2005 Physics

Standard Grade Credit

Finalised Marking Instructions

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments.

1. A car driver listens to a radio station broadcasting on 1500 kHz .
(a) Calculate the wavelength of the radio broadcast.

Space for working and answer

$$
\begin{aligned}
\mathbf{v}=\mathrm{f} \lambda \quad \lambda & =\frac{\mathbf{v}}{\mathbf{f}} \\
& =\frac{3 \times 10^{8}}{1500 \times 10^{3}}(1 / 2) \\
& =200 \mathrm{~m}
\end{aligned}
$$

$$
\begin{gathered}
\text { DO NOT } \\
\text { WRITE IN } \\
\text { THIS } \\
\text { MARGIN }
\end{gathered}
$$

(b) The table shows the frequency range of the different wavebands on the radio receiver.

Waveband	Frequency range
long wave	$30 \mathrm{kHz}-300 \mathrm{kHz}$
medium wave	$300 \mathrm{kHz}-3 \mathrm{MHz}$
short wave	$3 \mathrm{MHz}-30 \mathrm{MHz}$
FM	$30 \mathrm{MHz}-300 \mathrm{MHz}$

From the table, write down the waveband of the radio station that the driver is listening to.
\qquad
medium wave
(c) A passenger in the car listens to a personal CD player.

The car enters a tunnel.

As the car enters the tunnel, the sound from the radio fades, but the sound from the CD player can still be heard.
(i) Explain why the sound from the radio fades.
radio waves cannot diffract into the tunnel to reach
the aerial of the car radio
(ii) Explain why the sound from the CD player can still be heard.

Mark

2
missing $\times 10^{3} \rightarrow$ deduct $(1 / 2)$ mark (unit/arith error) anything other than $3 \times 10^{8} \rightarrow(1 / 2)$ for formula only
word "diffract" is necessary

NOT "does not need a signal"
2. A television receiver is used to pick up a signal from a television transmitter.
(a) The block diagram represents a television receiver.

(i) On the diagram, label the part of the receiver that has been left blank.
(ii) State the purpose of the aerial. picks up/detects/collect all radio waves (transmitted)
(within range)
(iii) One other necessary part of the television receiver is not shown on the block diagram.

Name this part.
power supply/mains/battery/voltage supply
(iv) Which part of the television receiver transforms electrical energy to light energy?
(picture) tube
(b) In the transmitter, a video signal is combined with a carrier wave to produce a signal for transmission.
(i) Circle the correct phrase to complete this sentence.

The carrier wave has a frequency that is $\left\{\begin{array}{l}\text { higher than } \\ \text { the same as } \\ \text { lower than }\end{array}\right\}$ the frequency of the video signal.
(ii) Why is the carrier wave needed for transmission?
adds energy to the signal for transmission/allows single frequency transmission (of audio and video)/aliows signal to be $\left\{\begin{array}{l}\text { detected at } \\ \text { transmitted to }\end{array}\right\}$ greater distance transmitted to
(iii) Name the process of combining the waves for transmission. modulation/am/fm

1

NOT "screen"
3. A student sets up the apparatus exactly as shown to measure the speed of sound in air.
metal plate and hammer

Striking the metal plate with the hammer produces a sound. Timing starts when the sound reaches microphone A, and stops when the same sound reaches microphone B.
(a) The student carries out the experiment three times and records the results shown in the table.

trial	distance between microphones (m)	time recorded on timer (s)
1	1.00	0.00287
2	1.00	0.00282
3	1.00	0.00286

Use all of the student's results to calculate the value of the speed of sound.

Space for working and answer

$$
\begin{align*}
& \text { average time }=0.00287 \\
& 0.00282 \\
& 0.00286 \\
& 0.00855 / 3=0.00285 \mathrm{~s} \tag{1}\\
& \mathrm{v}=\frac{\mathbf{s}}{\mathrm{t}} \\
& \text { (1/2) } \\
& =\frac{1.00}{0.00285} \\
& \text { (1/2) } \\
& =351 \mathrm{~m} / \mathrm{s} \text { (1) } \\
& \text { 350, 351, 350.9, } 350 \cdot 88
\end{align*}
$$

(b) Suggest a reason why the student's results do not give the value of $340 \mathrm{~m} / \mathrm{s}$ for the speed of sound in air, as quoted in the data sheet.

distance used is not $\mathbf{1 . 0 0} \mathbf{m}$ (as recorded)

\qquad
\qquad

accept 3 calculations of v, then averaging
no attempt at averaging $\rightarrow(1 / 2)$ mark for formula only
4. A mains vacuum cleaner contains a motor that takes 3.0 s to reach full speed after being switched on. The graph shows how the current in the motor varies from the time the motor is switched on.

(a) (i) State the current when the motor has reached full speed.
(ii) Calculate the power of the motor when it has reached full speed.

$$
\begin{aligned}
& \text { Space for working and answer } \\
& \begin{array}{rlrl}
\mathbf{P} & =\mathrm{IV} & (1 / 2) & \text { (1) for } 230(\mathrm{~V}) \\
& =4 \times 230 & (1 / 2) & \\
& =920 \mathrm{~W}
\end{array}
\end{aligned}
$$

(b) The vacuum cleaner is connected to the mains supply by a flex fitted with a fused plug.
(i) All the fuses shown are available.
\square

	13 ampere

Which one of these fuses is most suitable for fitting in the plug?

$$
10 \text { (ampere) }
$$

1 or 0
only for 240 V
if 230 is given as final answer, it must have unit (V) to gain (1) mark max if voltage $\rightarrow \mathbf{2 4 0}$, max (2) marks
any other voltage $\rightarrow(1 / 2)$ for formula
4. (b) (continued)
(ii) State the purpose of the fuse fitted in the plug. to protect the flex

Marks

$\mathrm{K} \& \mathrm{U}$	PS

(iii) Explain why the fuse must be connected in the live wire.
fisolate
to disconnect $\}$ the appliance from the live wire/
to disconnect the high voltage
in the event of a fault
do not accept "appliance"
$\left\{\begin{array}{l}\text { fault } \\ \text { overload }\end{array}\right\} \quad$ is essential
5. A post office contains an emergency alarm circuit. Each of three cashiers has an alarm switch fitted as shown. Lamps come on and a bell sounds if an alarm switch is closed.

The circuit diagram for the alarm is shown.

(a) The alarm circuit is to be controlled by a master switch.

Which position, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D , is most suitable for the master switch?

D

(b) Each lamp has a resistance of 4Ω and the bell has a resistance of 8Ω.

The circuit uses a 12 V supply.
(i) Calculate the total resistance of the alarm circuit.

$$
\begin{align*}
& \text { Space for working and answer } \\
& \begin{aligned}
\frac{1}{R} & =\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \quad \text { (1/2) } \\
& =\frac{1}{8}+\frac{1}{4}+\frac{1}{4} \\
& =\frac{5}{8}
\end{aligned} \tag{1/2}\\
& \therefore R=1.6 \Omega \tag{1/2}
\end{align*}
$$

1

2

K\&U	PS

$\mathbf{R}=\frac{1}{\mathbf{R}_{1}}+\frac{\mathbf{1}}{\mathbf{R}_{2}}+\frac{\mathbf{1}}{\mathbf{R}_{3}} \Rightarrow(\mathbf{0})$ OR $R=\frac{\mathbf{R}_{1} \mathbf{R}_{2}}{\mathbf{R}_{1}+\mathbf{R}_{2}} \quad$ applied twice
$=\frac{5}{8}(\underset{\uparrow}{(}) \frac{8}{5}=1.6 \Omega$
ignore
5. (b) (continued)
(ii) Calculate the current from the supply when the alarm is operating.

Space for working and answer

$$
\begin{align*}
\mathrm{V}=\mathrm{IR} \quad \therefore \mathrm{I} & =\frac{\mathrm{V}}{\mathrm{R}} \tag{1/2}\\
& =\frac{12}{1 \cdot 6} \tag{1/2}\\
& =7.5 \mathrm{~A} \tag{1}
\end{align*}
$$

(c) Brighter lamps are fitted in the alarm circuit.

Explain how this change affects the resistance of the circuit.

(1)
minimum answer:
more current (1)
so less resistance (1)
(marks can be awarded independently)
6. In the eye, refraction of light occurs at the cornea and at the eye lens.
(a) What is meant by refraction of light?
change of speed when travelling from one medium to another
\qquad
(b) The diagram below shows light rays entering the eye of a short-sighted person.

(i) Complete the diagram above to show how the light rays reach the retina of this short-sighted eye.
(ii) A concave lens of focal length 400 mm is needed to correct the vision in this eye.
Calculate the power of this lens.

Space for working and answer

$$
\begin{aligned}
P & =\frac{1}{\mathbf{f}} \\
& =\frac{1}{0 \cdot 4} \\
& =2 \cdot 5 \mathrm{D}
\end{aligned}
$$

(rays must continue to retina)

NOT "bending"
ignore any projection of rays beyond retina accept only 2 outside rays
ignore any negative signs $0.0025 \mathrm{D} \rightarrow(-1 / 2)$ unit error

6. (continued)

(c) Short-sight can be corrected using a laser to reshape the cornea.
(i) For this treatment a pulsed laser is used. Each pulse lasts for a time of $0 \cdot 2 \mathrm{~ms}$ and transfers 5 mJ of energy.

Calculate the power rating of the laser.

Space for working and answer

$$
\begin{align*}
\mathbf{P} & =\frac{\mathbf{E}}{\mathbf{t}} \quad(1 / 2) \tag{1/2}\\
& =\frac{5 \times 10^{-3}}{0 \cdot 2 \times 10^{-3}}\left(\begin{array}{l}
1 / 2) \\
\\
\end{array}\right)=25 \mathrm{~W} \tag{1/2}
\end{align*}
$$

(ii) What effect does laser surgery have on the focal length of the cornea?
(f) increases

Marks

$K \& U$	$P S$

(iii) When a laser is in use, a warning sign similar to the one shown must be displayed.

Why must a warning sign be displayed?

accept $\frac{5}{0 \cdot 2}$ as correct substitution
accept focal length
NOT focal point
the
this
radiation is harmful \rightarrow (1) mark
laser
but NOT radiation is harmful $\rightarrow(0)$ mark
(on its own)
NOT it is dangerous (repeating stem given)
7. Radioactive sources are used in medical investigations.
(a) A technician uses a Geiger-Muller tube, a counter and a timer to measure the half-life of a radioactive source. The source and the tube are placed in a lead box to exclude background radiation.

(i) Describe how the apparatus is used to measure the half-life of the radioactive source.
count measured for fixed time period (1);
several counts taken at intervals (1)
plot graph of count rate(-v-time) (1)
\qquad
\qquad
\qquad
(ii) The half-life of the source is 10 minutes. The initial count rate is 1200 counts per minute.
Calculate the count rate after 40 minutes.

Space for working and answer	$(1 / 2)$ for halving $(1 / 2)$ for correct 0$\rightarrow 1200$	number of $1 / 2$ life
10	$\rightarrow 600$	periods
20	$\rightarrow 300$	
30	$\rightarrow 150$	
40	$\rightarrow \quad 75$ (counts per minute)	(1)

if $\mathrm{Bq}(-1 / 2)$ (unit error)
7. (continued)
(b) Dose equivalent measures the biological effect of radiation.
(i) What unit is used to measure dose equivalent?
sievert or Sv
(ii) State two factors that dose equivalent depends on.

2 from type of radiation / type of tissue / weighting
factor / quality factor / time (of exposure) / energy (absorbed)/ absorbed dose/mass of tissue
(2×1)
8. The circuit shown is used to investigate the switching action of a transistor.

(a) Draw the symbol for a variable resistor in the dotted box in the above diagram.
(b) The graph shows how the ammeter reading varies with the voltmeter reading when the resistance of the variable resistor is changed.

(i) State the voltage at which the transistor starts to conduct.

NOT

1 or 0
8. (b) (continued)
(ii) Calculate the voltage across the variable resistor when the transistor starts to conduct.

Space for working and answer

$$
\begin{align*}
& \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{VR}}+\mathrm{V}_{\mathrm{R}} \tag{1/2}\\
& 5=\mathrm{V}_{\mathrm{VR}}+0.7 \\
& \therefore \mathrm{~V}_{\mathrm{VR}}=4.3 \mathrm{~V} \tag{1/2}
\end{align*}
$$

(iii) Calculate the resistance of the variable resistor when the

Space for working and answer

$$
\begin{aligned}
& \frac{\mathrm{V}_{\mathrm{VR}}}{\mathrm{~V}_{\mathrm{R}}} \\
= & \frac{\mathrm{R}_{\mathrm{VR}}}{\mathrm{R}_{\mathrm{R}}} \quad(1 / 2) \\
\therefore \quad & \frac{4 \cdot 3}{0 \cdot 7} \\
= & =\frac{\mathrm{R}_{\mathrm{VR}}}{1000} \quad(1 / 2) \\
\therefore \quad & \mathrm{R}_{\mathrm{VR}}
\end{aligned}=6143 \Omega \quad(1) \quad(=6 \cdot 1 \mathrm{k} \Omega)
$$

$$
\begin{aligned}
& \text { OR: } V=\mathrm{IR} \quad \therefore 0.7=\mathrm{I} \times 1000 \\
& \therefore I=\frac{0.7}{1000} \\
& V=\operatorname{IR}(1 / 2) \quad \therefore \mathbf{R}=\frac{\mathrm{V}}{\mathrm{I}} \\
& =\frac{4.3}{0.7} \times 1000 \quad(1 / 2) \\
& =6143 \Omega \text { (1) }
\end{aligned}
$$

9. A machine packs eggs into boxes. The eggs travel along a conveyor belt and pass through a light gate that operates a counter. After the correct number of eggs has passed through the light gate, the counter resets and the box is exchanged for an empty one.

(a) The light gate consists of a light source and detector.

State a suitable component to be used as the detector.
(b) Part of the counter circuit is shown.

The input to the counter goes to logic 1 every time an egg passes through the light gate. When the reset to the counter goes to logic 1 , the outputs go to zero.

The table below shows the logic states of the three outputs A, B and C of the counter as eggs pass the detector.

Number of eggs	A	B	C
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

NOT light sensor
NOT solar panel

9. (b) (continued)

(i) Complete the truth table for the logic gate shown.

P	Q	R
0	0	$\mathbf{0}$
0	1	$\mathbf{0}$
1	0	$\mathbf{0}$
1	1	$\mathbf{1}$

(1 or 0)
(ii) How many eggs are being packed into each box when the logic gate is connected to the counter outputs as shown?

5
(iii) Complete the diagram below to show how the logic gate should be connected to the counter outputs so that six eggs can be packed in a box.

1
(1 or 0)
\qquad

1
1
,

10. A bobsleigh team competes in a race.

(a) Starting from rest, the bobsleigh reaches a speed of $11 \mathrm{~m} / \mathrm{s}$ after a time of $3 \cdot 2 \mathrm{~s}$.

Calculate the acceleration of the bobsleigh.

Space for working and answer

$$
\begin{align*}
a & =\frac{v-u}{t} \\
& =\frac{11(-0)}{3 \cdot 2} \\
& =3.4 \mathrm{~m} / \mathrm{s}^{2}
\end{align*}
$$

(b) The bobsleigh completes the 1200 m race in a time of 42.0 s .

Calculate the average speed of the bobsleigh.

Space for working and answer

$$
\begin{align*}
\mathbf{v} & =\frac{\mathbf{s}}{\mathbf{t}} \\
& =\frac{1200}{42} \\
& =28.6 \mathrm{~m} / \mathrm{s} \tag{1/2}
\end{align*}
$$

(c) Describe how the instantaneous speed of the bobsleigh could be measured as it crosses the finish line.
measure length of bobsleigh ($1 / 2$)
set up a light gate and timer ($1 / 2$)
\qquad
if $\mathrm{a}=\frac{\mathrm{v}}{\mathrm{t}} \rightarrow(0)$ marks (wrong physics)

3, 3•4, 3•44, $3 \cdot 438$
accept $\mathrm{m} / \mathrm{s} / \mathrm{s}, \mathrm{m} \mathrm{s}^{-2}, \mathrm{~m} \mathrm{~s}^{-1} \mathrm{~s}^{-1}$

29, 28.6, 28.57, $28 \cdot 571$
speed $=\frac{\text { length of bobsleigh }}{\text { time recorded }\left\{\begin{array}{l}\text { at light gate } \\ \text { on timer }\end{array}\right\}} \Rightarrow$ (2) marks
10. (continued)
(d) To travel as quickly as possible, frictional forces must be minimised.

State two methods of reducing friction.
streamlining/lubrication
(2×1)
2

streamlining/aerodynamic shape lubrication less weight/less mass smooth surfaces using rollers

11. A train travels up a mountain carrying skiers in winter and tourists in summer.

(a) The graph shows how the speed of the train varies with time for the journey in winter.

(i) Calculate the acceleration of the train during the first 200 s .

Space for working and answer

$$
\begin{align*}
\mathbf{a} & =\frac{v-u}{t} \quad(1 / 2) \tag{1/2}\\
& =\frac{6.5(-0)}{200} \quad(1 / 2) \\
& =0.0325 \mathrm{~m} / \mathrm{s}^{2}
\end{align*}
$$

(ii) Calculate the length of the journey.

Space for working and answer

$$
\begin{aligned}
\text { distance } & =\text { area under graph } \quad(1 / 2) \\
& =(1 / 2 \times 200 \times 6 \cdot 5)+(200 \times 6 \cdot 5)+(1 / 2 \times 200 \times 6 \cdot 5) \quad(1 / 2) \\
& =650+1300+650 \\
& =2600 \mathrm{~m}
\end{aligned}
$$

$\mathrm{a}=\frac{\mathrm{v}}{\mathrm{t}} \Rightarrow(0)$ marks (wrong physics)
$0.03,0.033,0.0325$

11. (continued)

(b) The mass of the train is 15000 kg . During the journey the train travels through a height of 460 m .
Calculate the potential energy gained by the train.
Space for working and answer

$$
\begin{aligned}
\mathrm{E}_{\mathbf{P}} & =\mathrm{mgh} \quad(1 / 2) \\
& =15000 \times 10 \times 460 \quad(1 / 2) \\
& =6.9 \times 10^{7} \mathrm{~J}
\end{aligned}
$$

(c) In summer, the train takes a time of 1200 s to travel up the mountain so that tourists can enjoy the view. The acceleration and deceleration of the train remain the same as in winter. The graph below again shows the motion of the train in winter.

Using the axes given above, sketch a second graph showing the motion of the train in summer.
(1)
(1)
motion of the train in summer.
(Calculations are not required.) maximum speed less
time duration $=1200 \mathrm{~s}$


```
accept 9.8 / 9.81 / 10 forg
6.762 \times 107
```

(2) independent marks
12. An electric toothbrush contains a rechargeable battery. The battery is recharged using a transformer connected to a 230 V a.c. supply. The primary coil and the core of the transformer are sealed into the base unit. The 5 V secondary coil of the transformer is part of the toothbrush.

To charge the battery, the toothbrush is placed on the base unit, with the switch in the "charge" position.
(a) Identify the component labelled X .
diode
(b) The primary coil of the transformer has 6440 turns.
(i) Assuming the transformer is 100% efficient, calculate the number of turns on the secondary coil.

Space for working and answer

$$
\begin{align*}
& \frac{V_{P}}{V_{S}}=\frac{n_{P}}{n_{S}} \quad(1 / 2) \tag{1/2}\\
& \frac{230}{5}=\frac{6440}{n_{\mathrm{S}}} \quad(1 / 2) \tag{1}
\end{align*}
$$

(ii) When the toothbrush is charging, the current in the secondary coil is 50 mA .
(A) Calculate the output power of the transformer.

$$
\begin{align*}
& \text { Space for working and answer } \\
& \begin{aligned}
\mathbf{P} & =\mathbf{I V} \\
& =\mathbf{5 0} \times \mathbf{1 0}^{-3} \times \mathbf{5} \\
& =0.25 \mathrm{~W}
\end{aligned} \tag{1/2}
\end{align*}
$$

NOT LED

12. (b)(ii) (continued)

(B) In practice, the transformer is only 40% efficient.

Calculate the current in the primary coil.

Space for working and answer		
Efficiency $=\frac{\mathbf{P}_{\text {out }}}{\mathbf{P}_{\text {in }}}$	(1/2)	$\mathbf{P}_{\text {in }}=\mathbf{I}_{\mathbf{P}} \mathbf{V}_{\mathbf{P}} \quad(1 / 2)$
$\therefore \frac{40}{100}=\frac{0.25}{\mathbf{P}_{\text {in }}}$	$(1 / 2)$	$\mathbf{I}_{\mathbf{P}}=\frac{\mathbf{P}_{\text {in }}}{\mathbf{V}_{\mathbf{P}}}$
$\therefore \mathbf{P}_{\text {in }}=\frac{0.25 \times 100}{40}$	$=\frac{0.625}{230} \quad(1 / 2)$	
$=0.625(\mathrm{~W})$	$=0.0027 \mathrm{~A} \quad(1)$	

(iii) State one reason why a transformer is less than 100% efficient.
heat in winding
loss + location (1) eg (eddy) currents in core
1
(c) Sketch the trace seen when an oscilloscope is connected across:
(i) AB when the battery is being charged;
(ii) CD when the toothbrush is removed from the base unit and the switch is in the "use" position.
Values need not be shown on either sketch.

AB

CD
\square

2 calculations ($\times 1$) mark each
(1) mark for final answer
$0.003,0.0027,0.00272,0.002717$

1 or $0 \quad$ accept heat in core magnetisation of core
sound in core sound in windings hysteresis energy loss in wires

CD - above or below independent marks
13. The apparatus shown is used to calculate the value of the specific latent heat of vaporisation of water.

The electric kettle is rated at 3.0 kW . The kettle containing water is placed on the balance. The lid of the kettle is removed and the kettle is switched on. Once the water starts to boil, the kettle is left switched on for a further 85.0 s before being switched off.
(a) Calculate how much electrical energy is supplied to the kettle in 85.0 s .

Space for working and answer

$$
\begin{aligned}
\mathrm{E} & =\mathrm{Pt} \\
& =3 \times 10^{3} \times 85 \\
& =2.55 \times 10^{5} \mathrm{~J}
\end{aligned}
$$

(b) The reading on the balance decreases by 0.12 kg during the $85 \cdot 0 \mathrm{~s}$.
(i) Assuming all the electrical energy supplied is transferred to the water, calculate the value of the specific latent heat of vaporisation of water obtained in the experiment.

Space for working and answer

$$
\begin{align*}
\mathbf{E}_{\mathrm{h}}=\mathbf{m} \ell^{(1 / 2)} \therefore \ell & =\frac{\mathbf{E}_{\mathrm{h}}}{\mathbf{m}} \\
& =\frac{2.55 \times 10^{5}}{0.12} \tag{1/2}\\
& =2.13 \times 10^{6} \mathrm{~J} / \mathrm{kg}
\end{align*}
$$

(1)
(ii) The accepted value for the specific latent heat of vaporisation of water is $22.6 \times 10^{5} \mathrm{~J} / \mathrm{kg}$.

Suggest why there is a difference between this value and the value obtained in (b)(i).
no conversion to watts ($-1 / 2$) mark (unit error)
$2 \times 10^{6}, 2 \cdot 1 \times 10^{6}, 2 \cdot 13 \times 10^{6}, 2 \cdot 125 \times 10^{6}$
(b)(i) answer smaller water splashing out
(b)(i) answer bigger condensation heat transferred to surroundings
14. An astronomer uses a telescope and a camera to take a photograph of a distant galaxy.

(a) The table shows a number of lenses that are available for use in the telescope.

lens	type	focal length (mm)	diameter (mm)
P	concave	15	10
Q	convex	15	10
R	convex	1000	10
S	convex	1000	100
T	concave	1000	100

From the table, select the most suitable lenses for use as the eyepiece and the objective of the telescope.
Eyepiece \square Objective S (2×1)
(b) The astronomer examines the photograph using a magnifying glass.

Complete the ray diagram to show how the magnifying glass can be used to form an image of the photograph.
Your diagram must show the position of the image.

3

K\&U	PS

independent marks
(1) for image is dependent on 2 rays
15. A spacecraft consisting of a rocket and a lunar probe is launched from the Earth to the Moon.
(a) At lift-off from the Earth, the spacecraft has a weight of 7100 kN . The thrust from the engines is 16000 kN .

(i) Calculate the unbalanced force acting on the spacecraft.

Space for working and answer

$$
\begin{aligned}
F & =16000-7100 \\
& =8900 \mathrm{kN}
\end{aligned}
$$

(1)
(ii) Calculate the mass of the spacecraft.

Space for working and answer

$$
\begin{aligned}
& W \quad=\mathbf{m g} \\
& \therefore m=\frac{W}{g} \\
& \quad=\frac{7100 \times 10^{3}}{10} \\
& \quad=710,000 \mathrm{~kg} \quad\left(=7.1 \times 10^{5} \mathrm{~kg}\right)(1)
\end{aligned}
$$

Marks

$K \& U$	PS

15. (a) (continued)

(iii) Calculate the initial acceleration of the spacecraft.

Space for working and answer

$$
\begin{align*}
\mathbf{F}=\mathrm{ma}^{(1 / 2)} \therefore \quad \mathbf{a} & =\frac{\mathrm{F}}{\mathrm{~m}} \\
& =\frac{8900 \times 10^{3}}{7.1 \times 10^{5}} \tag{1/2}\\
& =12.5 \mathrm{~m} / \mathrm{s}^{2} \tag{1}
\end{align*}
$$

(b) As it approaches the Moon, the probe is detached from the rocket and goes into lunar orbit.
(i) While orbiting the Moon, the probe takes images of the Moon's surface. This data is sent to Earth using radio waves. The distance between the probe and Earth is 384000 km .

Calculate the time taken for the data to reach Earth.

Space for working and answer

$$
\begin{align*}
\mathbf{v}=\frac{\mathbf{s}}{\mathbf{t}} \quad(1 / 2) \quad \therefore \quad \mathbf{t} & =\frac{\mathbf{s}}{\mathbf{v}} \\
& =\frac{384000 \times 10^{3}}{3 \times 10^{8}} \tag{1/2}\\
& =1.28 \mathrm{~s}
\end{align*}
$$

(1)
(ii) The Moon is a natural satellite and the probe is an artificial satellite.

Explain what a satellite is.
an object that orbits another object
\qquad
(iii) The probe orbits the Moon because of the Moon's gravitational field.

Explain why the probe does not crash into the Moon.
forward speed means it continually misses the Moon
while falling/it is in projectile motion
$13,12 \cdot 5,12 \cdot 54,12 \cdot 535$
accept: an object that orbits $\left\{\begin{array}{l}\text { Earth } \\ \text { a planet } \\ \text { a star }\end{array}\right.$

