

CERTIFICATE OF SIXTH YEAR STUDIES 1997

PHYSICS SY DETAILED MARKING INSTRUCTIONS

STRICTLY CONFIDENTIAL

You must regard these instructions as strictly confidential and, in common with the scripts entrusted to you for marking, they must not form the subject of remark of any kind, except to the Scottish Qualifications Authority. Similarly, the contents of these instructions must not be divulged now, or at any future time, to any other person.

Markers' Meeting

You should use the time before the meeting to make yourself familiar with the question paper, instructions and any scripts which you have received. Do not undertake any final approach to marking until after the meeting. Please note any point of difficulty for discussion at the meeting.

Note: These instructions can be considered as final only after the markers' meeting when the full marking team has had an opportunity to discuss and finalise the document in the light of a wider range of candidates' responses.

Marking

The utmost care must be taken when entering and totalling marks. Where appropriate, all summations for totals must be carefully checked and confirmed.

Where a candidate has scored zero marks for any question attempted, "0" should be entered against the answer.

Recording of Marks

The mark for each question, where appropriate, should be entered on the grid provided on the back page of the answer book..

The Total mark for each paper should be entered in the box provided in the top-right corner of the front cover of the answer book

Always enter the Total mark (using red ink) as a whole number, where necessary by the process of rounding up.

The transcription of marks, within scripts and to Forms Sy6, should always be checked.

97miphys.sy

	Sample answer and mark allocation	Notes	Ma	rks
1 (a)	$s = 24t - 2t^{3}$ $v = \frac{ds}{dt} = 24 - 6t^{2}$ (\frac{1}{2})			
	$v = 0$ when $6t^2 = 24$ $(\frac{1}{2})$			
	Time after start = 2 s (1)		2	
(b)	$a = \frac{dv}{dt} = -12t$		<u> </u>	
	At $t = 2$, $a = -24 \text{ ms}^{-2}$ (1)		1	
(c)	$s = 24 \times 2 - 2 \times 8 = 32 \text{ m}$ (1)		1	4
2 (a)	Horizontally:- T sin30 = $m\omega^2r$ (1) Vertically:- T cos30 = mg (1) Dividing 1st by 2nd equation $\frac{\sin 30}{\cos 30} = \frac{m\omega^2r}{mg}$ ($\frac{1}{2}$) $\omega^2 = \frac{g \tan 30}{r} = \frac{9.8 \times 0.577}{3}$ $\omega = 1.37 \text{ (rad s}^{-1}\text{)} \text{ (}\frac{1}{2}\text{)}$ Period T = $\frac{1}{f} = \frac{2\pi}{\omega} = \frac{4.58 \text{ s}}{6}$ (1)	For resolution, in diagram or statement T sin30 (½) T cos30 (½)	4	
(b)	No $(\frac{1}{2})$ As above at angle θ $\tan \theta = \frac{\omega^2 r}{g} \text{does not involve m}$ $(1) \qquad (\frac{1}{2})$		2	6

	Sample answer and mark allocat	ion	Notes	Ma	arks
3 (a)	$V = \frac{Q}{4\pi \xi_{o} r}$ $= \frac{4 \times 10^{-6}}{4\pi \times 8.85 \times 10^{-12} \times 0.5}$ $= \frac{71.9 \text{ kV}}{4 \times 10^{-12} \times 0.5}$	(½) (½) (1)	-	2	
(b)	Work done = QV = 2 x 10 ⁻⁶ x 72 x 10 ³ = <u>0.14 J</u>	(½) (½) (1)		2	
(c)	Potential at C = 71.9 + 2 x 10 ⁻⁶ 4 m x 8.85 x 10 ⁻¹² x = 71.9 + 22.5 = 94.4 (kV) W.D. to add charge at C = QV = -3 x 10 ⁻⁶ x 94.4 x 10 ³ = -0.283 (J) Total energy required	0.8 (1) (½)	22.5 (kV) (½)		
	= 0.144 - 0.283 = -0.14 J	(½)		2	6
4	Force on electrons is <u>constant</u> always at <u>right angles</u> to path i.e. force is <u>radial</u> towards a <u>central point</u>	(½) (½) (½) (½) (½)		2	2
, 5 (a)	Force due to magnetic field is at <u>right angles to field</u> . Force due to electric field is <u>in plane of field</u> . Hence forces can <u>cancel</u> .	(½) (½)		1	
(b)	$E = \frac{V}{d} = \frac{440}{40 \times 10^{-3}} = 1.1 \times 10^{4}$ $QVB = EQ$ $V = \frac{E}{B} = \frac{1.1 \times 10^{4}}{3.8 \times 10^{-4}}$ $= 2.9 \times 10^{7} \text{ ms}^{-1}$	(支) (支) (1)		2	
(c)	Ep lost = Ek gained	1.			
	$QV = \frac{1}{2}mv^{2}$ $e/m = \frac{v^{2}}{2V} = \frac{(2.9 \times 10^{7})^{2}}{2 \times 2.5 \times 10^{3}}$	(¹ / ₂)			
	$= 1.68 \times 10^{11} \text{ Ckg}^{-1}$	(1)		2	5

	Sample answer and mark allocation	Notes	Ma	arks
6 (a)	Amplitude modulation wave	Frequency constant	1	
(b)	Displacement: sine wave (1)		
-	Velocity: cosine wave (1)		
	Acceleration: -sine wave (1)		
with the second			3	4
7 (a)	$y = a \sin 2\pi (ft + x/\lambda)$		1	
(b) (i)	Adding $y = a \sin 2\pi (ft + x/\lambda)$ and $y = a \sin 2\pi (ft - x/\lambda)$	must show some 'working'		
	gives $y = 2a \cos 2\pi x/\lambda \sin 2\pi ft$		1	
(ii)	Amplitude 2a cos 2πx/λ depends on x but not t		1	
. `	aspoints on a bas not c		1	
(iii)	Amplitude is zero when $2\pi x/\lambda = \pi/2$ or $3\pi/2$ ($\frac{1}{2}$)		† -	
į	i.e. when $x = \lambda/4$ or $3\lambda/4$ $(\frac{1}{2})$			
	which are separated by $\lambda/2$		1	
	·			4
8	Longest wavelength from least energy change: Balmer 3 to 2	Wrong transition Maximum 3 out of 4		
	$E_n = \frac{-1}{n^2} \times 2.16 \times 10^{-19}$			
	$E_3 = -2.4 \times 10^{-19} \text{ (J)}$ (1)			
	$E_2 = -5.4 \times 10^{-19} \text{ (J)}$			
	$E = E_3 - E_2 = 3.0 \times 10^{-19} (J) (\frac{1}{2})$			
	$E = hf$, $f = \frac{E}{h} = 4.54 \times 10^{14}$ (\frac{1}{2})			•
	E = hf, f = $\frac{E}{h}$ = 4.54 x 10 ¹⁴ ($\frac{1}{2}$) v = f λ , λ = $\frac{c}{f}$ = $\frac{6.61 \times 10^{-7} \text{ m}}{f}$ (1)		,	
	1		4	4

9 (a) (b) (i)	$\theta = \int_{(\frac{1}{2})}^{\omega} dt = \int_{(\frac{1}{2})}^{(\frac{1}{2})} dt$ $= \omega_{0}t + \frac{1}{2}\alpha t^{2} + k$ $(\frac{1}{2}) \qquad (\frac{1}{2})$ When $t = 0$, $\theta = 0$ hence $k = 0$ $(\frac{1}{2}) \qquad (\frac{1}{2})$ Therefore $\theta = \omega_{0}t + \frac{1}{2}\alpha t^{2}$ $E_{p} \text{ in earth's field} = -\frac{GMm}{r}$ $E_{p} \text{ of 2 kg at height of 600 km}$ $= -6.67 \times 10^{11} \times 6 \times 10^{24} \times 2$	(½)		3	3
- 1	E_{p} of 2 kg at height of 600 km		,	_	_L_
		Ω			
	$= -6.67 \times 10^{11} \times 6 \times 10^{24} \times 2$ -7×10^{6} $= -1.14 \times 10^{6} \text{ J}$	$\binom{\frac{1}{2}}{\binom{\frac{1}{2}}{2}}$	Must be negative		
(11)		$\binom{\frac{1}{2}}{2}$	or 10.7 kms-1	4	4
(c) (i)	R * r = 0.51 m		· .		
	Loss of $E_p = 0.21Mg$ $E_k = \frac{1}{2}I\omega^2 + \frac{1}{2}mv^2 = E_p$	$\binom{1}{2}$	·		
	$\frac{1}{2} \cdot \frac{2}{5} \cdot \frac{Mr^{2}}{r^{2}} \cdot \frac{v^{2}}{2} + \frac{1}{2} \cdot \frac{Mv^{2}}{2} = 0.21Mg$ $(\frac{1}{2}) \qquad (\frac{1}{2})$ $v^{2} = 0.3g = 2.94$ Hence $v = 1.7 \text{ ms}^{-1}$	(1)	$\omega = v/r$ for $(\frac{1}{2})$	4	
	For motion about 0, Central force = $\underline{mv^2}$ = M $\underline{0.3q}$	(½)	·	 	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(½)			
	0.51 Since these are equal, $R=0$ and sphere loses contact	(1)	or similar comment	2	
	Loses contact when $R = 0$ i.e. $\underline{mv^2} = mg \sin \theta$	(월)			
	r ½mv² term is greater since no ½Iω² term	(½) (½)	some reason		
	Hence $\sin\theta$ and θ are greater and loses contact higher up.	(½)		2	8

	Sample answer and mark allocation	Notes	Ma	rks
10 (a)	$F = \frac{Q_1 Q_2}{4\pi \mathcal{E}_0 r^2} $ (1) explanation of symbols (\frac{1}{2})	or statement for 1½		
	$E = \frac{dF}{dQ} = \frac{Q}{4\pi \mathcal{E}_0 r^2} \qquad (\frac{1}{2}) + (\frac{1}{2})$			
·	$V = -\int \frac{\text{Edr}}{\binom{1}{2}} = -\int \frac{Q}{4\pi \varepsilon_{o} r^{2}} \frac{dr}{\binom{1}{2}}$ $= -\frac{Q}{4\pi \varepsilon_{o}} \int \frac{dr}{r^{2}} = -\frac{Q}{4\pi \varepsilon_{o}} (\frac{-1}{r})$ $= \frac{Q}{4\pi \varepsilon_{o} r}$ $(\frac{1}{2})$		4	4
(b)	(1/2)			
(i)	$V = \frac{30 \times 10^{-9}}{4 \times 8.85 \times 10^{-12} \times 20 \times 10^{-3}}$ $= 13.5 \text{ kV} \tag{1}$		2	
(ii)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	both axes both values shape		
	60 40 20 0 20 40 60 M/mm		2	
(iii)	V inside 50 mm sphere $= \frac{-30 \times 10^{-9}}{4 \times 8.85 \times 10^{-12} \times 50 \times 10^{-3}}$ $= -5.4 \text{ kV}$			
	New potential at inner sphere = $13.5 - 5.4 = 8.1 \text{ kV}$ (1)		2	
(iv)	V/kV (1/2) (1/2) (1/2)	new values new shape	1	7
(c)	60 40 20 A/mmi			
(i)	$(1 - \frac{1}{c^2}) - \frac{1}{4}$ $v^2 = \frac{15}{16} c^2 $ $(\frac{1}{2})$			
	Hence $v = 2.9 \times 10^8 \text{ ms}^{-1}$ (1)		2	
(ii)	$qV = (m - m_0)c^2$ $V = \frac{3m_0c^2}{q}$ $(\frac{1}{2})$			
	$= \frac{3 \times 9.11 \times 10^{-31} \times (3 \times 10^{8})^{2}}{1.6 \times 10^{-19}}$ $V = \underbrace{1.54 \times 10^{6} V}$ (1)		2	4

Page 6

	Sample answer and mark allocate	tion	Notes	Mā	arks
11 (a) (i)	F = nB1I = 150 x 2.4 x 20 x 2 x 10 ⁻⁶	(½)			
	$= 1.44 \times 10^{-4} \text{ N}$	(1)		2	
(ii)	Perpendicular distance between sides = 20 cos 20 (mm)	1 (½)			
	Torque = 1.44 x 10 ⁻⁴ x 20 x 10 ⁻³ cos2	20 (½)			
	= 2.71 × 10 ⁻⁶ Nm	(1)		2	
(iii)	Restoring torque per degree				
Ţ	$= 1.35 \times 10^{-7} \text{ Nm}$	(1)	accept Nm/degree	1	
(iv)	Restoring torque at 40° = 40 x 1.35 x 10 ⁻⁷	 (½)	· · · · · · · · · · · · · · · · · · ·	 	
	$= 1.44 \times 10^{-3} \text{ I cos}40$	(½)			
	Hence I = $4.9 \times 10^{-3} \text{ A}$	(1)			
·	$\frac{OR}{I_1 \cos 20} = \frac{I_2 \cos 40}{40}$	(1)	·		
	$I_2 = \frac{40 \cdot \cos 20}{20 \cdot \cos 40} \cdot I_1$				
	= 4.9 mA	(1)		2	
(v)	Field is <u>radial</u> due to <u>iron core</u> and <u>curved poles</u> on magnets	(1)	$(\frac{1}{2}) + (\frac{1}{2})$ any two from three	1	8

	Sample answer and mark allocation	Notes	Mai	rks
11 (b)	Magnetic induction distance r from wire proportional to I/r (1)			
	Currents in <u>same direction</u> can make B equal and opposite <u>between</u> the wires (1)	Equal and opposite fields may be shown in diagrams		
	Reference to ratio of distances 5:1 same as ratio of currents (1/2)	· .		
	Currents in <u>opposite directions</u> can make B equal and opposite beyond wires on right side (1)			Artis and and and artis are artis and artis are artis ar
	Reference to ratio of distances $5:1$ as before $\binom{1}{2}$		4	4
(c)	Induced e.m.f. = $-LdI$ dt $(\frac{1}{2})$			
	For sweep,			
	$E = -4.5 \times 10^{-3} \times \frac{0.8}{63 \times 10^{-6}} $ (½)			
	$= -57 \text{ V} \tag{1}$		2	
	For flyback,			
	$E = -4.5 \times 10^{-3} \times \frac{-0.8}{10^{-6}}$			
	$= 3.6 \text{ kV} \tag{1}$	signs of voltages must be opposite	1	3

**************************************	Sample answer and mark alloca	tion	Notes	Mã	rks
12 (a)	$x = 4 \cos(\frac{\pi}{5}t + \frac{\pi}{2})$				
(i)	$v = \frac{dx}{dt} = -4\frac{\pi}{5}\sin(\frac{\pi}{5}t + \frac{\pi}{2})$	(1)	The state of the s	1	
(ii)	Displacement after 12.5 s	— — — 			
	$x = 4 \cos(2.5\pi + \frac{\pi}{2})$	(½)		4	
	$= 4 \cos 3\pi = -4 \text{ m}$	(1½)			
	Distance = 4m per $\pi/2$ of time = $\frac{20 \text{ m}}{}$	(1)		3	
(iii)	Speed max when $\sin(\frac{\pi}{5}t + \frac{\pi}{2}) = 1$	l (½)			
	i.e. when $\frac{\pi}{5}t + \frac{\pi}{2} = \frac{\pi}{2}$ or $\frac{3\pi}{2}$	(½)			
	i.e. when $\frac{t = 0}{(\frac{1}{2})}$ or $\frac{t = 5 \text{ s}}{(\frac{1}{2})}$				
	Speed = $\frac{4\pi}{2} \sin \frac{\pi}{2} = 2.5 \text{ ms}^{-1}$	(1)		3	7
(b) (i)	<u>Downward</u> acceleration of platform is <u>equal</u> to g	(1)	greater than $g(\frac{1}{2})$ just greater than $g(1)$	1	
(ii)	a = - w²x	(½)			
	$9.8 = \omega^2 \times 0.1$.(1)	-ve sign -(½)		
	$4 \pi^2 f^2 = 9.8/0.1$ $\binom{\frac{1}{2}}{2}$				
	frequency $f = 1.6 \text{ Hz}$	(1)		3	4
(c) (i)	De Broglie wavelength λ = h/mv	(¹ ⁄ ₂)			
(1)	for neutron at velocity v = c/	200			
	$\lambda = \frac{6.63 \times 10^{-34}}{1.675 \times 10^{-27} \times 1.5 \times 10^{6}}$	(¹ 2)			
	$\lambda = 2.64 \times 10^{-13} \text{ m}$	(1)		2	
(ii)	2πr = nλ	(½)			
	De Broglie $\lambda = h/mv$ $2\pi r = nh/mv$	(½)			
	Ang mom $mvr = nh/2\pi$	(¹ / ₂)			
	Comment	(¹ ₂)		2	4
1		1	· .	i	

	Sample answer and mark allocat	ion	Notes	Ma	rks
13 (a)	I FO F	(1)	Label O, I & F (½) two rays for image (½)		
	$ \frac{1}{u} + \frac{1}{v} = \frac{1}{u} $ $ \frac{1}{u} + \frac{1}{v} = \frac{1}{50} $ (v = -450)	(½) (½)			
	image is 45 cm from lens virtual, magnification x10	(1) (1)		4	4
(b) (i)	Depth of focus is range of film distance where image is in reasonable focus Depth of field is range of object distance giving same	(½)	may be in diagram	1	
(ii)	depth of focus of focus	(2)	or description	2	3
(c)	Effective diameter of 28 mm lens at f/4 = 7 mm Effective diameter of 80 mm lens at f/4 = 20 mm	(¹ ½) (¹ ½)			
	Distance from lens to film approximately the same	(¹ / ₂)			
	Choice of 80 mm for close-up Link larger diameter to smaller depth of focus/field	(1 ₂)		3	3
(d) (i)	1 reverses image laterally 2 inverts image	(½) (½)	or horizontally or reverses vertically	1	
(11)		(支) (支)	or statement		
		(1)	$(\frac{1}{2}) + (\frac{1}{2})$	2	3

	Sample answer and mark allo	cation	Notes	M	arks
13 (e) (i)	objective eyepiece $ \begin{array}{ccccccccccccccccccccccccccccccccccc$, <u>/</u>	Lenses separated by sum of focal lengths		
		(1)		1	
(ii)	Angular magnification $= \beta/\alpha = \tan \beta/\tan \alpha$ $(\frac{1}{2})$ $= \frac{x/f_{\bullet}}{x/f_{\bullet}} = \frac{f_{\bullet}}{f_{\bullet}}$	(¹ / ₂)	must have both for (1)		
	Ang mag = 500/20 = 25	(¹ / ₂)		2	
(iii)	Object is at (fo + fo)	(¹ ₂)			
	$\frac{1}{f_o + f_o} + \frac{1}{v} = \frac{1}{f_o}$	(¹ / ₂)			
: -	$\frac{1}{V} = \frac{1}{f_{\bullet}} - \frac{1}{f_{\bullet} + f_{\bullet}}$	(¹ 2)			
	$\frac{1}{v} = \frac{f_o}{f_o(f_o + f_o)}$	(¹ 절)		2	
(iv)	Magnification of eyepiece is v/u = f _e /f _e				
	Diameter of exit pupil				
	$= 20 \times 60 = 2.4 \text{ mm}$	(1)		1	
(v) (A)	Image would not fill field of view of eye	(¹ /2)	or equivalent		
(B)	Not all light forming image would enter the eye	(1/2)		1	7

	Sample answer and mark allocat	ion	Notes	Ma	rks
14 (a) (i)	$Q = CV = CV_o \sin 2\pi ft$ $I = \underline{dQ} = 2\pi f CV_o \cos 2\pi ft$ \underline{dt} $I_o = 2\pi f CV_o$	(½) (½) (½)			
	$X_{c} = \frac{V_{o}}{I_{o}} = \frac{1}{2\pi fC}$	(¹ / ₂)		2	
(ii)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(¹ 2)			
	$X_{c} = 100\sqrt{3}$ $X_{c} = \frac{1}{2\pi fC} = 100\sqrt{3}$	(¹ 2)			
	$f = \frac{1}{2\pi \ \text{C.} 100\sqrt{3}} = \frac{9.19 \ \text{Hz}}{}$	(1)		2	- 4
(b)	Positive feedback increases amplitude of input and increases gain	(½) (½)			
	Negative feedback decreases amplitude of input and decreases gain	(½) (½)	·		
	Advantages:- increases stability reduces distortion increases bandwidth	(1)	any two for (½) each	3	3
(c) (i)	Let feedback current be I then I = Cd(Vout - 0) dt I = Cd(Vout) dt	(¹ / ₂)			
4	<pre>inverting input is virtual eart 0 - V_{in} = IR</pre>	h			
	$I = -\frac{V_{1n}}{R}$	(½)			
	Equating expressions for I $\frac{-V_{in}}{R} = \frac{Cd(V_{out})}{dt}$	(½)			
	$V_{\text{out}} = \frac{-1}{RC} V_{\text{in}} dt$	(½)		2	

Page 12

	Sample answer and mark allocation	Notes	Ma	rks
14 (c) (ii)	$V_{\text{out}} = \frac{1}{RC} V_{\text{in}} dt$ When t = 5s $V_{\text{out}} = \frac{1}{10^6 \times 2 \times 10^{-6}} \times 3 \times 5$ $= -15/2 = -7.5 \text{ V} \qquad (1)$. •••••	
(iii)	Vout 9	V _{out} -ve < 15 V at time < 10 s	2	5
(d) (i)	$\begin{array}{c c} & \text{axes} \\ & (\text{incl } V_z) & (\frac{1}{2}) \\ \hline & v_z & \text{line} & (\frac{1}{2}) \end{array}$		1	
(ii) ·	As supply voltage is increased at V _z reverse resistance falls and current is limited by R _s Increase in V _s beyond V _z increases voltage drop across R _s so V _z remains constant (2)	4 x (½)	2	
(iii)	Voltage across $R_8 = 3.8 \text{ V}$ ($\frac{1}{2}$) Max current in zener = $\frac{3.8}{(\frac{1}{2})} = \frac{0.025 \text{ A}}{150}$ (1)		2	
(iv)	Theoretically all current in R_L $R_L = \frac{6.2}{0.025} = \frac{248 \Omega}{(1)}$	or $\frac{6.2}{0.0253} = \frac{245 \Omega}{}$	1	
(v)	v _{in} v _{out} (2)	no supply $-(\frac{1}{2})$ no V_{out} $-(\frac{1}{2})$ wrong polarity 0 marks	2	8

Page 13

	Sample answer and mark allocat	Sample answer and mark allocation		Marks	
	bumple diswel did mark allocat	1011	Notes	Ma	T
15 (a) (i)		(1)		1	
(ii)		(1)	same f fewer waves to zero	1	
(iii)		(1)	lower f fewer waves than (i)	1	
(iv)	By supplying energy <u>in phase</u> at <u>correct frequency</u>	(½) (½)	or <u>same</u> frequency	1	4
(b)	$f_{o} = \frac{1}{2\pi\sqrt{LC}}$ $= \frac{1}{2\pi(2.5 \times 10^{-3} \times 100 \times 10^{-12})^{\frac{1}{2}}}$ $f_{o} = \frac{318 \text{ kHz}}{}$	(½) _(½) _(½)	use of min. L & C	2	2
(c) (i)	Wave with <u>electric field vector</u> existing in <u>only one plane</u>	(½) (½)		1	
(11)	reflector	(2)	each position and size $4 \times (\frac{1}{2})$ not distinguished $-(\frac{1}{2})$	3	
(iii)	Signals would be out of phase and cause interference If polarized differently, receiving aerial will pick up only the one signal.	(½) (½) (½) (½) (½)		2	6

Page 14

	Sample answer and mark allocat	ion	Notes	Ma	rks
15 (d) (i)	Top of the state o	(1)	$(\frac{1}{2}) + (\frac{1}{2})$		
	Lower sideband 809.95 to 802 kHz	(1)	$(\frac{1}{2}) + (\frac{1}{2})$	2	
(11)	794 kHz or 826 kHz	(1)		1	3
(e)	A - local oscillator B - mixer C - i.f. amplifier D - detector or decoder E - a.f. amplifier	(2)	-(½) for each error	2	
	Functions of <u>any two</u> of above A - <u>produces</u> a signal <u>465 kHz</u> <u>above signal</u> frequency	, , , , , , , , , , , , , , , , , , , ,	$2 \times (1\frac{1}{2})$ quality of answer		
	B - <u>mixes these two</u> to produce a <u>465 kHz signal</u> now carrying the <u>modulation</u>				
	C - <u>amplifies</u> the <u>modulated</u> 465 kHz signal				
	D - <u>separates</u> <u>a.f.</u> signal from <u>i.f.</u> carrier	·			
	E - amplifies the a.f. signal			3	5

	·		T		
	Sample answer and mark allocat	ion	Notes	Ma	rks
16 (a) (i)	A B	(2)	A,B to each AND (½) OR gate in and out (1)	2	
(ii)	A B A B A B A B X 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0	(2)	(½) each line	2	
(iii)	Exclusive OR	(1)	XOR, E-OR, EX-OR	1	5
(b) (i)	Closing Q_1 all inputs low — output 00 Closing Q_2 one input to G_1 high — output 01 Closing Q_3 one input to G_2 high — output 10 Closing Q_4 one input to G_1 and G_2 high — output 11	(1/2) (1/2) (1/2)		2	
(ii)	Even parity means that the total number of '1's in the data string together with the parity bit is even.	(1)		1	
(iii)	A ————————————————————————————————————	(1)		1	4

	Sample answer and mark allocation	Notes	Max	rks
	Pamble answer and mark allocacion	No cos	114	- <i>-</i>
l6 (c) (i)	$\begin{array}{c cccc} Clk & & & & & & & & & & \\ \hline Q & & & & & & & & & & \\ \hline \bar{Q} & & & & & & & & & & \\ \hline \end{array} \hspace{1cm} (1)$		2	
(ii)	Division by 2 (1)		1	
(iii)	S		2	
(iv)	Reset after 9 by ANDing Q outputs from 8 and 2 and applying this to all reset R inputs: (1) Added to diagram for (iii) (1)		2	
(d) (i)	Clk Q to buoy (2)	would it work? all or nothing	2	
(ii)	Clk $(\frac{1}{2})$ Q $(\frac{1}{2})$ C.Q $(\frac{1}{2})$	must be clearly labelled	2	4

Page 17
END OF MARKING INSTRUCTIONS