1/2}\\ & =1.5 \times 10^{6} \mathrm{~m} \end{align*}$	3	
7	c	ii	Magnetic field strength has decreased.	1	
7	c	iii	$\begin{align*} & r=\frac{1 \cdot 05 \times 10^{-8} v}{B} \tag{1/2}\\ & 1 \cdot 0 \times 10^{4}=\frac{1 \cdot 05 \times 10^{-8} \times 1 \cdot 2 \times 10^{7}}{B} \tag{1/2}\\ & \quad B=1.3 \times 10^{-5} \mathrm{~T} \tag{1} \end{align*}$	2 (11)	

Question			Expected Answer/s	Max	Additional Guidance
8	a	i	Circuit must be able to make required measurements as shown or zero marks. Variable frequency supply, inductor, ammeter in series. Voltmeter in parallel with supply to monitor constant voltage	2	
8	a	ii	$\begin{array}{llllll}k \text { values are } & 5.9 & 6.1 & 6.1 & 5.8 & 6.0\end{array}$ All k values correct (11⁄2) I inversely proportional to f	2	
8	b	i	$\begin{align*} V_{s} & =20(\mathrm{~V}) \tag{1/2}\\ V_{R} & =20-9 \tag{1/2}\\ & =11 \mathrm{~V} \tag{1} \end{align*}$	2	
8	b	ii	$\begin{align*} & E=-L d I / d t \tag{1/2}\\ & -4 \cdot 2=-3 \times d I / d t \tag{1/2}\\ & d I / d t=1 \cdot 4 \mathrm{~A} \mathrm{~s}^{-1} \tag{1} \end{align*}$	2	
8	b	iii	Rate of change of current/magnetic field is at its maximum	1	
8	c		Same maximum back emf Time for back emf to reach zero is greater	2 (11)	

Question			Expected Answer/s	Max	Additional Guidance
9	a		$\begin{align*} B & =\frac{\mu_{0} I}{2 \pi r} \tag{1/2}\\ & =\frac{4 \times \pi \times 10^{-7} \times 0.60}{2 \times \pi \times 0.30} \tag{1/2}\\ & =4.0 \times 10^{-7} \mathrm{~T} \tag{1} \end{align*}$	2	
9	b	i	Magnetic fields/induction are equal in magnitude and opposite in direction	1	
9	b	ii	$\begin{align*} B & =\frac{\mu_{0} I}{2 \pi r} \\ 4 \cdot 0 \times 10^{-7} & =\frac{4 \times \pi \times 10^{-7} \times 1 \cdot 8}{2 \times \pi \times r} \tag{1/2}\\ r & =0.90 \mathrm{~m} \tag{1/2} \end{align*}$ Distance from $A B=0 \cdot 90+0 \cdot 30=1 \cdot 2 \mathrm{~m}$	2 (5)	Ratio method - ok $\begin{align*} & \frac{1 \cdot 80}{0 \cdot 60}=3 \\ & r=3 \times 0 \cdot 30=0 \cdot 90 \mathrm{~m} \tag{1} \end{align*}$

Question			Expected Answer/s	$\begin{gathered} \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Additional Guidance
10	a	i	The sound will change from a higher to a lower pitch/frequency as the car passes.	1	
10	a	ii	$\begin{align*} & f_{o}=f_{s}\left(\frac{v}{v+v_{s}}\right) \tag{1/2}\\ & 480=500\left(\frac{3 \cdot 4 \times 10^{2}}{3 \cdot 4 \times 10^{2}+v_{s}}\right) \tag{1/2}\\ & 480 v_{\mathrm{s}}=20 \times 3.4 \times 10^{2} \\ & v_{\mathrm{s}}=14 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	2	
10	a	iii	(A) The frequency heard will be decreasing. or Has decreased/decreases gradually (1).	1	
			(B) The frequency heard will be decreasing. or Has decreased/decreases gradually (1).	1	
10	b	i	The speed of light is much greater than the speed of the car.	1	
10	b	ii	$\begin{align*} \Delta f & =\frac{2 v f_{T}}{c} \\ 880 & =\frac{2 \times v \times 10 \cdot 5 \times 10^{9}}{3 \cdot 0 \times 10^{8}} \tag{1}\\ v & =13 \mathrm{~ms}^{-1} \tag{1} \end{align*}$	2 (8)	

Question			Expected Answer/s	Max	Additional Guidance
11	a	i	Two sets of coherent waves are necessary (for an interference pattern) or (Interference patterns can be produced by) Division of wavefront.	1	
11	a	ii	$\begin{align*} & \left(\Delta x=\frac{L}{6}\right)=0 \cdot 011(\mathrm{~m}) \tag{1}\\ & \Delta x=\frac{\lambda D}{d} \tag{1/2}\\ & 0 \cdot---------------------11=\frac{\lambda \times 4 \cdot 250}{0 \cdot 25 \times 10^{-3}} \tag{1/2}\\ & \lambda=6 \cdot 5 \times 10^{-7} \mathrm{~m} \tag{1} \end{align*}$	3	
11	a	iii	$\begin{align*} & \% \text { unc in } D=\frac{0 \cdot 005}{4 \cdot 250} \times 100=0 \cdot 12 \% \tag{1/2}\\ & \% \text { unc in } L \end{aligned}=\frac{2}{67} \times 100=3 \cdot 0 \% ~ \begin{aligned} \% \text { unc in } d & =\frac{0 \cdot 01}{0 \cdot 25} \times 100=4 \cdot 0 \% \tag{1/2}\\ \text { Total \% unc } & =\left(3 \cdot 0^{2}+4 \cdot 0^{2}\right)^{1 / 2} \tag{1/2}\\ & =5 \cdot 0 \% \\ \text { Absolute unc } & =0.05 \times 6 \cdot 5 \times 10^{-7} \tag{1/2}\\ & =3 \times 10^{-8} \mathrm{~m} \end{align*}$	3	
11	b		$\%$ uncertainty in λ is greater L (or Δx) will be less or \% uncertainty in L (or Δx) will be greater	2 (9)	

[END OF MARKING INSTRUCTIONS]

