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AH Physics: Rotational Motion		2013
KINEMATIC RELATIONSHIPS

Throughout this course calculus techniques will be used.  These techniques are very powerful and a knowledge of integration and differentiation will allow a deeper understanding of the nature of physical phenomena.

Kinematics is the study of the motion of points, making no reference to what causes the motion.

The displacement  s  of a particle is the length and direction from the origin to the particle. 

The displacement of the particle is a function of time:	s  =  f(t)

Consider a particle moving along OX.
[image: ]

At time t + t particle passes Q.

Velocity
			average velocity 	vav  =  

However the instantaneous velocity is different, this is defined as :
			v  =  lim  	(as t -> 0)  	   	v  =  

Acceleration	
			velocity changes by  v in time  t
					aav   =  

Instantaneous acceleration :	a  =  lim  	(as t -> 0)  	  	a  =  
		  if 	a  =  then   =   .   =   
   
			  

Note:	a change in velocity may result from a change in direction  (e.g. uniform motion in a circle - see later).

Mathematical Derivation of Equations of Motion for Uniform Acceleration
				   a  =   
Integrate with respect to time:
			=  	

			          =   a t   +   k


 	when	t  =  0    =  u    hence    k  =  u 
 		t  =  t     =  v
						

integrate again :  remember that    v  =   =  u + at
		 	=   +   


			       s   =  u t   +  a t2   +    k

apply initial conditions:	when  t   =   0,  s   =   0   hence   k  =  0

						

Equations 1 and 2 can now be combined as follows:   square both sides of equation 1
			v2   =   u2   +   2 u a t   +   a2 t2
			v2   =   u2   +   2 a [ u t   +   a t2]

       (using equation 2)   			

A useful fourth equation  is 
				  s   =   t 		.....	4


Variable Acceleration   
If acceleration depends on time in a simple way, calculus can be used to solve the motion.  


Graphs of Motion
The slope or gradient of these graphs provides useful information.  Also the area under the graph can have a physical significance.

Displacement - time graphs	
			v  =  	  slope  =  instantaneous velocity.
					Area under graph  -  no meaning.

Velocity - time graphs		
			a  =  	  slope  =  instantaneous acceleration.

	Also    s  =  		Area under v-t graph gives the displacement.

Calculations Involving Uniform Accelerations
Examples of uniform acceleration are:
· vertical motion of a projectile near the Earth’s surface, where the acceleration is  g  =  9.8 m s-2  vertically downwards
· rectilinear (i.e. straight line) motion e.g. vehicle accelerating along a road.
These have been covered previously; however a fuller mathematical treatment for projectiles is appropriate at this level. 

Consider the simple case of an object projected with an initial velocity u at right angles to the Earth’s gravitational field - (locally the field lines may be considered parallel).


   a  =  g,  	time to travel distance x across field  =  t
					t  =  
		apply	y  =  uyt  +  a t2,		uyt  =  0   and   a  =  g
					y  =  . g . 
					y  = [ . ] . x2

Now g and u are constants, 	   y    x2  and we have the equation of a parabola.

The above proof and equations are not required for examination purposes.

ANGULAR MOTION

The angular velocity of a rotating body  is defined as the rate of change of angular displacement.
	          
	where 	  (rad s-1) is the angular velocity
	  (rad) is the angular displacement



The radian (rad) is a unit of angle:	180° =   rad
	Angular acceleration,    =  =  		unit of :  rad s-2
We assume for this course that   is constant.

The derivation of the equations for angular motion are very similar to those for linear motion seen earlier.  

Angular Motion Relationships
 
						

					

					


You will note that these angular equations have exactly the same form as the linear equations.  
Remember that these equations only apply for uniform angular accelerations.  


Uniform Motion in a Circle
	Consider a particle moving with uniform speed in a circular path as shown opposite.
		  =  
The rotational speed v is constant,    is also constant.
T  is the period of the motion and is the time taken to cover 2 radians.
		  =  	but	v  =  
		
		
	[image: ] 
(Note:	s is the arc swept		out by the particle 
		and  s = r



Angular acceleration and linear tangential acceleration
The angular acceleration   =  and the linear tangential acceleration   at  =  , when the rotational speed v is changing.
Since v = r then at any instant, then  =  r  giving
at  =  r 
where the direction of at is at a tangent to the circular path of radius r.


Radial Acceleration
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The particle travels from A to B in time t and with speed  v, thus  | u |  =  | v |  and 
v = v + (−u)  which is  v = v − u     
t = =  
	average acceleration,  aav =  =  
						=    =   
	As  tends to 0,  aav tends to the instantaneous acceleration at point Q:
 	a =   . [] 		but [] = 1  
 	when  is small and is measured in radians sin  = .
	since  v = r

The direction of this acceleration is always towards the centre of the circle.

Note:	This is not a uniform acceleration.  Radial acceleration continuously changes direction and its magnitude changes is the speed of rotation changes.  

This motion is typical of many central force type motions e.g. planetary motion, electrons ‘orbiting’ nuclei and electrons injected at right angles to a uniform magnetic field which will be covered later in the course.

Thus any object performing circular motion at uniform speed must have a constant centre-seeking or central force responsible for the motion. 

Central Force	
Does a rotating body really have an inward acceleration (and hence an inward force)?

Argument	Most people have experienced the sensation of being in a car or a bus which is turning a corner at high speed.  The feeling of being ‘thrown to the outside of the curve’ is very strong, especially if you slide along the seat.  What happens here is that the friction between yourself and the seat is insufficient to provide the central force needed to deviate you from the straight line path you were following before the turn.  In fact, instead of being thrown outwards, you are, in reality, continuing in a straight line while the car moves inwards.  Eventually you are moved from the straight line path by the inward (central) force provided by the door. 

Magnitude of the Force
		F  =  m a 		but   a  =  	   or	a = 2 r 
Thus central force,   		since  v = r .

Examples

1.	A Car on a Flat Track
If the car goes too fast, the car ‘breaks away’ at a tangent. The force of friction is not enough to supply an adequate central force.	


2.	A Car on a Banked Track
For tracks of similar surface properties, a car will be able to go faster on a banked track before going off at a tangent because there is a component of the normal reaction as well as a component of friction, Fr, supplying the central force. 
The central force is R sin  +  Fr cos  which reduces to R sin when the friction is zero.  The analysis on the right hand side is for the friction Fr equal to zero. 

	[image: page8]
	R is the ‘normal reaction’ force of the track on the car.
In the vertical direction there is no acceleration:
 	R cos = mg    ........ 1
In the radial direction there is a central acceleration: 
	R sin = ........ 2
Divide Eq. 2 by Eq. 1:
tan  = 
 (This equation applies to all cases of ‘banking’ including aircraft turning in horizontal circles) 



ROTATIONAL DYNAMICS

Moment of a force
The moment of a force is the turning effect it can produce.  
Examples of moments are: 
· using a long handled screwdriver to ‘lever off’ the lid of a paint tin, 
[image: ]
· using a claw hammer to remove a nail from a block of wood or levering off a cap from a bottle.  



Where F is the force and d is the perpendicular distance from the direction of the force to the turning point. 

Torque
For cases where a force is applied and this causes rotation about an axis, the moment of the force can be termed the torque.

	

	Consider a force F applied tangentially to the rim of a disc which can rotate about an axis O through its centre.  The radius of the circle is r.
The torque T associated with this force F is defined to be the force multiplied by the radius r.
unit of T:  newton metre (N m) 	


Torque is a vector quantity.  The direction of the torque vector is at right angles to the plane containing both r and F and lies along the axis of rotation.  (In the example shown in the diagram torque, T, points out of the page). 
A force acting on the rim of an object will cause the object to rotate; e.g. applying a push or a pull force to a door to open and close, providing it creates a non-zero resulting torque.  The distance from the axis of rotation is an important measurement when calculating torque.  It is instructive to measure the relative forces required to open a door by pulling with a spring balance firstly at the handle and then pulling in the middle of the door.  Another example would be a torque wrench which is used to rotate the wheel nuts on a car to a certain ‘tightness’ as specified by the manufacturer.
An unbalanced torque will produce an angular acceleration.  In the above diagram if there are no other forces then the force F will cause the object to rotate. 

Inertia
In linear dynamics an unbalanced force produces a linear acceleration.  The magnitude of the linear acceleration produced by a given unbalanced force will depend on the mass of the object, that is on its inertia.  The word inertia can be loosely described as ‘resistance to change in motion of an object’.  Objects with a large mass are difficult to start moving and once moving are difficult to stop.

Moment of Inertia
The moment of inertia I of an object can be described as its resistance to change in its angular motion.  The moment of inertia I for rotational motion is analogous to the mass m for linear motion

The moment of inertia I of an object depends on the mass and the distribution of the mass about the axis of rotation.

For a mass m at a distance r from the axis of rotation the moment of inertia of this mass is given by the mass m multiplied by r2.

				unit of I:  kg m2

For example, a very light rod has two 0.8 kg masses each at a distance of 50 cm from the axis of rotation.



The moment of inertia of each mass is m r2 = 0.8 x 0.52 = 0.2 kg m2 giving a total moment of inertia I = 0.4 kg m2.  Notice that we assume that all the mass is at the 50 cm distance.  The small moment of inertia of the light rod has been ignored.

Another example is a hoop, with very light spokes connecting the hoop to an axis of rotation through the centre of the hoop and perpendicular to the plane of the hoop, e.g. a bicycle wheel.  Almost all the mass of the hoop is at a distance R, where R is the radius of the hoop.  
Hence I = M R2  where M is the total mass of the hoop.

For objects where all the mass can be considered to be at the same distance from the axis of rotation this equation I = m r2 can be used directly. 

However most objects do not have all their mass at a single distance from the axis of rotation and we must consider the distribution of the mass.

Moment of inertia and mass distribution
	

	
Consider a small particle of the disc as shown. This particle of mass m is at a distance r from the axis of rotation 0.



The contribution of this mass to the moment of inertia of the whole object (in this case a disc) is given by the mass m multiplied by r2.  To obtain the moment of inertia of the disc we need to consider all the particles of the disc, each at their different distances. 
 
Any object can be considered to be made of n particles each of mass m.  Each particle is at a particular radius r from the axis of rotation.  The moment of inertia of the object is determined by the summation of all these n particles e.g.  (m r2).  Calculus methods are used to determine the moments of inertia of extended objects.  In this course, moments of inertia of extended objects, about specific axes, will be given. 

It can be shown that the moment of inertia of a uniform rod of length L and total mass M through its centre is  , but the moment of inertia of the same rod through its end is  ,  i.e. four times bigger.  This is because it is harder to make the rod rotate about an axis at the end than an axis through its middle because there are now more particles at a greater distance from the axis of rotation.

Torque and Moment of Inertia
An unbalanced torque will produce an angular acceleration.  As discussed above, the moment of inertia of an object is the opposition to a change in its angular motion. Thus the angular acceleration  produced by a given torque T will depend on the moment of inertia I of that object. 



Angular Momentum
The angular momentum L of a particle about an axis is defined as the moment of momentum.
	

	
A particle of mass m rotates at  rad s-1 about the point O.
The linear momentum p = m v.
The moment of p = m v r  (r is perpendicular to v).


Thus the angular momentum of this particle  = m v r = m r2 , since v = r .

For a rigid object about a fixed axis the angular momentum L will be the summation of all the individual angular momenta.  Thus the angular momentum L of an object is given by   (m r2   This can be written as  (m r2) since all the individual parts of the object will have the same angular velocity .  Also we have I =  (m r2).

Thus the angular momentum of a rigid body is:

		unit of L:  kg m2 s-1.
Notice that the angular momentum of a rigid object about a fixed axis depends on the moment of inertia.

Angular momentum is a vector quantity.  The direction of this vector is at right angles to the plane containing v (since p = m v and mass is scalar) and r and lies along the axis of rotation.  For interest only,in the above example L is out of the page.  (Consideration of the vector nature of T and L will not be required for assessment purposes.) 

Conservation of angular momentum
The total angular momentum before an impact will equal the total angular momentum after impact providing no external torques are acting.

You will meet a variety of problems which involve use of the conservation of angular momentum during collisions for their solution. 


Rotational Kinetic Energy
The rotational kinetic energy of a rigid object also depends on the moment of inertia.  For an object of moment of inertia I rotating uniformly at  rad s-1 the rotational kinetic energy is given by:



Energy and work done
If a torque T is applied through an angular displacement , then the work done  = T 
Doing work produces a transfer of energy, T   =  I -   I  (work done = Ek).

Summary and Comparison of Linear and Angular Equations

	Quantity			Linear Motion			Angular Motion

	acceleration			a	       	( a  =  r )		
	velocity				v  =  u  +  a t		 (v  = r )	  =  o  +   t  
	displacement		s  =  u t  +  a t2			  =  ot  +  t2
	momentum			p  =  m v 				L  =  I   
	kinetic energy 		    m v2				  I 2
	Newton’s 2nd law 		F  =  m=  m a		T  =  I =  I 

Laws
Conservation of 	mAuA + mBuB = mAvA + mBvB	IAA + IBB = IAA + IBB
momentum
Conservation of		F . s  =  m v2  -  m u2		T  =  I 2  -  I o2
energy
	

Some Moments of Inertia (for reference)
Thin disc about an axis through its centre  	I  =  M R2	R = radius of disc
and perpendicular to the disc.						

Thin rod about its centre	I  =  ML2	L = length of rod

Thin hoop about its centre	I  =  M R2	R = radius of hoop

Sphere about its centre	I  =  M R2	R = radius of sphere


Where M is the total mass of the object in each case.


Objects Rolling down an Inclined Plane
When an object such as a sphere or cylinder is allowed to run down a slope, the Ep at the top, ( m g h), will be converted to both linear  (m v2) and angular (I 2)  kinetic energy.



An equation for the energy of the motion (assume no slipping) is given below.
m g h  =  I 2  +  m v2
The above formula can be used in an experimental determination of the moment of inertia of a circular object.

Example
A solid cylinder is allowed to roll from rest down a shallow slope of length 2.0 m. When the height of the slope is 0.02 m, the time taken to roll down the slope is 7.8 s.
The mass of the cylinder is 10 kg and its radius is 0.10 m.
	
Using this information about the motion of the cylinder and the equation above, calculate the moment of inertia of the cylinder.

Solution
EP  =  m g h  =  10 x 9.8 x 0.02  =  1.96 J
	change in gravitational Ep  =  change in linear Ek  +  change in rotational Ek
			      m g h  =  ( m v2 - 0)  +  (I 2 - 0)  	 
				s  =  t
				2.0  =  x 7.8
				v  =  =  0.513 m s-1
				  =  =  =  5.13 rad s-1
			Ek(lin)  =  m v2  = x 10 (0.513)2  =  1.32 J
		  		Ek(rot)  =    EP   -  Ek(lin)  
				I 2  =  1.96  -  1.32  =  0.64 J
				I  =  =  
				I  =  0.049 kg m2

The Flywheel
Example
The flywheel shown below comprises a solid cylinder mounted through its centre and free to rotate in the vertical plane.
	

	
								Flywheel:	mass   =  25 kg
			radius  =  0.30 m.

	Mass of hanging weight  =  2.5 kg


The hanging weight is released.  This results in an angular acceleration of the flywheel. Assume that the effects of friction are negligible.  
(a)	Calculate the angular acceleration of the flywheel.
(b)	Calculate the angular velocity of the flywheel just as the weight reaches ground level.

Solution
 (a)	We need to know I, the moment of inertia of the flywheel:	I  =  M R2
					I  =  x 25 x (0.30)2  =  1.125 kg m2
consider the forces acting on the flywheel: W  -  FT  =  m a    where  m  =  2.5 kg
					   24.5  -  FT  =  2.5 x 0.30 a  =  r
						FT 
				Torque, T  =  FT x r  =  (24.5  -  0.75 ) x 0.30						and	   T =  I 
	thus		
					   =  5.44 rad s-2

(b)	To calculate the angular velocity we will need to know  , the angular displacement for a length of rope 2.0 m long being unwound.
			circumference  =  2  r  =  2  x 0.30
			no. of revs  =  =  
			  =  2  x no. of revs  =  2  x =  6.67 rad
	o  =  0			apply	2  =  o2  +  2
	  =  ?				2  =  0  +  2 x 5.44 x 6.67
	  =  5.44 rad s-2		2  =  72.57
	  =  6.67 rad		  	    =   8.52 rad s-1

Frictional Torque
Example
The friction acting at the axle of a bicycle wheel can be investigated as follows.
The wheel, of mass 1.2 kg and radius 0.50 m, is mounted so that it is free to rotate in the vertical plane.  A driving torque is applied and when the wheel is rotating at 5.0 revs per second the driving torque is removed.  The wheel then takes 2.0 minutes to stop.

(a) 	Assuming that all the spokes of the wheel are very light and the radius of the wheel is 0.50 m, calculate the moment of inertia of the wheel.
(b) 	Calculate the frictional torque which causes the wheel to come to rest.
(c) 	The effective radius of the axle is 1.5 cm.  Calculate the force of friction acting at the axle.
(d) 	Calculate the kinetic energy lost by the wheel. Where has this energy gone?

Solution
(a)	In this case	I for wheel  =  MR2	
					    I  =  1.2 x (0.50)2  (M  =  1.2 kg,   R  =  0.50 m )
					    I  =  0.30 kg m2
(b)	To find frictional torque we need the angular acceleration (becauseT 
		t  =  120 s		
		o  =  5.0 r.p.s.		     =  
		      = 31.4 rad s-1		  =  - 0.262 rad s-2
				Now use 	T   =  I 
						x (-0.262)
						T  =  - 0.0786 N m
(c)	Also				T   =  r F		(r  =  1.5 cm  =  0.015 m)
						F  =  =  - =  - 5.24 N

		i.e. negative value indicates force opposing  motion.

(d)					Ek(rot)  =  I o2
						=  x 0.30 x (31.4)2
						=  148 J    

	When the wheel stops  Ek(rot)  =  0.  This 148 J will have changed to heat in the axle due to the work done by the force of friction.

Conservation of Angular Momentum
Example
A turntable, which is rotating on frictionless bearings, rotates at an angular speed of 15 revolutions per minute.  A mass of 60 g is dropped from rest just above the disc at a distance of 0.12 m from the axis of rotation through its centre.



As a result of this impact, it is observed that the rate of rotation of the disc is reduced to 10 revolutions per minute.

(a)	Use this information and the principle of conservation of angular momentum to calculate the moment of inertia of the disc.
(b)	Show by calculation whether this is an elastic or inelastic collision.

Solution
(a)	moment of inertia of disc	=  I
	moment of inertia of 60 g mass  =  m r2		(treat as ‘particle’ at radius r)
	=  0.06 x (0.12)2
	Imass 	=  8.64 x 10-4 kg m2
			initial angular velocity  =  o  =  15 rev min-1  =  
					   	      o  =  1.57 rad s-1
			  final angular velocity    =    =  10 rev min-1
						             =  1.05 rad s-1

total angular momentum before impact  =  total angular momentum after impact
			      	      I o  =  (I + Imass) 
				I x 1.57  =  (I + 8.64 x 10-4) x 1.05
					0.52 I  =  9.072 x 10-4
					I  =  =  1.74 x 10-3 kg m2
(b)	Ek before impact  =  I o2  =  x 1.74 x 10-3 x (1.57)2  =  2.14 x 10-3 J
Ek after impact  =  2  =  x 2.60 x 10-3 x (1.05)2  =  1.43 x 10-3 J
				Ek difference  =  7.1 x 10-4 J
Thus the collision is inelastic.  The energy difference will be changed to heat.

Data

Common Physical Quantities

	Quantity
	Symbol
	Value

	Gravitational acceleration
	g
	9.8 m s-2

	Radius of Earth
	RE
	6.4 x 106 m

	Mass of Earth
	ME
	6.0 x 1024 kg

	Mass of Moon
	MM
	7.3 x 1022 kg

	Mean radius of Moon orbit
	
	3.84 x 108 m

	Universal constant of gravitation
	G
	6.67 x 10-11 m3 kg-1 s-2

	Speed of light in vacuum
	c
	3.0 x 108 m s-1

	Speed of sound in air
	v
	3.4 x 102 m s-1

	Mass of electron
	me
	9.11 x 10-31 kg

	Charge on electron 
	e
	-1.60 x 10-19 C

	Mass of neutron
	mn
	1.675 x 10-27 kg

	Mass of proton
	mp
	1.673 x 10-27 kg

	Planck’s constant
	h
	6.63 x 10-34 J s

	Permittivity of free space
	0
	8.85 x 10-12 F m-1

	Permeability of free space
	0
	4 x 10-7 H m-1




Astronomical Data

	Planet or
satellite
	Mass/
kg

	Density/
kg m-3
	Radius/
m
	Grav.
accel./
m s-2
	Escape velocity/
m s-1
	Mean dist from Sun/ m
	Mean dist from Earth/ m

	Sun
	1.99x 1030
	1.41 x 103
	 7.0 x 108
	274
	 6.2 x 105
	      --
	1.5 x 1011

	Earth
	 6.0 x 1024
	  5.5 x 103
	 6.4 x 106
	    9.8
	11.3 x 103
	1.5 x 1011
	      --

	Moon
	 7.3 x 1022
	  3.3 x 103
	 1.7 x 106
	    1.6
	  2.4 x 103
	      --
	3.84 x 108

	Mars
	 6.4 x 1023
	  3.9 x 103
	 3.4 x 106
	    3.7 
	  5.0 x 103
	2.3 x 1011
	      --

	Venus
	 4.9 x 1024
	  5.3 x 103
	6.05 x 106
	    8.9
	10.4 x 103
	1.1 x 1011 
	      --




TUTORIAL 1.0

Equations of motion 

1	The displacement, s in metres, of an object after a time, t in seconds, is given by 
s = 90t – 4 t2
	(a)	Find by differentiation the equation for its velocity.
	(b)	At what time will the velocity be zero?
	(c)	Show that the acceleration is a constant and state its value.


2	Given that a = , show by integration that the velocity, v, is given by 
v = u + at.
	State clearly the meaning of the symbol, u, in this equation.


3.	Given that v =  and v = u + at, show by integration that 
s = ut + ½ at2.
	Where the symbols have their usual meaning.

4.	The displacement, s, of a moving object after a time, t, is given by 
s  =  8 – 10t + t2.
	Show that the unbalanced force acting on the object is constant.  

5.	The displacement, s, of an object after time, t, is given by s = 3t3 + 5t.
	(a)	Derive an expression for the acceleration of the object.
	(b)	Explain why this expression indicates that the acceleration is not constant.

6.	A trolley is released from the top of a runway which is 6 m long.
	The displacement, s in metres, of the trolley is given by the expression
s = 5t + t2,  where t is in seconds.
	Determine:
	(a)	an expression for the velocity of the trolley
	(b)	the acceleration of the trolley 
	(c)	the time it takes the trolley to reach the bottom of the runway
	(d)	the velocity of the trolley at the bottom of the runway.

7.	A box slides down a smooth slope with an acceleration of 4 m s-2.  The velocity of the box at a time t = 0 is 3 m s-1 down the slope. 

	Using  a =  show by integration that the velocity, v, of the box is given by
  				v = 3 + 4t.

8.	The equation for the velocity, v, of a moving trolley is v = 2 + 6t.

	Using v =  derive an expression for the displacement, s, of the trolley.

9	A projectile is launched from the top of a building with an initial speed of 20 m s-1 at an angle of 30° to the horizontal.  The height of the building is 30 m.
	(a)	Calculate how long it takes the projectile to reach the ground.
	(b)	Calculate the velocity of the projectile on impact with the ground, 
(magnitude and direction).


TUTORIAL 2.0

Angular motion

1.	Convert the following from degrees to radians:
	30o, 45o, 60 o, 90 o, 180 o, 270 o, 360 o, 720 o.

2.	Convert the following from radians to degrees:

	1 rad, 10 rad, 0.1 rad,  rad, 2 rad, ½  rad,  rad.

3.	Convert the following from revolutions per minute to radians per second:
	33 rpm,  45 rpm,  78 rpm,  300 rpm.

4.	Using calculus notation write down the expression for 
	(a)	the angular velocity in terms of the angular displacement
	(b) 	the angular acceleration in terms of the angular velocity
	(c)	the angular acceleration in terms of the angular displacement.

5.	State the three equations which can be used when an object moves with a constant angular acceleration, .
	State the meaning of each symbol used.

6.	A disc is slowed uniformly at 5.0 rad s-2 for 4.0 s.  The initial angular velocity is 200 rad s-1.
(a)	Determine the angular velocity at the end of the four seconds.
(b)	What is the angular displacement in this time? 

7.	The angular velocity of an engine is increased from 800 rpm to 3 000 rpm in 8.0 s.
	(a)	Determine the angular acceleration.  You may assume this is uniform.
	(b)	Find the total angular displacement.
	(c)	How many revolutions does the engine make during this 8.0 s?

8.	A wheel accelerates uniformly from rest at 3.0 rad s-2 for 5.0 s.
	(a)	Find
		(i)	the final angular velocity after 5.0 s
		(ii)	the angular displacement after 5.0 s.
(b)	The wheel has a radius of 1.50 m.  
Determine the linear velocity at a point on its rim at the end of the 5.0 s.

9.	Radius of Earth = 6.4 x 103 km	Geostationary orbit radius = 3.6 x 104 km
Radius of Earth’s orbit = 1.5 x 108 km	Radius of Moon’s orbit = 3.8 x 105 km
Period of Earth about Sun = 365 days	Period of Moon about Earth = 28 days

(a)	Calculate the angular velocity in rad s-1 of
(i) 	the Earth about the sun
(ii) 	the Moon about the Earth
(iii)	an object on the Earth’s surface about its axis of rotation
(iv)	a geostationary satellite.
(b)	Find the tangential velocity in m s-1 of each of the above quantities in part (a).

10. Derive the expression v = r for a particle in circular motion.

TUTORIAL 2.1

Angular Motion

1	If 2 radians equals 360°, calculate the number of degrees in one radian.

2	Calculate the angular velocity in rad s-1 of the second hand of an analogue watch.

3	The graph below shows the variation of angular velocity with time for a rotating body.




	(a)	Find the angular displacement    covered in the first 3 seconds.
	(b)	Find the total angular displacement for the 6 seconds.
	(c) 	Calculate the angular acceleration of the rotating body.

4	A wheel accelerates uniformly from rest.  After 12 s the wheel is completing 100 revolutions per minute (r.p.m.)
	(a)	Convert 100 r.p.m. to its equivalent value in rad s-1.
	(b)	Calculate the average angular acceleration of the wheel.

5	The angular velocity of a car engine’s drive shaft is increased from 100 rad s-1 to 300 rad s-1 in 10 s.
	(a)	Calculate the angular acceleration of the drive shaft.
	(b)	Calculate the angular displacement during this time.
	(c)	A point on the rim of the drive shaft is at a radius of 0.12 m.
		Calculate the distance covered by this point in the 10 s time interval.

6	Use calculus methods to derive the equations for angular motion.  The method is very similar to that for linear motion.
	Note: in the unit or course assessment you may be asked to derive the linear motion equations but not the angular motion equations.
 
TUTORIAL 3.0

Central force

1.	(a)	State the equation between radial acceleration and angular velocity.
	(b)	State the units of angular and radial acceleration.
[bookmark: _GoBack]	(c)	Explain the difference between angular and radial acceleration.

2.	Derive the expression  = r2 for the radial acceleration of an object.

3.	The central force maintaining an object in a circular orbit is given by F = mr2.
	Sketch graphs showing the variations of:
	(a)	central force with mass of the object
	(b)	central force with radius of the object
	(c)	central force with angular velocity of the object.

4.	A piece of string has a breaking force of 56 N.  This string is used to whirl a mass of 150 g in a horizontal circle.
	(a)	The 150 g mass moves in a horizontal circle of radius 1.2 m.  Calculate the maximum angular velocity of the mass.
	(b)	The mass is rotated at 85 rpm.  Find the maximum possible radius of the circular orbit.

5.	A swing ball, on a cord of length 1.5 m, has a mass of 2.0 kg.  After being hit by a bat, the ball moves in a horizontal circle of radius 0.50 m with a steady speed of 1.33 m s-1.
	(a)	Draw a sketch showing the path of the ball on the string.
	(b)	Calculate the central acceleration of the ball.
	(c)	Draw a sketch showing all the forces on the ball while moving in a horizontal circle.
Determine the tension in the string.

6.	A 3.0 kg mass is whirled in a vertical circle of radius 0.75 m at a steady speed of 8.0 m s-1.
	(a)	Calculate the tension in the string at the top of the circle.
	(b)	Calculate the tension in the string at the bottom of the circle.

7.	A hump backed bridge is in the form of a circular arc of radius 35 m.
	What is the greatest speed with which a car can cross the bridge without leaving the ground at its highest point?

8.	(a)	In a space flight simulator an astronaut is rotated at 20 rpm in a pod which is at the end of an arm of radius 5.0 m.  Show that the central force on the astronaut is 2.2g.
	(b)	What rotation rate would give a ‘simulated’ gravity of 3g?  

9. 	Comment on the words centripetal and centrifugal with respect to angular motion.


TUTORIAL 3.1

Circular Motion

1	An Earth satellite is required to be in a circular orbit at a distance of 7.5 x 106 m from the centre of the Earth.  The central force is due to the gravitational force.  The acceleration due to the Earth’s gravity at this point  is 7.0 m s-2 
	Find:	
	(a)	the required satellite speed
	(b)	the period of revolution of the satellite.

2	What would be the period of rotation of the Earth about its axis if its speed of rotation increased to such an extent that an object at the equator became ‘weightless’?   
	(Hint:    equate  mg  to  ).

3	A sphere of mass 0.20 kg is rotating in a circular path at the end of a string 0.80 m long. The other end of the string is fixed.  The period of the motion is 0.25 s. 

	(a)	Calculate the tension in the string, which you may assume to be horizontal.
	(b)	In practice the string is not horizontal.  Explain why this is so.
	(c)	Draw a force diagram for the sphere.
From this calculate the angle the string would make with the horizontal.

4	The moon takes 27.3 days (2.0 x 106 s) to complete one orbit of the Earth. 	
	The distance between the centres of the Earth and Moon is 4.0 x 108 m. 
	Calculate the magnitude of the Moon’s acceleration towards the Earth.

5	A ball of mass 2.0 kg is attached to a string 1.6 m long and is made to travel in a vertical circle.  The ball passes its highest point with a speed of 5.0 m s-1.
	(a)	What is the kinetic energy of the ball at its highest point?
	(b)	What is its potential energy when it is at the highest point (with reference to its lowest point)?
	(c)	What is its kinetic energy at the lowest point?
	(d)	What is its speed at the lowest point?
	(e)	What is the tension in the string at the highest and lowest points?
	(f)	What is the least speed the ball could have at the highest point in order to be able to complete a vertical circle at all?

6	An old humpback bridge has a radius of curvature of 20 m.  What is the maximum speed at which a car can pass over this bridge if the car is not to leave the road surface?

7	(a)	A pail of water is swinging in a vertical circle of radius 1.2 m, so that the water does not fall out.  What is the minimum linear speed required for the pail of water.
	(b)	Convert this speed into an angular velocity.

8	An object of mass 0.20 kg is connected by a string to an object of half its mass.  The smaller mass is rotating at a radius of 0.15 m on a table which has a frictionless surface.  The larger mass is suspended through a hole in the middle of the table.
	Calculate the number of revolutions per minute the smaller mass must make so that the larger mass is stationary.


Banking of a Track

9	A circular track of radius 60 m is banked at angle .  A car is driven round the track at 20 m s-1.
	(a) 	Draw a diagram showing the forces acting on the car.
	(b) 	Calculate the angle of banking required so that the car can travel round the track without relying on frictional forces (i.e. no side thrust supplied by friction on the track surface).


Conical Pendulum

10	A small object of mass  m  revolves in a horizontal circle at constant speed at the end of a string of length 1.2 m.  As the object revolves, the string sweeps out the surface of a right circular cone.
[image: ]

	The cone has semi-angle 30°. 
	Calculate:
	(a) 	the period of the motion;
	(b)	the speed of the object.

	[Hint: try resolving the tension in the string into horizontal and vertical components.]

TUTORIAL 4.0

Torque and moment of inertia

1.	(a)	State what is meant by the moment of a force.  
	(b)	Give two examples illustrating the moment of a force.

2.	(a)	State the equation between torque and tangential force. 
	(b)	State the equation between torque and angular acceleration.

3.	The moment of inertia of an object depends on two quantities.  State clearly the two quantities concerned.

4.	The moment of inertia of a rod about an axis through its centre is different to the moment of inertia of the same rod about an axis through one end.  
Explain why this is so and justify which arrangement has the larger moment of inertia. 

5.	A wheel has very light spokes.  The mass of the rim and tyre is 2.0 kg and the radius of the wheel is 0.80 m.  
Calculate the moment of inertia of the wheel.  State any assumptions that you have made.

6.	A cylindrical solid drum is free to rotate about an axis AB as shown below.
A
B
8.0 N







The radius of the drum is 0.30 m.  The moment of inertia of the drum about AB is 0.40 kg m2.  A rope of length 5.0 m is wound round the drum and pulled with a constant force of 8.0 N.
(a)	Calculate the torque on the drum.
	(b)	Determine the angular acceleration of the drum.
	(c)	Calculate the angular velocity of the drum just as the rope leaves the drum. You may assume that the drum starts from rest.

7.	A hoop has a radius of 0.20 m and a mass of 0.25 kg.
(a)	What is the moment of inertia of the hoop?
	(b)	What torque is required to give the hoop an acceleration of 5.0 rad s-2?

8.	A sphere has a moment of inertia of 0.40 MR2 where M is the total mass of the sphere and R is the radius.  
(a)	Calculate the moment of inertia of the Earth as it spins on its axis.
State any assumptions made.
	(b)	What is the tangential speed at the surface of the Earth at the Equator?

9.	Two children are playing on a roundabout.  One child, Anne, of mass 50 kg, stands on the roundabout 1.25 m from the axis of rotation.  The other child, Robert, starts the roundabout by applying a constant torque of 200 N m at the rim for 3 s.
When rotating there is a constant frictional torque of 25 N m acting on the roundabout.  Robert stops pushing and the roundabout comes to rest.  
The moment of inertia of the roundabout alone is 500 kg m-2.
(a)	Calculate the maximum angular velocity of the roundabout.
	(b)	Find the time taken for the roundabout to come to rest.

TUTORIAL 5.0

Angular momentum and rotational kinetic energy

1.	(a)	State the law of conservation of angular momentum.
	(b)	State the expression for the angular momentum of an object in terms of its moment of inertia.
	(c)	State the equation for the rotational kinetic energy of a rigid object.

2.	A bicycle wheel has a moment of inertia of 0.25 kg m2 about its hub.  
	Calculate the angular momentum of the wheel when rotating at 120 r.p.m.
	
3.	A model aeroplane is flying in a horizontal circle at the end of a light wire.  The mass of the aeroplane is 2.0 kg.  The radius of the circular path is 20 m.  The aeroplane makes 40 revolutions in one minute.
	(a)	Calculate the linear velocity of the aeroplane. 
	(b)	Find the angular momentum of the aeroplane about the centre of the circle.
	(c)	The wire suddenly breaks.  What is the new angular momentum of the aeroplane about the centre of the circle?

4.	A shaft has a moment of inertia of 20 kg m2 about its central axis.  The shaft is rotating at 10 rpm.  This shaft is locked onto another shaft, which is initially stationary.  The second shaft has a moment of inertia of 30 kg m2.
	(a)	Find the angular momentum of the combination after the shafts are locked together. 
	(b)	What is the angular velocity of the combination after the shafts are locked together?

5.	Which of the following are vector quantities:
	torque, moment of inertia, angular velocity, tangential force, angular acceleration, rotational kinetic energy, radius of a circular motion.

6.	Two children are playing on a roundabout of mass 250 kg.  The roundabout can be considered to be a solid disc of diameter 3.0 m.  (Idisc = ½ MR2)
One child of mass 40 kg stands on the rim of the roundabout.  The other child of mass 60 kg is positioned half way between the rim and the centre. 
(a)	Calculate the total moment of inertia of the roundabout and children. 
	(b)	Determine the rotational kinetic energy of this system when it is rotating at 35 rpm.

7.	A disc has a moment of inertia of 2.5 kg m2. The disc is rotating at 2.0 rad s-1.
	(a)	Calculate the kinetic energy of the disc.
	(b)	How much energy needs to be supplied to increase its angular velocity to 15 rad s-1?

8.	 A solid cylinder and a hollow cylinder have the same mass and the same radius.
	(a)	Which one has the larger moment of inertia about the central axis as shown opposite?  
You must justify your answer.
(b)	The cylinders do not have the same length.  Does this affect your answer to part (a)?  Again you must justify your answer.
	



9.	A cylinder of mass 3.0 kg rolls down a slope without slipping.  The radius R of the cylinder is 50 mm and its moment of inertia is ½MR2.  The slope has a length of 0.30 m and is inclined at 40o to the horizontal.
(a)	Calculate the loss in gravitational potential energy as the cylinder rolls from the top of the slope to the bottom of the slope.
(b)	Find the speed with which the cylinder reaches the bottom of the slope.


10.	A turntable is rotating freely at 40 rpm about a vertical axis.  A small mass of 50 g falls vertically onto the turntable and lands at a distance of 80 mm from the central axis.  The rotation of the turntable is reduced to 33 rpm.
Find the moment of inertia of the turntable. 

11.	A CD of mass 0.020 kg and diameter 120 mm is dropped onto a rotating turntable.  The turntable has a moment of inertia about its axis of rotation of 5.0 x 10-3 kg m2.  The turntable was initially rotating at 3.0 rad s-1.
Determine the common angular velocity of the turntable and the CD.

12.	A skater with her arms pulled in has a moment of inertia of 1.5 kg m2 about a vertical axis through the centre of her body.  With her arms outstretched the moment of inertia is increased to 10 kg m2.
With her arms pulled in, the skater is spinning at 30 rad s-1.  The skater then extends her arms.
(a)	Calculate her final angular speed.
(b)	Find the change in kinetic energy.
(c)	Explain why there is a change in kinetic energy.

13.	A skater is spinning at 3.0 rad s-1 with her arms and one leg outstretched.
	The angular speed is increased to 25 rad s-1 when she draws her arms and leg in.
	(a)	Explain why this movement of her arms and leg affects the rotational speed.
	(b)	Her moment of inertia about her spin axis is 5.0 kg m2 with her arms and leg outstretched.  Calculate her moment of inertia when her arms and leg are drawn in. 

14.	A roundabout has a moment of inertia of 300 kg m2 about its axis of rotation.  Three children, each of mass 20 kg, stand 2.0 m from the centre of the stationary roundabout.  They all start to run round the roundabout in the same direction until they reach a speed of 3.0 m s-1 relative to the roundabout.
Calculate the angular velocity of the roundabout. 

15.	A disc is rotating at 100 rpm in a horizontal plane about a vertical axis.  A small piece of plasticene is dropped vertically onto the disc and sticks at a position 50 mm from the centre of the disc.  The plasticene has a mass of 20 g.  The disc is slowed to 75 rpm.  Calculate the moment of inertia of the disc.  	

16.	The radius of a spherical neutron star is 20 km.  The star rotates at 0.5 rpm. 
	(a)	Calculate the velocity of a point on the equator of the star.
	(b)	The mass of the neutron star is the same as the mass of the sun.
What is the density of the neutron star?
	(c)	The radius of a neutron is about 10-15 m.  Estimate the average spacing of the neutrons in the neutron star. 


TUTORIAL 5.1

Torque, Moments of Inertia and Angular Momentum

1	A flywheel has a moment of inertia of 1.2 kg m2. The flywheel is acted on by a torque of magnitude 0.80 N m.
	(a)	Calculate the angular acceleration produced.
	(b)	The torque acts for 5.0 s and the flywheel starts from rest.  
Calculate the angular velocity at the end of the 5.0 s.
2	A mass of 0.10 kg is hung from the axle of a flywheel as shown below. The mass is released from a height of 2.0 m above ground level.	
[image: ]
The following results were obtained in the experiment: 
 	time for mass to fall to the ground	 t  =  8.0 s
 	radius of axle			 R  =  0.10 m.


	(a)	By energy considerations, show that the final speed of the flywheel is given by   v  =   where I is the moment of inertia of the flywheel. Friction effects are ignored.
	(b)	Calculate the moment of inertia of the flywheel.

3	A heavy drum has a moment of inertia of 2.0 kg m2.  It is rotating freely at 
10 rev s-1 and has a radius of 0.50 m.  A constant frictional force of 5.0 N is then exerted at the rim of the drum.
	(a)	Calculate the time taken for the drum to come to rest.
	(b)	Calculate the angular displacement in this time.
	(c)	Hence calculate the heat generated in the braking action.



4	A cycle wheel is mounted so that it can rotate horizontally as shown.
	Data on wheel:	radius of wheel  =  0.50 m,	mass of wheel  =  2.0 kg.




	(a)	Calculate the moment of inertia of the wheel system.  State any assumptions you make.
	(b)	A constant driving force of 20 N is applied to the rim of the wheel.
		(i)	Calculate the magnitude of the driving torque on the wheel.
		(ii)	Calculate the angular acceleration of the wheel.
	(c)	After a period of 5.0 s, calculate:
		(i)  the angular displacement,
		(ii)  the angular momentum of the wheel, and
		(iii)  the kinetic energy of the wheel.

5	A very light but strong disc is mounted on a free turning bearing as shown below.
[image: ] 	
	A mass of 0.20 kg is placed at a radius of 0.40 m and the arrangement is set rotating at 1.0 rev s-1. 
(The moment of inertia of the disc can be considered to be negligible.)
	(a)	Calculate the angular momentum of the 0.20 kg mass.
	(b)	Calculate the kinetic energy of the mass.

	(c)	The mass is pushed quickly into a radius of 0.20 m.
		By applying the principle of conservation of angular momentum, calculate the new angular velocity of the mass in rad s-1.
	(d)	Find the new kinetic energy of the mass and account for any difference.


6	A uniform metal rod has a mass, M, of 1.2 kg and a length, L, of 1.0 m.  Clamped to each end of the rod is a mass of 0.50 kg as shown below.

[image: ]

	(a)	Calculate an approximate value for the moment of inertia of the complete arrangement about the central axis as shown.  Assume that   Irod = ML2  about this axis.

	(b)	The arrangement is set rotating by a force of 10 N as shown in the diagram.  The force acts at a tangent to the radius.
		(i)	Calculate the applied torque.
		(ii)	Hence find the maximum angular acceleration. You may assume that the force of friction is negligible.
		(iii)	Calculate the kinetic energy of the arrangement 4.0 s after it is set rotating.

7	An unloaded flywheel, which has a moment of inertia of 1.5 kg m2, is driven by an electric motor.  The flywheel is rotating with a constant angular velocity of 
52 rad s-1.  The driving torque, of 7.7 N m, supplied by the motor is now removed.
	How long will it take for the flywheel to come to rest.  
You may assume that the frictional torque remains constant?

8	A solid aluminium cylinder and a hollow steel cylinder have the same mass and radius.  The two cylinders are released together at the top of a slope.
	(a)	Which of the two cylinders will reach the bottom first?
	(b)	Explain your answer to part (a).	

9	A solid cylinder and a hollow cylinder each having the same mass M and same outer radius R, are released at the same instant at the top of a slope 2.0 m long as shown below. 
	The height of the slope is 0.04 m.			
[image: ]
	[image: ]
	[image: ]


end-on view of the cylinders

		M  =  10 kg,  R  =  0.10 m		M  =  10 kg,  R  =  0.10 m,  r  = 0.05 m
			I  =  M R2					I  =  M (R2  +  r2)
	It is observed that one of the cylinders reaches the bottom of the slope before the other.
	(a)	Using the expressions given above, show that the moments of inertia for the cylinders are as follows:
	(i)  solid cylinder;   I  =  0.05 kg m2  (ii)  hollow cylinder;   I  =  0.0625 kg m2.	
	(b)	By energy considerations, show that the linear velocity of any cylinder at the bottom of the slope is given by:

v  =  .

	(c)	Using the expression in (b) above, calculate the velocities of the two cylinders at the bottom of the slope and hence show that one of the cylinders arrives at the bottom of the slope 0.23 s ahead of the other.


 

AH Physics: Rotational Motion	20	2013


















image2.png




image3.wmf
s

O

P

Q

D

s

X

D

s is covered in time     t

 D


image4.wmf
 

ds

dt


oleObject2.bin

oleObject3.bin

oleObject4.bin

image5.wmf
 

1

2


oleObject5.bin

image6.wmf
 

 v dt

 

 

ò


oleObject6.bin

image7.wmf
object

x

u

field

lines

y

path


oleObject7.bin
�



object







x







u







field 



lines







y







path
















image8.wmf
r

s

q

v


image9.wmf
q

q

A

B

Q

u

r

O


image10.wmf
2q

D

v

-u

v


image11.wmf
q

D

v

-u

v

2

v

2

D

q

sin

q  

v

2

D

v

=


image12.wmf
friction

O

w


oleObject8.bin
�



friction







O







w
















image13.png
R sin 9+
Frcose





image14.wmf
F

paint

lid

d

screwdriver


image15.wmf
F

O

r


oleObject9.bin
��



F







O







r
























image16.wmf
50 cm

50 cm

axis of rotation


oleObject10.bin
���������������



axis of rotation







50 cm







50 cm
















image17.wmf
Particle of

mass m

r

O


oleObject11.bin




�Particle of 



mass m











r







O
















image18.wmf
O

w

r

m

v


oleObject12.bin
�



O







w







r







m







v
















image19.wmf
h

q



length of slope = L

      h = L sin

q

v

w


oleObject13.bin
�������



w







v







q







length of slope = L







      h = L sin 







q







 







h







�
















image20.wmf
2.0 m

ground

F

T

W

2 

m


oleObject14.bin
� EMBED Word.Picture.6  ���












image21.wmf
60 g mass

15 rev/min

axis of rotation

0.12 m


oleObject15.bin
�



60 g mass







15 rev/min







axis of rotation







0.12 m
















image22.wmf
dt

dv


oleObject16.bin

image23.wmf
dt

ds


oleObject17.bin

oleObject18.bin

oleObject19.bin

image24.wmf
6

π


oleObject20.bin

image25.wmf
w

/rad s

-1

15

10

 5

2

4

6

0

0

t /s


oleObject21.bin
�



w/rad s-1







15







10







 5







2







4







6







0







0







t /s
















image26.wmf
m

1.2 m  

long

  

30 

°


image27.wmf
2.0 m

ground

0.10 kg

axis of

rotation


image28.wmf
3

92

0

1

100

.

.

+

I


oleObject22.bin

image29.wmf
thin spokes

axle


oleObject23.bin
�



thin spokes







axle
















image30.wmf
0.40 m

disc

0.20 kg


image31.wmf
axis

1.0 m

0.50 kg

10 N


image32.wmf
2.0 m

h

h = 0.04 m


image33.wmf
solid cylinder

R


image34.wmf
hollow cylinder

r

R


image1.png
&

S
ROBERT GORDON'’S
COLLEGE





