
Curriculum For Excellence  Advanced Higher Physics Waves 

1 
Compiled and edited by F. Kastelein  Boroughmuir High School 

Source – RGC, LTS  City of Edinburgh Council 

CfE Advanced Higher Physics – Unit 2 – Waves 
 

SIMPLE HARMONIC MOTION 
 

1. Dynamic of simple harmonic motion (SHM) 

2. Angular frequency and period 

3. Solutions of the SHM equation 

4. Kinetic and potential energy in SHM 

 

WAVES 
 

Wave motion 

Travelling Wave Equations 

Longitudinal and Transverse Waves 

Superposition of Waveforms 

Phase Difference 

Stationary Waves 

 

INTERFERENCE 
 

5. Conditions for constructive and destructive interference 

6. Coherence 

7. Division of amplitude 

8. Optical path length, geometrical path length, phase difference and optical path 

difference 

9. Thin film interference 

10. Wedge fringes 

11. Division of wavelength 

12. Young’s slits interference 
 

POLARISATION 
  

13. Plane polarization of transverse waves 

14. Brewster’s angle 
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Simple Harmonic Motion (SHM) 
 

If an object is subject to a linear restoring force, it performs an oscillatory motion 

termed ‘simple harmonic’. Before a system can perform oscillations it must have (1) a 

means of storing potential energy and (2) some mass which allows it to possess kinetic 

energy. In the oscillating process, energy is continuously transformed between potential 

and kinetic energy. 

 

Note: any motion which is periodic and complex (i.e. not simple!) can be analysed into 

its simple harmonic components (Fourier Analysis). An example of a complex 

waveform may be a sound wave from a musical instrument.  

 

Examples of SHM 

Example and Diagram Ep stored as: Ek possesed by 

moving: 

Mass on a coil spring       

 

elastic energy of 

spring 
mass on spring 

Simple pendulum 

 

potential energy 

(gravitational) 

of bob 

mass of the 

bob 

Trolley tethered between springs 

 
 

elastic energy of 

the springs 

mass of the 

trolley 

Weighted tube floating in a liquid 

 
 

potential energy 

(gravitational) 

of the tube 

mass of the 

tube 
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Note that for the mass oscillating on the spring, there is always an unbalanced force 

acting on the mass and this force is always opposite to the direction of its displacement.  

The unbalanced force is momentarily zero as the mass passes through the central 

position, at which it would be at rest had no initial change been made to its state.  This 

is known as the rest position. 

 

To see this, consider the following: when the mass is moving upwards beyond the rest 

position, the gravitational force (downwards) is greater than the spring force.  Similarly 

when moving downwards past the rest position, the spring force (upwards) is greater 

than the gravitational force downwards. 

 

This situation is common to all SHMs.  The force which keeps the motion going is 

therefore called the restoring force. 

 

Definition of Simple Harmonic Motion 
 

When an object is displaced from its equilibrium or rest position, and the unbalanced 

force is proportional to the displacement of the object and acts in the opposite direction, 

the motion is said to be simple harmonic. 

 

Graph of Force against displacement for SHM 

 

  F  =  - kx 

 

F is the restoring force (N) 

k is the force constant (N m-1) 

x is the displacement (m) 

 

The negative sign shows the direction 

of vector F is always opposite to vector x. 

 

If we apply Newton’s Second Law in this situation the following alternative definition 

in terms of acceleration, as opposed to force, is produced. 

 

F	�	ma	�	m d2x
dt2 	�	-kx 

 

a	�	- k
m x thus    

d2x
dt2 	�	-	 k

m x 

 

Remember that k is a force constant which relates to the oscillating system.  

 

The constant, 
k
m is related to the period of the motion by ω2	�	 k

m, ω	�	 2π
T . 

 

This analysis could equally well have been done using the y co-ordinate. 

 

Thus an equivalent expression would be    .   

 

 
d2y
dt2 	�	-	ω2y  

d2y
dt2 	�ω2y	�	0  and  F	�	-ky 
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Kinematics of SHM 
 

Object P is oscillating with SHM between two fixed points R and S.  The amplitude of 

the oscillation is described as half the distance RS, therefore ½ RS and this is given the 

symbol A.  The displacement y is the vector OP.  

 

 

O is the origin, position of zero displacement 

 

P is the instantaneous position at displacement y 

 

Upwards is considered the positive direction. 

 

 

The period, T, of the motion is the time taken to complete one full oscillation, e.g. path 

O → R → O → S → O. 

 

The frequency, f, is the number of oscillations in one second. 

 

f	�	 1
T  and because ω	�	 2π

T   ω	�	2πf 
 

Solutions of Equation for SHM 

The equation 
���
��� � ���� could be solved using integration to obtain equations for 

velocity, v, and displacement, y, of the particle at a particular time, t.  However, the 

calculus involves integration which is not straightforward.  We will therefore start with 

the solutions and use differentiation. 

 

The possible solutions for the displacement, y, at time, t, depend on the initial 

conditions and are given by: 

Displacement  y = 0 at t = 0 

y = A sin ωt 

 

Velocity 

v	�	 dy
dt 	�	 d

dt 	�A sin ωt " 

v	�	A	v	�	A	v	�	A	v	�	A	ωωωω coscoscoscos ωωωωtttt 
 

Acceleration 
 

a	�	 d
2y

dt2 	�	 dv
dt 	�	 d

dt 	�A	ω cos ωt " 

a	�	-	ω2A sin ωt 
a	�	a	�	a	�	a	�	----ωωωω2222yyyy 

v2	�	A2 ω2cos2 ωt y2	�	A2 sin2 ωt 
sin� ωt � cos� ωt	�	1 

v2
ω2A2 � y2

A2 �1 

v2	�	ω2�A2-y2" 

v	�	%	v	�	%	v	�	%	v	�	%	ωωωω&&&&AAAA2222----yyyy2222 

Displacement  y = A at t = 0 

y = A cos ωt 

 

Velocity 

v	�	 dy
dt 	�	 d

dt 	�A cos ωt " 

v	�	v	�	v	�	v	�	----A	A	A	A	ωωωω sinsinsinsin ωωωωtttt 
 

Acceleration 
 

a	�	 d
2y

dt2 	�	 dv
dt 	�	 d

dt 	�-A	ω sin ωt " 

a	�	-	ω2A cos ωt 
a	�	a	�	a	�	a	�	----ωωωω2222yyyy 

v2	�	A2 ω2sin2 ωt y2	�	A2 cos2 ωt 
sin� ωt � cos� ωt	�	1 

v2
ω2A2 � y2

A2 �1 

v2	�	ω2�A2-y2" 

v	�	%	v	�	%	v	�	%	v	�	%	ωωωω&&&&AAAA2222----yyyy2222 
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Linking SHM with Circular Motion  
 

This allows us to examine the mathematics of the motion and is provided for interest.  

 

If the point Q is moving with constant linear speed, v, in a circle, its projection point P 

on the y axis will have  displacement  y = A cos θ   

 

 

 positive direction of y is upwards 

 

  note that sin θ � QP
OQ    

 

  sin θ � &A2-y2
A  

 

(Viewed from the side this motion will 

appear identical to the one dimensional 

motion described on the previous page) 

 

The velocity of point P is: vP	�	 dy
dt 	�	 d

dt 	�A cos θ "  and  θ = ωt 

 

    vP	�	-	Aω sin ωt (negative sign: P moving down)  

 

Special cases:  when y = 0,    + � ,
�  and  sin θ = 1 

 

  v	�	%Aω occurs as P goes through the origin in either direction. 

 

  when y = ± A,  θ = 0 or π and sin θ = 0 

 

  vmin	�	0 occurs as P reaches the extremities of the motion. 

 

The acceleration of point P is: aP	�	 d2y
dt2 	�	 dvP

dt 	�	 d
dt 	�-Aω sin ωt " 

 

     aP	�	-Aω2 cos ωt 
 

Special cases:  when y = 0,  + � ,
�  and  cos θ = 0 

 

  -./0	 � 0 occurs as P goes through the origin in either direction. 

 

  when y = ± A,  θ = 0 or π and cos θ = 1 

 

  -.12	 � %3�� occurs as P reaches extremities of the motion. 

 

Note:  the acceleration is negative when the displacement, y, is positive and vice versa; i.e. 

they are out of phase, see graphs of motion which follow.  Knowledge of the positions 

where the particle has maximum and minimum acceleration and velocity is required 
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To understand these graphs it is helpful if you see such graphs being generated using a 

motion sensor.  In particular, pay close attention to the phases of the graphs of the 

motion and note that the basic shape is that of the sine/cosine graphs. 

 

Graphs of displacement, velocity and acceleration Summary of Equations 

 

 

 

 

y	�	 A	cos ωt 
 

 

 

 

 

 

 

v	�	% Aω	sin ωt 
 

v	�	%ω&A2-y2 

 

 

 

 

 

a	�	-Aω2 cos ωt 
 

a	�	-ω2y 

 

Note that this form, acceleration = - ω2 y, is consistent with our definition of SHM, ω2 

is a positive constant.  This implies that the sine and cosine equations must be 

solutions of the motion. 

 

Compare this constantly changing acceleration with a situation where only uniform 

acceleration was considered. 

 

The equation used in a particular situation depends on the initial conditions. 

 

  Thus:  if  y = 0 at time  t = 0  use  y = A sinωt         

    if  y = a at time  t = 0  use  y = A cosωt 

 

Another possible solution for SHM is:  y = A sin (ωt + ϕ) where ϕ is known as the 

phase angle. 
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Example 

 

An object is vibrating with simple harmonic motion of amplitude 0.02 m and 

frequency 5.0 Hz. Assume that the displacement of the object, y = 0 at time, t = 0 and 

that it starts moving in the positive y-direction. 

(a) Calculate the maximum values of velocity and acceleration of the object. 

(b) Calculate the velocity and acceleration of the object when the displacement is 

0.008 m. 

(c) Find the time taken for the object to move from the equilibrium position to a 

displacement of 0.012 m. 

 

Solution 

Initial conditions require; y = A sin ωt; v = Aω cos ωt;   and  acc = - ω2y  

  f  =  5 Hz    ω= 2πf  =  31.4 rad s-1 

 

 (a) vmax  =  ωA  =  31.4 x 0.02  =  0.63 m s-1 

  accmax  =  - ω2A = -(31.4)2 x 0.02  =  -19.7 m s-2 

 

 (b) v = ± ω &3� � �� =  ±  31.4 0.022 - 0.0082   =  ± 0.58 m s-1 

  acc = - ω2 y = - 31.42 x 0.008  =  - 7.9 m s-2 

 

 (c) use   y = A sin ωt ;   0.012  =  0.02 sin 31.4t     (when y  =  0.012 m) 

  sin 31.4 t  =  
0.012

0.02
   =  0.6  giving  31.4 t  =  0.644  and t = 

0644
314
.

.
 

  Thus       t  =  0.0205 s        (Remember that angles are in radians) 
 

 

Proof that the Motion of a Simple Pendulum approximates to SHM 
 

The sketches below show a simple pendulum comprising a point mass, m, at the end 

of an inextensible string of length, L. The string has negligible mass.  

 
The restoring force F on the bob is F = - mg sinθ 

If the angle θ is small (less than about 10°) then sin θ = θ in radians and  θ	�	 x
L 

 

Then   F	�	-	mg	θ	�	-	mg x
L    Thus  F	�	�	-	mg x

L 

 

The restoring force therefore satisfies the conditions for SHM for small displacements. 

 

Acceleration      a	�	- g
L 	x     and     a	�	-ω2	x     giving     ��	�	 g

L      (ω=2πf) 

f	�	 1
2π 	6g

L    and the period is given by      T	�	2π	6L
g			     
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Energy Equations for SHM 
 

Consider a particle moving with simple harmonic motion.   

The particle has maximum amplitude A and period T	�	 2π
ω    

 

Kinetic energy equation for the particle 

 

EK	�	 12 mv2	�	 12 m 9%ω&A2-y2:2
 

 

 

EK	�	 12 m	ω2�A2-y2"	 
 

 

Potential energy equation for the particle 

 

When at position O the potential energy is zero, (with reference to the equilibrium 

position) and the kinetic energy is a maximum. 

 

The kinetic energy is a maximum when y = 0: E;max 	�	 1
2 mω2A2 

 

At point O total energy Etot		�	EK	�	EP	�	 1
2 mω2A2�	0 

 

 <�=�	�	 1
2 mω2A2 or <�=�	�	 1

2 k	A2 since ω2	�	 k
m 

 

 

The total energy E is the same at all points in the motion.   

Thus for any point on the swing:  as above Etot  =  Ek  +   Ep 

 1
2 mω�A�	�	 12 mω2�A2-y2"	�	EP 

 

EP	�	 12 mω2y2 

 

The graph below shows the relation between potential energy, Ep, kinetic energy Ek, 

and the total energy of a particle during SHM as amplitude y changes from - A to + A. 
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Example on energy and SHM 

 

The graph below shows how the potential energy, Ep, of an object undergoing SHM, 

varies with its displacement, y.  The object has mass 0.40 kg and a maximum 

amplitude of 0.05 m. 

 
 

(a) (i) Find the potential energy of the object when it has a displacement of  0.02 m. 

 (ii) Calculate the force constant, k for the oscillating system (k has unit N m-1). 

 

(b) Find the amplitude at which the potential energy equals the kinetic energy. 

 

Solution  

(a) (i) From graph Ep = 0.10 J 

 (ii)  Ep  =  
1

2  k y2  

   0.1  =  
1

2
  k (0.02)2 

   k  =  
0.2

 (0.02)2   =  500 N m-1 

 

(b)   Ep  =  Ek 

    
1

2
  k y2   =    

1

2
  m ω2( A2 - y2 )    

     =  
1

2  k (A2 - y2)       since   ω2 = 
k

m
  

    

   y2  =  A2 - y2  or   2 y2 = A2 

     

   y   =  
>

√�  when  Ep = Ek 

     

   y =  
0.05

2
    =  0.035 m 
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Damping of Oscillations 
 

Oscillating systems, a mass on a spring, a simple 

pendulum, a bobbing mass in water, all come to 

rest eventually.  We say that their motion is 

damped.  This means that the amplitude of the 

motion decreases to zero because energy is 

transformed from the system.  A simple pendulum 

takes a long time to come to rest because the 

frictional effect supplied by air resistance is small 

- we say that the pendulum is lightly damped.  A 

tube oscillating in water comes to rest very quickly 

because the friction between the container and the 

water is much greater - we say that the tube is 

heavily damped.   

 

If the damping of a system is increased there will 

be a value of the frictional resistance which is just 

sufficient to prevent any oscillation past the rest 

position - we say the system is critically damped.   

 

Systems which have a very large resistance, 

produce no oscillations and take a long time to 

come to rest are said to be over damped.  In some 

systems over damping could mean that a system 

takes longer to come to rest than if underdamped 

and allowed to oscillate a few times.  

 

An example of damped oscillations is a car shock absorber which has a very thick oil 

in the dampers.  When the car goes over a bump, the car does not continue to bounce 

for long.  Ideally the system should be critically damped.  As the shock absorbers get 

worn out the bouncing may persist for longer.  

 

The graphs below give a graphical representation of these different types of damping. 
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Waves  
 

Wave Motion 
 

In a wave motion energy is transferred from one position to another with no net 

transport of mass.  

 

Consider a water wave where the movement of each water particle is at right angles 

(transverse) to the direction of travel of the wave.  During the wave motion each 

particle, labelled by its position on the x-axis, is displaced some distance y in the 

transverse direction.  In this case, "no net transfer of mass" means that the water 

molecules themselves do not travel with the wave - the wave energy passes over the 

surface of the water, and in the absence of a wind/tide any object on the surface will 

simply bob up and down.   

 

The Travelling Wave Equation 
The value of the displacement, y, depends on which particle of the wave is being 

considered.  It is dependent on the x value, and also on the time, t, at which it is 

considered.  Therefore y is a function of x and t giving y  =  f (x, t).  If this function is 

known for a particular wave motion we can use it to predict the position of any particle 

at any time. 

 

Below are 3 'snapshots' of a transverse wave, moving left to right, taken at different 

times showing how the displacement of different particles varies with position x. 

 

The following diagram shows the movement of one particle on the wave as a function 

of time. 

 

 

Initial condition at the origin:  

 y = 0 when t = 0 

 

 

For a wave travelling from left to right with speed v, the particle will be performing 

SHM in the y-direction.   

 

The equation of motion of the particle will be:  

 

 y = A sin ωt     where A is the amplitude of the motion. 

 

The displacement of the particle is simple harmonic.  The sine or cosine variation is 

the simplest description of a wave.   

 

When y = 0 at t = 0 the relationship for the wave is y = A sin ωt, as seen above.  

When y = A at t = 0 the relationship for the wave is y = A cos ωt.  
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Deriving the travelling wave equation 
 

Consider a snapshot of the wave as shown below.  

 

The time, t, for the wave disturbance to 

travel from (i) (x = 0) to (ii) (x = x) 

is 
x
v

 . 

 

Consider particle (i) at position x = 0. The equation of motion of particle (i) is given 

by y = A sin ωt, where t is the time at which the motion of particle (i) is observed. 
 

Now consider particle (ii) at position x = x and the time t = t. 

Since wave motion is a repetitive motion: 

motion of particle (ii) (x = x, t = t)  =  motion of particle (i) (x = 0, t = 
x
v

), 

[i.e. the motion of particle (ii) = motion of particle (i) at the earlier time of t = 
x
v

]. 

General motion of particle (i) is given by y = A sin ωt, but in this case t = t − 
x
v

 

hence y = A sin ω(t − 
x
v

). 

Motion of particle (ii) (x = x, t = t) is also given by y = A sin ω(t − 
x
v

). 

In general: y = A sin ω(t - 
x
v

)      also ω = 2πf    and v = f λ  

 y = A sin 2πf(t - 
x
fλ

) which gives 

 

 y	�	A	 sin 2π @ft	-	 x
λB 

 

for a wave travelling from left to right  

in the positive x-direction.  

 

and 
 

y	�	A	 sin 2π @ft	� x
λB 

 

 

for a wave travelling from right to left 

in the negative x-direction.  

 

The Intensity/Energy of a Wave 
 

The intensity or energy of a wave is directly proportional to the square of its 

amplitude. 

Intensity or Energy  ∝  A2 
 

Longitudinal and transverse waves 
 

With transverse waves, as in water waves, each particle oscillates at right angles to the 

direction of travel of the wave (left diagram).  In longitudinal waves, such as sound 

waves, each particle vibrates along the direction of travel of the wave (right diagram). 
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Principle of Superposition of Waveforms  
 

Travelling waves can pass through each other without being altered.  If two stones are 

dropped in a calm pool, two sets of circular waves are produced.  These waves pass 

through each other.  However at any point at a particular time, the disturbance at that 

point is the algebraic sum of the individual disturbances.  In this example, when a 

‘trough’ from one wave meets a ‘crest’ from the other wave (the waves are out of phase 

at this location) the water will remain calm due to an effective cancelling out (known 

as destructive interference) 

 

A periodic wave is a wave which repeats itself at regular intervals. All periodic 

waveforms can be described by a mathematical series of sine or cosine waves, known 

as a Fourier Series.  For example a saw tooth wave can be expressed as a series of 

individual sine waves. 

 

 y	�t"	�	-	 1
π sin ωt 	-	 1

2π sin 2ωt 	-	 1
3π sin 3ωt 	-	… 

  

The graph below shows the first four terms of this expression. 

 
 

When all these terms are superimposed (added together) the graph below is obtained.  

Notice that this is tending to the saw tooth waveform.  If more terms are included it will 

have a better saw tooth form. 
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Phase Difference 
 

A phase difference exists between two points on the same wave. 
 

Consider the snapshots below of a wave travelling to the right in the positive  

x-direction. 

 
Points 0 and 3 have a phase difference of 2π radians. 

They are both at zero displacement and will next be moving in the negative direction.  

They are separated by one wavelength (λ). 
 

Points 0 and 2 have a phase difference of π radians.   

They both have zero displacement but 2 will next be going positive and 0 will be 

going negative. They are separated by λ/2.  Notice that points 1 and 2 have a phase 

difference of π/2. 
 

The table below summarises phase difference and separation of the points. 
 

Phase difference Separation of points 

0 0 

π/2 λ/4 

π λ/2 

2π λ 
 

Notice that 
phase	difference

separation	of	points 	�	 2π
λ 	�	constant. 

 

If the phase difference between two particles is ϕ when the separation of the particles 

is x, then 
ϕ
x 	�	 2π

λ . 
 

In general, for two points on a wave separated by a distance x the phase difference is 

given by: 
 

  ϕ	�	2π x
λ where ϕ is the phase angle in radians 

 

Example 

A travelling wave has a wavelength of 60 mm.  A point P is 75 mm from the origin 

and a point Q is 130 mm from the origin. 

(a)  What is the phase difference between P and Q? 

(b)  Which of the following statements best describes this phase difference: 

  ‘almost completely out of phase’;   ‘roughly ¼ cycle out of phase’;  

‘almost in phase’. 
 

Solution 

(a) separation of points  =  130 - 75  =  55 mm   =  0.055 m 

 phase difference       =   2π
0055
0060
.
.

  =  5.76 radians 

(b) P and Q are separated by 55 mm which is almost one wavelength, hence they are 

‘almost in phase’.  Notice that 5.76 radians is 330°, which is close to 360°. 
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Stationary Waves 
 

A stationary wave is formed by the interference between two waves, of the same 

frequency and amplitude, travelling in opposite directions.  For example, this can 

happen when sound waves are reflected from a wall and interfere with the waves 

approaching the wall. 
 

A stationary wave travels neither to the right nor the left, the wave ‘crests’ remain at 

fixed positions while the particle displacements increase and decrease in unison.  

 
 

A - antinodes 

 

N - nodes 

 
 

There are certain positions which always have zero amplitude independent of the 

time we observe them; these are called nodes.  
 

There are other points of maximum amplitude which are called antinodes. 

Note that the distance between each node and the next node is 
K
� and that the distance 

between each antinode and the next antinode is 
K
�.  

 

Use of standing waves to measure wavelength 
 

Standing waves can be used to measure the wavelength of waves.  The distance across 

a number of minima is measured and the distance between consecutive nodes 

determined and the wavelength calculated.  This method can be used for sound waves 

or microwaves. 
 

Formula for standing waves 

Consider the two waves y1 and y2 travelling in the opposite direction, where 
 

y1	�	A	sin	2ω @ft	-	 x
λB     and   y2	�	A	sin	2ω @ft	� x

λB 

 

When these two waves meet the resultant displacement y is given by 
 

y	�	y1	�	y2�	A	sin	2ω @ft	-	 xλB �A	sin	2ω @ft	� x
λB 

 

y	�	2A	sin	2π	f	t	 cos 2πx
λ  (using b sin P 	�	b cos Q	 �	2b sin P�Q

2 cos P-Q
2 ) 

 

 Giving    y	�	2A	sin	ωt cos 2πx
λ  

 

Notice that the equation is a function of two trigonometric functions, one dependent 

on time, t, and the other on position, x.  Consider the part which depends on position.  

We can see that there are certain fixed values of x for which cos 2πx
λ   is equal to zero.  

These are x	�	 λ
4 ,	 3λ

4 ,	 5λ
4 , etc.  This shows that there are certain positions where y = 0 

which are independent of the time we observe them - the nodes.  

The antinodes are therefore given by cos �PQ
R � 1, that is at	x	�	0,	 λ

2 ,	λ,	 3λ
2 , etc. 
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Interference - Division of Amplitude 
 

Producing interference 
 

Interference of waves occurs when waves overlap.  There are two ways to produce an 

interference pattern for light: division of amplitude and division of wavefront.  Both of 

these involve splitting the light from a single source into two beams.  We will consider 

division of amplitude first and division of wavefront later. 

 

Before we consider specific examples of either we need to consider some general 

properties of interference. 

 

Coherent sources 

 

Two coherent sources must have a constant phase difference.  Hence they will have 

the same frequency. 
 

To produce an interference pattern for light waves the two, or more, overlapping beams 

always come from the same single source.  When we try to produce an interference 

pattern from two separate light sources it does not work because light cannot be 

produced as a continuous wave.  Light is produced when an electron transition takes 

place from a higher energy level to a lower energy level in an atom.  The energy of the 

photon emitted is given by ∆E = hf where ∆E is the difference in the two energy levels, 

f is the frequency of the photon emitted and h is Planck’s constant.  Thus a source of 

light has continual changes of phase, roughly every nanosecond, as these short pulses 

of light are produced.  Two sources of light producing the same frequency will not have 

a constant phase relationship so will not produce clear interference effects. 

 

This is not the case for sound waves.  We can have two separate loudspeakers, 

connected to the same signal generator, emitting the same frequency which will produce 

an interference pattern. 

 

Path Difference and Optical Path Difference 

 

Sources S1 and S2 are two coherent sources in air. 

 
 

The path difference is (S2Q - S1Q).  For constructive interference to take place at Q, 

the waves must be in phase at Q.  Hence the path difference must be a whole number 

of wavelengths. 

�S2Q	-	S1Q"	�	mλ           where m = 0, 1, 2, 3...  
 

(Note:  the letter m is used to denote an integer, not n,  since we use n for refractive index.) 

 

Similarly, for destructive interference to take place the waves must be out of phase at 

Q by λ/2 (a ‘crest’ from S1 must meet a ‘trough’ from S2). 

 �S2Q	-	S1Q"	�	 @T � U
�B λ where m = 0, 1, 2, 3... 
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Optical path difference 

 

In some situations the path followed by one light beam is inside a transparent material 

of refractive index, n.  Consider two coherent beams S1 and S2 where S1P is in air and 

S2P is in perspex of refractive index n = 1.5.  We will consider the point P itself to be 

in air. 

 

The geometrical path difference S1P - S2P is zero.  

 

But will there be constructive interference at P? 

 

The wavelength inside the perspex is less than that in air λperspex  = 
λair

1.5
.  Hence the 

waves from S1 and S2 may not arrive at P in phase.  For example, if there were 

exactly Z whole waves between S1P, there will be 1.5 x Z waves between S2P which 

may or may not be a whole number of wavelengths.      

 

The optical path length must be considered not the geometrical path length. 

 

Optical path length = refractive index  ×  geometrical path length 

 

Thus the relationships for constructive and destructive interference must be 

considered for optical path lengths, S2P and S1P. 

 

For constructive interference (S2P - S1P) =  mλ where m is an integer 
 

For destructive  interference 
(S2P - S1P) = (m + 

U
�)λ where m is an integer 

 

Phase difference and optical path difference 

 

The optical path difference is the difference in the two optical path lengths, namely 

(S2P - S1P) in our general example. 

 

The phase difference is related to the optical path difference: 

 

phase difference  =  
2π
λ

  ×  optical path difference 

 

where λ is the wavelength in vacuum. 

 

Notice that when the optical path difference is a whole number of wavelengths, the 

phase difference is a multiple of 2π, i.e. the waves are in phase.  
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Phase Change on Reflection 

 

To understand interference caused by multiple reflections it is necessary to consider 

what happens when a light wave moving in air hits a material such as glass. 

On a large scale we can see what happens to the wave when a pulse on a rope or 'slinky' 

reflects off a dense material such as a wall. 

 

The reflected pulse is said to undergo a phase 

change of 180° or π radians.  The reflected pulse is 

180° out of phase with the incident pulse.  If these 

two pulses were to meet they would momentarily 

cancel as they passed one another. 

 

 

There is a similar phase change when a light wave is reflected off a sheet of glass. 

 

In general for light there is a phase change of π on reflection at an interface where 

there is an increase in optical density, e.g. a higher refractive index such as light going 

from air to glass.  There is no phase change on reflection where there is a decrease in 

optical density, e.g. a lower refractive index such as light going from glass to air. 

 

Division of Amplitude 
 

This involves splitting a single light beam into two beams, a reflected beam and a 

transmitted beam, at a surface between two media of different refractive index.  In some 

cases multiple reflections can occur and more than two beams are produced.   

 

Thin parallel sided film 

 

Interference by division of amplitude can be produced by thin films as shown below. 

 
Notice that an extended source can be used.  The amplitude of the beam is divided by 

reflection and transmission at D1, and again by reflection and transmission at D2 at the 

back of the glass sheet.   

 

An eye, at A, will focus the reflected beams and an eye at B will focus the transmitted 

beams.  Thus interference patterns can be observed in both the reflected and 

transmitted beams. 
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Condition for maxima and minima in the fringes formed in a thin film 

 

The following explanations are for light incident normally on a thin film or sheet of 

glass.  The diagrams only show light paths at an angle to distinguish clearly the 

different paths. 

 

Reflected light 

 
The ray following path 1 reflects off the glass which has a higher refractive index than 

air.  It therefore experiences a π phase change. 

 

The ray following path 2 reflects off air so experiences no phase change on reflection.  

However, it travels through the glass twice so has an optical path difference compared 

to ray 1 of 2nt, where n is the refractive index of the glass. 

 

Therefore for constructive interference for the reflected light, i.e. for rays 1 and 2 to 

be in phase, then the optical path difference 2nt must give a π phase change.  

Therefore: 

 

 2nt	�	 @m� 1
2B 	λ  where m is an integer. 

 

For destructive interference for the reflected light, i.e. for rays 1 and 2 to be exactly 

out of phase, then the optical path difference 2nt must give zero phase change.  

Therefore: 

 

 2nt	�	m	λ   where m is an integer. 

 

 

Note that these statements are the reverse of what we are used to seeing.  
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Transmitted light 

 
The ray following path 3 passes through the glass with zero phase change. 

 

The ray following path 4 reflects off air twice so experiences no phase changes on 

reflection.  However, it travels through the glass twice more than path 3 so has an 

optical path difference compared to ray 3 of 2nt, where n is the refractive index of the 

glass. 

 

Therefore for constructive interference for the transmitted light, i.e. for rays 3 and 4 to 

be in phase, then the optical path difference 2nt must give zero phase change.  

Therefore: 

 

 2nt = mλ   where m is an integer. 

 

For destructive interference for the transmitted light, i.e. for rays 3 and 4 to be exactly 

out of phase, then the optical path difference 2nt must give a π phase change.  

Therefore: 

 

 2nt	�	 @m� 1
2B 	λ where m is an integer. 

 
Note 

For a certain thickness of thin film the conditions are such that the reflected light and 

transmitted light have opposite types of interference.  Therefore energy is conserved 

at all times. 

 
Example 

A sheet of mica is 4.80 µm thick.  Light of wavelength 512 nm is shone onto the mica.  

When viewed from above, will there be constructive, destructive, or partial destructive 

interference?  The refractive index of mica is 1.60 for light of this wavelength.   

 

 
Solution 

For destructive interference  2nt =   mλ 

 2 × 1.60 × 4.80 × 10−6   =   m × 512 × 10−9 

 m =   30 

 

This is an integer.  Hence destructive interference is observed. 
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Wedge Fringes 
 

Two glass slides are arranged as shown below. 

Division of amplitude takes place at the lower surface of the top glass slide. 

 
When viewed from above the optical path difference  =  2t  

There is a phase difference of π on reflection at p.  Hence the condition for a dark 

fringe is 2t = mλ assuming an air wedge. 
 

For the next dark fringe t increases by  
K
�  (see right hand sketch above). 

Thus the spacing of fringes, ∆x, is such that  tan θ	�	 λ
2Δx 

 

Δx	 	 �	 λ
2tanθ 

 

For a wedge of length L and spacing D 

  

 

tan θ	�	 DL 

 

The fringe spacing is given by 

 

Δx	�	 λL
2D 

 

where λ is the wavelength of light in air. 

 

In practice the distance across a number of fringes is measured and ∆x determined.   

 

Notice that the fringes are formed inside the wedge, and that the two reflected rays are 

diverging.  The eye, or a microscope, must be focussed between the plates for viewing 

the fringes. 

 

A wedge can be formed by two microscope slides in contact at one end and separated 

by a human hair or ultra-thin foil at the other end.  In this way the diameter of a human 

hair can be measured. 

 

Similarly, if a crystal is placed at the edge and heated, the thermal expansion can be 

measured by counting the fringes as the pattern changes. 
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Non-reflecting Coating 

 

Good quality lenses in a camera reflect very little light and appear dark or slightly 

purple.  A thin coating of a fluoride salt such as magnesium fluoride on the surface of 

the lens allows the majority of the light falling on the lens to pass through. 

The refractive index, n, of the coating is chosen such that 1 < n < nglass. 

 

Notice that there is a phase change 

of π at both the first and second 

surfaces. 

 

For cancellation of reflected light: 

optical path difference  =  
K
�.  

 

Optical path in fluoride =  2nd thus 

2Xd� λ
2 

 

d� λ
4n 

 

Complete cancellation is for one particular wavelength only.  Partial cancellation occurs 

for other wavelengths.   

 

The wavelength chosen for complete cancellation is in the yellow/green (i.e. middle) of 

the spectrum.  This is why the lens may look purple because the reflected light has no 

yellow/green present.  The red and blue light are partially reflected to produce the 

purple colour observed.  

 

Colours in thin films 

 

When a soap film is held vertically in a ring and is illuminated with monochromatic 

light it initially appears coloured all over.  However when the soap drains downwards 

a wedge shaped film is produced, with the top thinner than the bottom.  Thus horizontal 

bright and dark fringes appear.  When illuminated by white light, colours are formed at 

positions where the thickness of the film is such that constructive interference takes 

place for that particular colour.  Just before the soap film breaks, the top appears black 

because the film is so thin there is virtually no path difference in the soap.  Destructive 

interference occurs because of the phase change on reflection. 

 

Similar colours are observed when a thin film of oil is formed on water. 
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Interference - Division of Wavefront 
 

Division of Wavefront 
 

When light from a single point source is incident on two small slits, two coherent beams 

of light can be produced.  Each slit acts as a secondary source due to diffraction.   
 

If an extended source is used, each part of the wavefront will be incident on the slit at 

a different angle.  Each part of the source will then produce a fringe pattern, but slightly 

displaced.  When the intensity of all the patterns is summed the overall interference 

pattern may be lost.  However a line source parallel to the slits is an exception. 
 

Compare this with the use of an extended source in ‘division of amplitude’. 
 

Young's Slits Experiment 
 

The diagram below shows light from a single source of monochromatic light incident 

on a double slit.  The light diffracts at each slit and the overlapping diffraction patterns 

produce interference. 

 
A bright fringe is observed at P.  Angle PMO is θ.  

N is a point on S1P such that NP = S1P.  Since P is the nth bright fringe S2N = nλ  

For small values of θ S1N cuts MP at almost 900 giving angle S2 S1N = θ. 

 

Again providing θ is very small, sin θ = tan θ = θ (in radians)  

From triangle S2S1N: θ = 
λ

d
   also from triangle PMO: θ =  

x
D

   
∆

 

 Thus   
x

D
   

∆
=   

d
 

λ
 or  ∆x  = 

λD
d

  

Giving the fringe separation between adjacent fringes ∆x 
 

∆x  =  
λD
d

 

 

Note  
This formula only applies if x<<D, which gives a small value for θ.  This is likely to be 

true for light waves but not for microwaves.   

 

The position of the fringes is dependent on the wavelength.  Thus if white light is used 

we can expect overlapping colours either side of a central white maximum.  The red 

part of the spectrum, with the longer wavelength, will be the furthest from this white 

maximum (∆xred > ∆xviolet since λred > λviolet). 
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Polarisation 
 

Polarised and unpolarised waves 
 

Light is a travelling wave, and is part of the electromagnetic spectrum.  In all 

electromagnetic waves the electric field and magnetic field vary.   The diagram below 

shows a 3-dimensional picture of such a wave. 

 
The above diagram shows the variation of the electric field strength, E, in the x-z plane 

and the variation of the magnetic induction, B, in the x-y plane.  In this example the 

electric field strength is only in one plane.  The wave is said to be plane polarised, or 

linearly polarised.  For example, in Britain this is the way that T.V. waves are 

transmitted.  Aerials are designed and oriented to pick up the vertical electric field 

strength vibrations.  These vibrations contain the information decoded by the electronic 

systems in the television. 
 

Notice that the electromagnetic wave is made up of two mutually perpendicular 

transverse waves. The oscillations of E and B. 
 

Light from an ordinary filament lamp is made up of many separate electromagnetic 

waves produced by the random electron transitions in the atoms of the source.  So unlike 

the directional T.V waves, light waves from a lamp consist of many random vibrations.  

This is called an unpolarised wave. 
 

When looking at an unpolarised wave coming towards you the direction of the electric 

field strength vector would appear to be vibrating in all direction, as shown in the 

diagram (i) on the left below.  The magnetic induction vector would be perpendicular 

to the electric field strength vector, hence this too would be vibrating in all directions   

However when discussing polarisation we refer to the electric field strength vector only. 
 

All the individual electric field strength vectors could be resolved in two mutually 

perpendicular direction to give the other representation of a unpolarised wave, as 

shown below in the centre diagram (ii). 
 

The right hand diagram (iii) represents a polarised wave. 

 
Longitudinal and transverse waves 

Note that only transverse waves can be polarised.  Longitudinal waves, e.g. sound 

waves, cannot be polarised. 
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Polarisation using Filters 
 

We can produce a linearly polarised wave if we can somehow absorb the vibrations in 

all the other directions except one. 
 

In 1852 William Bird Herapath discovered that a crystal of iodo-quinine sulphate 

transmitted one plane of polarisation, the other planes being absorbed.  In 1938 Edwin 

Land produced the material ‘Polaroid’, which has a series of parallel long hydrocarbon 

chains.  Iodine atoms impregnate the long chains providing conduction electrons.  Light 

is only transmitted when the electric field strength vector is perpendicular to the chain. 
 

The arrangement below shows a polaroid filter at X producing linearly polarised light.  

The polaroid at X is called a polariser.  Vibrations of the electric field strength vector 

at right angles to the axis of transmission are absorbed.  

 

A second polaroid at Y is placed perpendicular to the first one, as shown above.  This 

is called an analyser.  The analyser absorbs the remaining vibrations because its axis 

of transmission is at right angles to the polariser at X and no light is seen by the eye.  

The light between X and Y is called linearly or plane polarisation.  
 

These effects also can be demonstrated using microwaves and a metal grid.   

 
 

The microwaves emitted by the horn are plane polarised.  In this example the electric 

field strength vector is in the vertical plane.  The waves are absorbed by the rods and 

re-radiated in all directions.  Hence there will be a very low reading on the receiver, R.  

When the metal grid is rotated through 90o the waves will be transmitted, and the 

reading on the receiver will rise.  Notice that the microwaves are transmitted when the 

plane of oscillation of the electric field strength vector is perpendicular to the direction 

of the rods. 
 

Modern mobile devices and computer monitors produce polarised light.  By placing a 

polarising filter in front of the screen you can observe variations in the transmitted 

and absorbed light at different angles.  Some screens do not have all colours polarised 

in the same plane and the screen colour will change dynamically when you change the 

angle of the filter. 
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Polarisation by Reflection 
 

Plane polarised waves can be produced naturally by light reflecting from any 

electrical insulator, like glass.  When refraction takes place at a boundary between 

two transparent materials the components of the electric field strength vector parallel 

to the boundary are largely reflected.  Thus reflected light is partially plane polarised. 
 

Plane polarisation at the Brewster angle 

 

 
 

Consider a beam of unpolarised light incident on a sheet of smooth glass.  This beam is 

partially reflected and partially refracted.  The angle of incidence is varied and the 

reflected ray viewed through an analyser, as shown above.  It is observed that at a 

certain angle of incidence  ip  the reflected ray is plane polarised.  No light emerges 

from the analyser at this angle. 
 

The polarising angle  ip  or Brewster’s angle is the angle of incidence which causes 

the reflected light to be linearly polarised.  
 

This effect was first noted by an experimenter called Malus in the early part of the 

nineteenth century.  Later Brewster discovered that at the polarising angle ip the 

refracted and reflected rays are separated by 90°.  
 

Consider the diagram above, which has this 90° angle marked: 
 

 n	�	 sin ip
sin r  but   r  =  (90  -  ip)    thus   sin r  =  sin (90  -  ip)  =  cos ip 

    

thus  n	�	 sin ip
cos ip � tan ip  n  =  tan ip    

 

Example 
Calculate the polarising angle for glycerol, n = 1.47. 

What is the angle of refraction inside the glycerol at the Brewster angle? 
 

Solution 

Using the equation  n  =  tan ip       1.47  =  tan ip     giving ip  =  56o.  

At the Brewster angle, which is the polarising angle,  

  angle of refraction + ip  = 90o    thus angle of refraction = 34o. 

 

Reduction of Glare by Polaroid sunglasses 
 

When sunlight is reflected from a horizontal surface, e.g. a smooth lake of water, into 

the eye, eyestrain can occur due to the glare associated with the reflected light.  The 

intensity of this reflected beam can be reduced by wearing polaroid sunglasses.  These 

act as an analyser and will cut out a large part of the reflected polarised light. 


