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Uncertainties

Introduction
Uncertainties are inevitable when any sort of measurement is made and it is important to be able to quantify these uncertainties and estimate the effect they will have on the final result of any particular experiment. We will deal with an example of this shortly.

NB. On many occasions uncertainties may also be described as “errors”. It is important to realise that this type of error refers to uncertainty in the measurement, and not the fact that the person carrying out the measurement made a mistake.

Types of Uncertainty

1. Reading uncertainty.

For analogue instruments (e.g. a metre rule or a mercury thermometer) the scale can only be read to within a certain fraction of the smallest scale division. This is usually taken to be ½ the smallest division but can sometimes be smaller.

For digital instruments (e.g. DVM’s) it is normally taken to be ± 1 of the smallest change in reading.

2. Calibration uncertainty.

This is a calibration provided by an instrument maker against approved standards, e.g. for a metre rule it may be stated that the length of 1 metre is accurate to ± 0.5 mm. With increasing age and use this calibration may not be maintained.

3. Random uncertainty.

If a particular procedure is repeated many times, the result may not be the same on every occasion. This could be because the equipment is set up slightly differently, or a stopwatch is started and stopped slightly differently.

These random differences will lead to a range of results which can be statistically analysed to give a best estimate and an uncertainty for the measurement.

4. Systematic effects.

These uncertainties differ from those above because they affect the results in the same direction. For example, if the experimenter assumes a ruler’s scale zero is at the end of the ruler, when it is in fact 10 mm from the end, then all the measurements made will be systematically 10 mm too small.

Determining g using a pendulum – calculating uncertainties

The equation for the period, T, of a simple pendulum is given by:
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In order to determine g it is necessary to measure T and l and consider the uncertainties associated with each.

Method 1

Uncertainty in l
Measured using a metre stick:

Reading uncertainty: 0.5 mm due to the metre stick, and perhaps 5 mm due to finding the centre of the bob.

Calibration uncertainty: 0.5 mm

Random uncertainty: unknown

Now remember that when combining uncertainties in a single measurement, the total uncertainty is given by the square root of the sum of the squares of the individual uncertainties which allows us (in this case) to say that the total uncertainty in l will be 5 mm.
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Uncertainty in T
Measured using a stopwatch:

Reading uncertainty due to stopwatch scale: 0.01 s

Reading uncertainty due to reaction time: 0.25 s

Calibration uncertainty: unknown, but likely to be very small over the lengths of time measured here and can therefore be ignored.

Thus the total uncertainty in T will be 0.25 s.

Calculating uncertainties

g is calculated using 
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. We know the uncertainty in l, but not in T2. 

In general, if quantity x, with uncertainty Δx is raised to the power n, the fractional uncertainty in xn is given by 
[image: image4.wmf]x

x

n

D

.

If we assume that T = 3 s, then the fractional uncertainty in T2 is 
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If l was 2.2 m on this occasion then the fractional uncertainty in l is 
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Since g is a function of 
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 the fractional uncertainty is given by 
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HOWEVER, if T was determined over ten swings of the pendulum, then the fractional uncertainty in T2 is 
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The fractional uncertainty in g is then given by 
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Method 2a

Method 1 is based on making a single measurement of T at a single value of l, or measuring several sweeps of the pendulum to improve the uncertainty in T.

If the measurement is replicated several times, still at a fixed value of l, we might expect to get a range of values for g. 

9.65
9.73
9.80
9.75
9.78
9.98

Each of these individual values has an associated error of roughly 0.16 m s-2 as we calculated above.

If we want to improve our estimate of g, there is a simple procedure which can be applied for small numbers of results (up to about 12). With this method the uncertainty is simply

given by 
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Thus for the results here: 
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and the mean is 
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Thus we have improved our estimate of g to 9.78 ± 0.06 m s-2.

Method 2b
A more sophisticated approach, applicable to large numbers of results is to use the normal distribution. The mathematics are dealt with in the AH uncertainties booklet, but for the data above we can calculate the sample standard deviation, s, using
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and the population standard deviation as
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The standard uncertainty of the mean is then given by


[image: image19.wmf]045

.

0

6

111

.

0

)

(

=

=

=

n

est

m

s

s


Thus g = 9.78 ± 0.05 m s-2.
This is very similar to method 2a above (known as the range method) but is of more use when dealing with large datasets.

Method 3a
A further refinement is to make replicated measurements of T (as above) but at a range of values of l. Then using the relationship 
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, a graph of T2 versus l will have a gradient of 
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We will use some real results for this example, tabulated below.

These results can, of course be manipulated in Excel, but here we will carry out a graphical (and time consuming) approach. 

We firstly plot the last column, T2, versus the first, l, hoping that we will get something approaching a straight line as expected.
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This looks quite good. 

We now have to add the “centroid” to the plot (mean x and y values for the whole dataset – in this case l = 1.135 m and T2 = 4.548 s2) then draw, by eye, a line of best fit passing through this point. (This line really is drawn by eye, albeit within Excel, because we’ll want [image: image28.wmf]0.0
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to compare this with what Excel produces later)

We can now calculate the gradient, m, and intercept, b, graphically, which gives:

m =  3.90 s2 m-1 and b = 0.20 s2.

We now add two lines parallel to this best-fit line to produce a “parallelogram of uncertainty” and then obtain the coordinates of points A, B, C, and D.
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A is 0.2, 1.3;

B is 2.19, 9.06;

C is 2.19, 8.1;
D is 0.2, 0.34

We now calculate the gradients, m, of the two diagonals within this parallelogram, namely the AC and BD. We could draw these on the diagram but it would get a bit cluttered.

m(AC) = 3.42 s2 m-1

m(BD) = 4.38 s2 m-1
.

Then, for n points on the graph, the uncertainty in m is given by:
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Thus m = 3.90 ± 0.15 s2 m-1 and the fractional uncertainty is 
[image: image23.wmf]038

.

0

90

.

3

15

.

0

=

 or 3.8%.

Thus 
[image: image24.wmf](

)

2

-

2

s

 

m

 

38

.

0

12

.

10

038

.

0

12

.

10

12

.

10

90

.

3

48

.

39

4

±

=

´

±

=

=

=

m

g

p

.

Clearly this value is larger than the accepted value of g, but the accepted value does lie within the range of uncertainty of this measurement.

Method 3b
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Here the results are as in 3a, the only difference is that we will use Excel to fit the line to the data points and calculate the standard error. The function used is LINEST which is a bit like SLOPE and INTERCEPT rolled into one with bells and whistles added. 

Drag a 2 x 2 selection then enter the =LINEST function with the following parameters: LINEST(known_y's,known_x's,const,stats). The latter two must be set to “1” or “true”. Use CTRL-SHIFT-Enter to complete the equation as this enters it as an ARRAY formula. 
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This then gives us the slope, intercept and standard error (deviation) of each.

In this case, m = 4.025 s2 m-1 with a standard error or uncertainty of 0.173 s2 m-1. The fractional uncertainty is therefore 
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This is alarmingly close to the correct value, but it is interesting to see that the uncertainty is greater than in 3a. 
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Note also how difficult it is to do a statistically good fit by eye. The graph below shows in green our original “eyeball fit”, whilst the black line is the regression calculated by Excel. The visual difference is subtle, but amounts to a 3% difference in the estimate of g.

Given that the uncertainty we estimated in Method 1 was only 0.16 m s-2, can we explain why adding additional data points has made this worse? There is of course a simple answer: these results are real data and method 1 was based on numbers from the AH booklet. However, a little bit of investigation would not go amiss.

One explanation might be finger trouble entering the numbers into the spreadsheet – this can be checked against written notes (you did make written notes, didn’t you?). It is also possible that one or more measurements were in some way flawed and we can therefore go back and try and locate these measurements.

If we look back at the original data but also show a column is which the uncertainty is calculated using the range equation from method 2a, the second row stands out immediately as having a very large value compared to the others. If we across the row we [image: image33.wmf]y = 4.0246x - 0.0201
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soon find a single anomalous value of 3.26 s. What would be the effect on the results of deleting this?

Try doing this to see what happens. The answer might surprise you.

You will also notice a pronounced “droop” in the graph for the results for l = 1.2 and l = 1.3 m. Look at the data in the table. The means for these lengths are almost the same

as those for l = 1.1 m. Did you forget to lengthen the string? Was the string catching on anything? Is it more finger trouble? Can you find a legitimate reason for excluding those points?

What we are in fact seeing is a TRUE estimate of the errors involved in making these measurements, including random, unquantifiable errors such as we have identified above.
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