

2009 Physics

Standard Grade – Credit

Finalised Marking Instructions

© Scottish Qualifications Authority 2009

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from the Question Paper Operations Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Question Paper Operations Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Physics Standard Grade – Credit

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

- (a) Marks for each candidate response must <u>always</u> be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader/Principal Assessor. You can do this by posting a question on the Marking Team forum or by e-mailing/phoning the emarker Helpline. Alternatively, you can refer the issue directly to your Team Leader by checking the 'Referral' box on the marking screen.
- (b) Marking should always be positive, ie marks should be awarded for what is correct and not deducted for errors or omissions.

Physics – Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

1.	Answers V=IR $7\cdot5=1\cdot5R$ $R=5\cdot0$ Ω	Mark + Comment (¹ / ₂) (¹ / ₂) (1)	Issue Ideal answer
2.	5·0 Ω	(2) Correct answer	GMI 1
3.	5.0	(1 ¹ / ₂) Unit missing	GMI 2 (a)
4.	4·0 Ω	(0) No evidence/wrong answer	GMI 1
5.	Ω	(0) No final answer	GMI 1
6.	$R = \frac{V}{I} = \frac{7.5}{1.5} = 4.0 \Omega$	$(1\frac{1}{2})$ Arithmetic error	GMI 7
7.	$R = \frac{V}{I} = 4.0 \Omega$	(¹ / ₂) Formula only	GMI 4 and 1
8.	$R = \frac{V}{I} = \underline{\qquad} \Omega$	(¹ / ₂) Formula only	GMI 4 and 1
9.	$R = \frac{V}{I} = \frac{7 \cdot 5}{1 \cdot 5} = \underline{\qquad} \Omega$	(1) Formula + subs/No final answer	GMI 4 and 1
10.	$R = \frac{V}{I} = \frac{7.5}{1.5} = 4.0$	(1) Formula + substitution	GMI 2 (a) and 7
11.	$R = \frac{V}{I} = \frac{1.5}{7.5} = 5.0 \Omega$	(¹ / ₂) Formula but wrong substitution	GMI 5
12.	$R = \frac{V}{I} = \frac{75}{1.5} = 5.0 \Omega$	(¹ / ₂) Formula but wrong substitution	GMI 5
13.	$R = \frac{I}{V} = \frac{7.5}{1.5} = 5.0 \Omega$	(0) Wrong formula	GMI 5
14.	$V = IR 7.5 = 1.5 \times R R = 0.2 \Omega$	$(1\frac{1}{2})$ Arithmetic error	GMI 7
15.	$V = IR$ $R = \frac{I}{V} = \frac{1.5}{7.5} = 0.2 \Omega$	(¹ / ₂) Formula only	GMI 20

Part Two: Marking Instructions for each Question

Questio	n	Expected Answer/s	Max Mark	Additional Guidance	
1 a	i	3×10^8 m /s	1	Must have correct unit (1) or (0) Accept 300 000 000 m/s Accept 300 million m/s NOT '(same as) speed of light' alone	
 1 a	- <u>—</u> ii	$\lambda = \frac{v}{f} \qquad (\frac{1}{2})$ $= \frac{3 \times 10^8}{5 \times 10^9} \qquad (\frac{1}{2})$ $= 0.06 \text{ m} \qquad (1)$	2	If GHz incorrectly or not converted treat as unit error (only penalise once)	
1 b		v = 2×10^8 (m/s) (1) data mark t = $\frac{d}{v}$ (¹ / ₂) = $\frac{40000}{2 \times 10^8}$ (¹ / ₂) = 2×10^{-4} s (0.0002 s) (1)	3	Must use correct value for v If any other value for v is used then it must be from the <i>Speed of light in materials</i> table in the Data sheet – but lose the data mark – can get 2 for correct use of relationship. If any other value for v is used (ie not from the table) then ($\frac{1}{2}$) mark max for correct equation selection. If candidates use 3.0×10^8 for v then sig fig issue, accept answers in the following range for 2 marks: 1×10^4 , 1.3×10^4 , 1.33×10^4	
1 c		Carry more information OR less/no (electrical) interference OR cheaper OR larger bandwidth/capacity OR less amplifiers needed etc OR less repeaters required OR less signal loss OR lighter OR more secure (or similar)	1	NOT : 'faster' alone Accept faster ONLY if qualified by rate of data transfer NOT : 'less recharging' 'more efficient' ' no signal loss'	
2 a		Sound (waves) with frequency above 20 000 Hz or 20 kHz OR sound (waves) above/beyond the range of human hearing	1	Must clearly indicate frequency/range. NOT ambiguous answers which could be interpreted as being loudness eg 'sounds you can't hear' NOT 'high frequency sounds' alone	

Question		Expected Answer/s	Max Mark	Additional Guidance	
2	b	1500 m/s	1	Must have correct unit (1) or (0)	
2	c	$d = v \times t \qquad (\frac{1}{2})$ $= 1500 \times 0.36 \qquad (\frac{1}{2})$ $= 540 \text{ (m)} \qquad (1)$ Must have unit if this is final answer So depth = $\frac{540}{2}$ $= 270 \text{ m} \qquad (1)$	3	If correct speed (1500) is used in (c) but 2(b) is incorrect, can still get full marks. If no division by two then (2) marks max. Note : 1 mark is allocated for division by two: the division of time or distance by two can occur at any point, eg by starting with half the time value (0.18 s) or halving the calculated distance	
3	a	Light (waves/signals) travels faster than sound (waves) OR converse statement	1	NOT : 'sound is slower' OR ' light is faster' - must have a comparison	
3	b		2	 (1) for approx. same frequency as modulated signal (accept between 10 and 26 waves) (1) for <u>approx</u>. constant amplitude even if amplitude is very small Allow for some y-shift. 	
3	c	$P_{out} = P_{gain} \times P_{in} \qquad (\frac{1}{2})$ = 750 W (1)	2	If there is no (or an incorrect) conversion of 30 mW then treat as unit error (deduct (1/2) mark)	

Qu	estio	n	Expected Answer/s	Max Mark	Additional Guidance
4	a	i	(Current) increases OR gets bigger OR rises	1	 (1) mark for a correct statement (0) marks for '(current) <u>changes</u>' only
4	a	ii	A (position) S B This position gives maximum <u>current</u> OR this position gives least/minimum <u>resistance</u> (must be 'least' or equivalent, not 'less') OR This position gives greatest/maximum <u>voltage</u> <u>ACROSS</u> fan	1	 (1) for correct position (1) for correct justification Accept a <u>correct</u> statement referring to minimum resistance OR to maximum current - even if answer to 4 (ii) (A) is wrong NOT answers relating to power or energy NOT voltage <u>to/through</u> fan
4	b	i	The commutator ensures/keeps current (is) in the correct direction OR Reverses/changes the direction of current every half turn OR Keeps the coil rotating (in the same direction)	1	Accept an answer which indicates function of commutator to allow current to always be in same direction through field NOT 'smoother rotations' (does not answer question)
4	b	ii	Carbon brushes do not wear (away) the commutator OR Carbon brushes do not damage the commutator OR withstand heat better OR to allow low friction contact	1	 (1) for correct statement Accept an answer which indicates one <u>valid</u> reason for carbon brushes Answer could relate to brushes wearing to the shape of the commutator NOT 'better conductor' NOT 'better conductor' NOT 'cheaper' NOT 'non-magnetic' NOT 'don't rust'

Qu	estio	n	Expected Answer/s	Max	Additional Guidance
				Mark	
4	c	i	X	1	(¹ / ₂) for each correct direction Arrows should be reasonably vertical.
4	c	ii	Reverse the magnetic field direction OR Reverse current OR Change the direction of the current	1	 (1) for a correct statement which would reverse the direction of field or current e.g. swap battery connections, swap north and south (magnets/poles), swap poles reverse polarity NOT 'swap/change magnets' NOT 'swap/change battery' +/- rule applies If candidates give answer as "reverse field or reverse current" then 1 mark If candidates give answer as "reverse field and reverse current" then 0 marks as changes would cancel.

Question			Expected Answer/s	Max Mark	Additional Guidance	
5	a		Switch is connected to the neutral/ blue wire OR heating elements would always be live, even if switch is off OR there is no fuse in the fire/the resistor should be a fuse OR Blue (neutral) and brown (live) wires should be swapped OR Blue (neutral) and brown (live) wires are wrong way round	1	 (1) mark for any correct statement NOT '(blue and brown) wires are in the wrong place' NOT any mention of earth/green and yellow wire 	
5	b	i	Total power rating = $350 + 150 + 300$ (¹ / ₂) = $800 (W)$ (¹ / ₂) Power _{standby} = 9% of 800 = $800 \times \frac{9}{100}$ (¹ / ₂) = $72 (W)$ (¹ / ₂)	2	If the power for the electric fire is included at any stage then 0 marks. (1) mark for getting total power = (800 W) (¹ / ₂) mark for correct substitution in percentage calculation Unit not required in final answer, but deduct (¹ / ₂) if wrong unit given OR take percentage of individual powers then add: 31.5 + 13.5 + 27.0 = 72 (W)	
5	b	ii	$E = P \times t \qquad (\frac{1}{2})$ = 0.072 × 14 × 24 ($\frac{1}{2}$) = 24 (kWh) (1) Accept 1 - 4 sig figs (sig fig: 20, 24, 24.2, 24.19)	2	Must use answer from Q5 (b) (i) (½) mark deduction for wrong (or no) conversion of W into kW or days into hours. Note: only (½) mark max deduction for unit error. Award (1) mark for correct numerical final answer, unit not required, but deduct (½) if unit is not kWh or written out in full (eg NOT kWhrs).	
6	a		Hold lens between distant $\binom{1}{2}$ object and paper (or similar) $\binom{1}{2}$ Use lens to focus/get sharp/clear image $\binom{1}{2}$ Measure distance from lens to paper $\binom{1}{2}$	2	(¹ / ₂) mark for each statement some sense that object is distant eg a window(frame), trees across the playground, etc also accept description of parallel rays from object	
6	b		Refraction is when speed/wavelength changes (1) when the light travels into the material or lens/from one medium to another (1)	2	 (1) mark for each correct statement (independent marks) NOT 'light changes direction' alone or 'light bends' alone Can still get one mark for change of medium 	

Que	estio	n	Expected Answer/s	Max Mark	Additional Guidance
6	c	i	r	2	<u>Independent</u> marks for each path (1) mark for showing correct path within glass – path should show clear refraction (not along the normal) (1) mark for showing correct refraction at the second surface – refraction should be away from normal For a correctly drawn diagram the path of the emergent ray should show approx. same direction as given ray. If candidates get first refraction wrong, eg draw it below the normal, then they can still get second mark if they show a correct second refraction for their ray.
6	c	ii		1	Only one angle r of refraction required, but if refracted angle indicated is in air, then second normal must be shown.
7	a		Type of radiationSourceBeta onlyCBoth alpha and gammaB	1	(1/2) for each correct answer +/- rule if more than one source selected in either answer
7	b		(1/2) for 4 half-lives (1/2) for halving at each stage $18000 \rightarrow 9000 \rightarrow 4500 \rightarrow 2250$ $\rightarrow 1125$ (Activity) = 1125 Bq (1)	2	First two ½ marks are independent Candidates who show less than/more than four halvings can gain second ½ mark but all stages must be numerically halved .
8	a		The voltage (gradually) rises OR increases OR reaches 6V	1	 (1) mark for a correct statement NOT 'the voltage is 6V ' – must be some implication of voltage increasing
8	b		Reduce value of resistor (R)/reduce resistance (1) Reduce value of the capacitor/reduce capacitance (1)	2	 (1) mark for each change NOT 'use 'smaller' capacitor/resistor' NOT 'reduce size of capacitor/resistor' NOT 'lower the capacitor/resistor' NOT 'remove the resistor' NOT 'decrease/reduce/change the voltage' ALLOW 'increase the voltage'

Question		n	Expected Answer/s	Max Mark	Additional Guidance
8	c	i	$V_{S} = V_{LDR} + V_{53k\Omega}$ $6 \cdot 0 = 0 \cdot 7 + V_{53k\Omega} \qquad (1/2)$ $V_{53k\Omega} = 5 \cdot 3 V \qquad (1/2)$	1	Subscripts not required in equation Deduct (¹ / ₂) if wrong or missing unit
8	c	ii	$\frac{V_Q}{V_{53k\Omega}} = \frac{R_{LDR}}{R_{53k\Omega}} \qquad (1/2)$ $\frac{0 \cdot 7}{5 \cdot 3} = \frac{R_{LDR}}{53000} \qquad (1/2)$ $R_{LDR} = 7000\Omega \qquad (1)$ OR $V_{LDR} = V_S \times \frac{R_{LDR}}{R_{LDR} + R_{53k\Omega}} \qquad (1/2)$ $0 \cdot 7 = 6 \cdot 0 \times \frac{R_{LDR}}{R_{LDR} + 53000} \qquad (1/2)$ $0 \cdot 7 \times (R_{LDR} + 53000) = 6 \times R_{LDR}$ $0 \cdot 7 \times 53000 = 5 \cdot 3 \times R_{LDR}$ $R_{LDR} = 7000\Omega \qquad (1)$	2	Accept value given in answer from $8(c)(i)$ OR I = V/R $= 5 \cdot 3/53000$ $= 0 \cdot 0001 (A)$ then R = V/I $= 0 \cdot 7/0 \cdot 0001$ $= 7000 \Omega$ (½) for <u>using both equations</u> (½) for both substitutions (1) for final answer
9	a		LDR OR solar cell OR photodiode OR phototransistor OR CCD	1	NOT 'light sensor' NOT 'light gate' NOT 'camera' Accept correct symbols in place of names
9	b		GasSensorABCDHydrogen0101Helium1110Oxygen1010	2	(1) mark for each correct row – no ½ marks

Question		n	Expected Answer/s		Max Mark	Additional Guidance	
9	c	i	OR (gate)		1		
9	c	ii	A $A = 0$ B = 1 C = 0 D = 1		2	(1) for all correct	
			B hydrogen			(1) or (0) (only answer possible)	
10	a		BC and DE		1	(¹ / ₂) for each correct part +/- rule if more than two parts given.	
						Do not accept single letters e.g. B and D	
						NOT 'where graph is flat/horizontal' NOT 'where speed is constant'	
10	b	i	$=$ 90.0 \times 10	$\binom{1}{2}$ $\binom{1}{2}$ $\binom{1}{2}$ $\binom{1}{2}$	2	Accept g = 9.81 :W = 883 N 2 - 5 sig fig {880, 883, 882.9, 882.90}	
						Accept g = 9.8 : W = 882 N 1 - 4 sig fig {900, 880, 882, 882.0}	
10	b	ii	$F_{res} = F_u - F_d$	(1/2)	$-\frac{1}{3}$	Accept answer for weight from b(i)	
			= 958.5 - 900 = 58.5 (N)	(1/2)			
			m	(1/2)		Can use wrong answer for F_{res} if arith error BUT:	
			$a = \frac{58 \cdot 5}{90 \cdot 0}$	(1/2)		$(\frac{1}{2})$ mark max for formula only if no attemp is made at subtraction to get F_{res} .	
			$= 0.65 \text{ ms}^{-2}$	(1)			
			for W = 880 $a = 0.87 \text{ ms}^{-2}$ for W = 882 $a = 0.85 \text{ ms}^{-2}$ for W = 882.9 $a = 0.84 \text{ ms}^{-2}$ for W = 883 $a = 0.839 \text{ ms}^{-2}$				

_

Que	estio	n	Expected Answer/s		Max Mark	Additional Guidance	
11	a		$a = \frac{v - u}{t}$ $= \frac{0 \cdot 6 - 0}{1 \cdot 5}$ $= 0 \cdot 4 \text{ m/s}^2$	(¹ / ₂) (¹ / ₂) (1)	2		
11	b	i	$E_p = m g h$ = 0.02 × 10 × 0.8 = 0.16 J	(¹ / ₂) (¹ / ₂) (1)	2	Accept g = 9.81 or 9.8: 1 – 3 sig fig {0.2, 0.16, 0.157}	
11	<u></u> . <u>b</u> .	ii	$E_{p} = Ek = 0.16 J$ for cons of energy or implied $E = \frac{1}{2} mv^{2}$ $0.16 = \frac{1}{2} \times 0.02 \times v^{2}$ $v = 4 m/s$	(1) (¹ / ₂) (¹ / ₂) (1)		Accept answer for E_p from 11 (b) (i) OR $v = \sqrt{(2gh)}$ (1) for implied conservation of E and ($\frac{1}{2}$) for equation $= \sqrt{(2 \times 10 \times 0.8)}$ ($\frac{1}{2}$) = 4 m/s (1) If 0.2 J in (b)(i) then $v = 4$ If 0.157J in (b)(i) then $v = \{4, 4.0, 3.96\}$ 1 – 3 sig figs	

Question		n	Expected Answer/s		Additional Guidance	
12	a		220 000 N	1	Must have correct unit (1) or (0) NOT '220 001 N' NOT 'same as weight'	
12	ь	i	distance = area under graph (½) $= \left(\frac{1}{2} \times 240 \times 16\right) + \left(480 \times 16\right) + \left(\frac{1}{2} \times 480 \times 16\right) (\%)$ $= 1920 + 7680 + 3840$ $= 13440 \text{ m} $ (1)	2	(0) marks for use of $d = v \times t$ If there is an incorrect substitution then $\frac{1}{2}$ max for (implied) formula	
12	— - b	ii	$v = \frac{d}{t}$ (½) = $\frac{13440}{1200}$ (½) = $11 \cdot 2 \text{ m/s}$ (1)	2	·	
13	a		To reduce power loss OR to reduce energy loss (in the cables) OR to reduce heat loss OR to reduce current	1		
13	ь	i	$\frac{N_{S}}{N_{P}} = \frac{V_{S}}{V_{P}} $ (½) $\frac{N_{S}}{2000} = \frac{132000}{20000} $ (½) $N_{S} = 13200 \text{ (turns)} $ (1)	2	Intermediate rounding should be treated as arithmetic error. Unit not required but deduct (½) if wrong unit given eg t or T	

Question			Expected Answer/s		Max Mark	Additional Guidance	
13	b	ii	$\frac{I_{\rm S}}{I_{\rm P}} = \frac{N_{\rm P}}{N_{\rm S}}$	(1/2)	2		
			$\frac{I_{\rm s}}{5000} = \frac{2000}{13200}$	(1/2)			
			$I_{\rm S} = \frac{5000 \times 2000}{13200}$				
			I _s = 758A	(1)			
			OR				
			$\mathbf{V}_{\mathbf{P}} \times \mathbf{I}_{\mathbf{P}} = \mathbf{V}_{\mathbf{S}} \times \mathbf{I}_{\mathbf{S}}$	(½)			
			$20000 \times 5000 = 132000 \times I_s$	(½)			
			I _s = 758A	(1)			
			1 – 3 sig figs {800, 760, 758}				
13	c		$R = 220 \times 0.31$ (= 68.2 (\Omega))	(1)	3	if I = 800 A then gives 40 MW (s.f 44, 43.6)	
			$P = I^2 R$	(1/2)		if I = 760 A gives 39 MW (s.f. 40, 39·4, 39·39)	
			$= 758^2 \times 68 \cdot 2$	(1/2)		Power loss can be worked out for	
			= 39.2 MW	(1)		1 km (2 marks) and then multiplied by 220 (1 mark)	
			1 – 4 sig figs: {40, 39, 39·2, 39·19}			NOT $P = V^2/R$ unless the voltage drop over 220 km has been calculated.	
14	a				2	(1) for passably straight lines	
						(1) for converging on heating container. (do not penalise for reflected rays drawn beyond container)	
			Not required			Minimum of two completed rays.	
						If additional direction arrows are included they must be in the correct direction otherwise lose second mark.	

Question			Expected Answer/s		Max Mark	Additional Guidance
14	b		$E = c \times m \times \Delta T$ = 902 \times 8000 \times (660 - 160) = 3 608 000 000 J (= 3 \cdot 608 \times 10 ⁹ J (3 \cdot 608 GJ))	(¹ / ₂) (¹ / ₂) (1))	If work out E for 660 °C and E for 160 °C and then subtract energies, treat as wrong physics – 0 marks
			Ignore significant figure issues			
14	с	i	$l_{f} = 3 \cdot 95 \times 10^{5} (J/kg)$ $E = ml$ $= 8000 \times 3 \cdot 95 \times 10^{5}$ $= 3 \cdot 16 \times 10^{9} J (3 \cdot 16 GJ)$ $1 - 3 sig figs \{ 3, 3 \cdot 2, 3 \cdot 16 \}$	(1) (½) (½) (1)	3	If any other value for l_f is used from the data table for <i>Specific latent</i> <i>heat of fusion of materials</i> , then do not award data mark, but can use this value in final calculation to obtain (2) marks max. If any other value for l_f is used then award (½) max for equation, if given or implied.
14	c	— — ii	P = $\frac{E}{t}$ $800 \times 10^{3} = \frac{3 \cdot 16 \times 10^{9}}{t}$ t = $3 \cdot 95 \times 10^{3}$ s $1 - 3$ sig figs { 4, 4.0, 3.95}	(¹ / ₂) (¹ / ₂) (1)	2	
14	c	iii	Heat is lost/radiated/escapes from the furnace OR Heat is lost/radiated/escapes to the surroundings OR Some of the heat energy is used to heat container	t the	1	Explanation should indicate that <u>heat</u> energy is lost from/to NOT 'it could be cloudy/not sunny NOT 'the mirrors might be dirty' etc.

Que	estion	Expected Answer/s	Max Mark	Additional Guidance
15	a	F = m × a (1/2) a = $\frac{1400000}{(117000 + 8000)}$ (1/2) a = $11 \cdot 2 \text{ m/s}^2$ (1)	2	
15	b	Launch vehicle (uses fuel/jettisons stages so) loses <u>mass</u> OR Less/no friction (from air) OR Less/no air resistance OR Weight is reducing due to fuel being used up/stages being jettisoned	1	 (1) for a correct explanation NOT 'lighter' NOT 'less resistance' 'Weight reducing' alone – 0 marks
15	c	Answer should be based on the following two points: statement relating to vertical motion, eg 'falling (towards the moon)', or force (of gravity) (1) statement relating to horizontal motion, eg 'probe moves forward', or curvature of Ganymede, eg 'surface curves away' (1)	2	NOT 'gravity' alone
15	d	Newton III: The thrusters force gas one way (1) So the gas exerts an equal and opposite force on the probe. (1)	2	Explanations in terms of Newton I and Newton II are also acceptable. Newton I: mention of balanced forces (1) would not slow down/indication of constant speed (1) Newton II: <u>unbalanced force</u> (1) in the opposite direction/opposing motion (1) Quoting NI, NII or NIII alone is insufficient, the answer must relate to the thrusters/probe.

Question		n	Expected Answer/s	Max Mark	Additional Guidance
16	a	i		2	 (1) for extrapolated ray through centre undeviated (½) for ray parallel to principal axis (½) for this ray to then pass through focus and be extrapolated back Allow some tolerance for where the two lines meet
16	a	ii	Larger diameter produces <u>brighter</u> image OR converse	1	Must link larger diameter with brighter image (both) for (1) mark 'brighter and clearer' ignore 'clearer' NOT 'clearer' alone
16	b	i	(Radio waves are) longer/greater/bigger/larger OR light has a shorter wavelength	1	NOT 'wider'
16	b	ii	Aerial OR Radio telescope	1	NOT satellite dish NOT telescope (on its own)
16	b	iii	Different frequencies/wavelengths/signals require different detectors/telescopes OR Certain detectors/telescopes can't pick up certain frequencies/wavelengths/signals	1	eg different telescopes detect different signals NOT 'types of wave' or 'waves' – too vague NOT 'types of radiation' – ambiguous could be alpha or beta Any mention of sound – 0 marks

[END OF MARKING INSTRUCTIONS]