

> If you need additional help try these....
> Angular Motion

- heresel/routubermosivarabibk

Compendium Questions

$$
\begin{aligned}
& \text { Convert the following from degrees to radians: } \\
& 30^{\circ}, 60^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}, 360^{\circ}, 720^{\circ} \\
& \text { Convert the following from degrees into radians } \\
& \text { Convert the following from degrees into radians: } \\
& \text { Convert the following from radians to degrees: } \\
& 1 \mathrm{rad}, 10 \mathrm{rad}, 0.1 \mathrm{rad}, \pi \mathrm{rad}, 2 \pi \mathrm{rad}, \frac{\pi}{6} \mathrm{rad} . \\
& \text { Convert the following from radians to degrees: } \\
& -1 / 2 \pi \mathrm{rad}, 5 \mathrm{rad}, 0.1 \mathrm{rad}, 0.01 \mathrm{rad} \\
& \text { Convert the following from revolutions per minute to radians per second: } \\
& 33 \mathrm{rpm}, 45 \mathrm{rpm}, 78 \mathrm{rpm}, 300 \mathrm{rpm} .
\end{aligned}
$$

Angular Velocity

- To describe how quickly an object moves around a circle we measure the angular velocity.
- The angular velocity is the rate at which an object turns through an angle. If, in t seconds the object subtends θ rads then:

Angular velocity, ω

$$
\omega=\frac{\theta}{t}
$$

$\left\{\mathrm{rad} \mathrm{s}^{-1}\right\}=\left\{\frac{\mathrm{rad}}{\mathrm{s}}\right\}$

An electric drill rotates at 800 rpm , find its angular velocity.
In 1 rev there are 2π radians.
\therefore in 800 revs there are $2 \pi \times 800$ radians.

Determine the angular velocity of the Earth.
1 rev takes 24 hours
1 rev takes $24 \times 60 \times 60$ seconds $=86400$ seconds
1 rev is 2π radians

$$
\omega=\frac{\theta}{t}
$$

$$
\omega=\frac{2 \pi}{86400^{2}}=7.3 \times 10^{5} \mathrm{rd} \mathrm{~s}^{-1}
$$

Find the angular velocity of a washing machine which spins at 1300 rpm.

$$
\omega=\frac{\theta}{t}=\frac{1300 \times 2 \pi}{60}=136 \mathrm{rad} \mathrm{~s}^{-1}
$$

- Determine the angular velocity of a geostationary satellite.

Converting rpm to rad s ${ }^{-1}$

- 1 revolution is 2π radians
- 1 rev per $\min =\frac{2 \pi}{60} \mathrm{rad} \mathrm{s}{ }^{-1}$
$\cdot N$ rev per $\min =N \times \frac{2 \pi}{60} \mathrm{rad} \mathrm{s}^{-1}$

NB. radians have no dimensions.

Compendium Questions

Calculate the angular velocity of each of the following:

(a) A bicycle spoke turning through 5.8 rad in 3.6 s .
(b) A playground roundabout rotating once every 4 s .
(c) An electric drill bit rotating at 3000 revolutions per minute (rpm).
(d) An electric drill bit rotating at 40 revolutions per second.
(e) The second hand of an analogue watch.
(f) The Moon orbiting the Earth with a period of 27.3 days.
(g) The Earth spinning about its polar axis.
(h) A rotating object whose angular displacement, θ, is given by

[^0]
To relate linear speed, v , to angular speed

- To relate linear speed, v , to angular speed take an object, P, moving around a circle or radius, r .
- In time, t, P moves a distance, s , and reaches point P_{t} :

speed $=\frac{S}{t}$ but we knows = r \therefore speed $=v=\frac{r \theta}{t}$ $\therefore . v=r a$

Compendium Questions

A propeller rotates at 95 rpm .
(a) Calculate the angular velocity of the propeller

Calculapeller blade has a length of 0.35 m .
Calculate the linear speed of the tip of a propeller.
$\mathrm{A} C D$ of diameter 120 mm rotates inside a CD player.
\longleftarrow.
The linear speed of point A on the circumference of the $C D$ is $1.4 \mathrm{~m} \mathrm{~s}^{-1}$. Calculate the angular velocity of the CD:
(a) in rad s ${ }^{-1}$
(b) in rpm.

Angular Motion

Concept	Translational	Rotational	Comments	Where θ angular displacement, rad ω angular velocity, rad s${ }^{-1}$ ω_{0} initial angular velocity rad s ${ }^{-1}$ © final angular velocity, $\mathrm{rad} \mathrm{s}^{-1}$ α angular acceleration $\mathrm{rad} \mathrm{s}^{-2}$ t time s
Displacement	s	θ	$s=r \theta$	
Velocity	$v=\frac{d s}{d t}$	$\omega=\frac{d \theta}{d t}$	$v=r \omega$	
Acceleration	$a=\frac{d v}{d t}$	$\alpha=\frac{d \omega}{d t}$	$a_{\mathrm{t}}=r \alpha$	
Equations of motion for constant acceleration.	$v=u+a t$	$\omega=\omega_{0}+\alpha t$		
	$s=u t+\frac{1}{2} a t^{2}$	$\theta=\omega_{0} t+\frac{1}{2} \alpha t^{2}$		NB a_{t} in $a_{t}=r \omega$ is the tangential acceleration
	$v^{2}=u^{2}+2 a s$	$\omega^{2}=\omega_{0}^{2}+2 \alpha \theta$		

Angular Acceleration

Something to be aware of!

Acceleration is a vector quantitychange the direction you change the acceleration

ANGULAR ACCELERATION

(Rate of change of angular velocity)
Angular acceleration $\alpha=\frac{d \omega}{d t}$.
This is the rate of change of angular velocity.
This may have the effect of increasing the velocity of the orbit.
Angulaccelerati $\alpha=\frac{\omega-\omega_{b}}{t}$
where $\omega-\omega_{0}$ is the change in angular velocity during the time interval t .

TANGENTIAL ACCELERATION
 a_{\perp}

(only experienced by objects whose angular velocity is changing)
a measure of how the tangential velocity of a point at a certain radius changes with time
Tangential acceleration
angular acceleration $\alpha=\frac{d \omega}{d t}$ but $v=r \omega$
$a_{\perp}=r \alpha$

$$
\frac{d v}{d t}=r \cdot \frac{d \omega}{d t}
$$

tangential acceleration $\mathrm{a}_{\perp}=\mathrm{r} \alpha$

As an aside
 Linking angular acceleration and tangential acceleration

From the formula for tangential acceleration it can be seen that angular acceleration and tangential acceleration are related by the radius of the circle of motion.

ACCELERATION IN CIRCLES

RADIAL OR CENTRIPETAL/ CENTRAL ACCELERATION

Acceleration is a vector quantity-

change the direction you change the acceleration

- All particles travelling in a circular motion experience centripetal (radial acceleration). Only those whose angular velocity is changing experience tangential acceleration.
- Any particle moving in a circular path has radial acceleration (although the linear velocity maybe constant). A particle may have angular acceleration which is described as the rate of change of angular velocity.

a

(IF OBJECTS ARE MOVING IN CIRCLES THEIR DIRECTION IS CHANGING AND HENCE THEY ARE ACCELERATING)

Radial (centripetal acceleration) $\mathbf{a}=\mathrm{v}^{2} / \mathrm{r}$. This is the rate of change of the direction of motion.
$a=\frac{v^{2}}{r}=\omega^{2} r$

$$
a=\frac{v^{2}}{r}=\omega^{2} r
$$

A 150 g ball at the end of a string is swinging in a horizontal circle of radius 0.60 m . The ball makes exactly 2.00 revs per second. What is its centripetal acceleration?
-Radial Acceleration

- $a=v^{2} / r$ but $v=r \omega$
-therefore $v^{2}=r^{2} \omega^{2}$
- so a $=r^{2} \omega^{2} / r=r \omega^{2}$

$$
\cdot v=\frac{2 \pi r}{t}=\frac{2 \times 3,4 \times 0.6}{0.5} \text { or } \frac{2 \times 2 \times 3 \times 14 \times 0.6}{1}=7.5 \mathrm{~ms}^{-1}
$$

The moon's nearly circular orbit about the earth has a radius of about 385000 km and a period T of 27.3 days. Determine the

Central Force

 acceleration of the moon towards the earth.- In orbit the moon travels a distance of $2 \pi r$ where $r=3.85 \times 10^{8} \mathrm{~m}$
- $v=2 \pi r / T=1.02 \times 10^{3} \mathrm{~ms}^{-1}$
- A CENTRIPETAL FORCE IS A FORCE THAT MAKES A BODY FOLLOW A CURVED PATH.

ItS direction is always towards the centre of curvature of the path.

- $a=v^{2} / r=\left(1.02 \times 10^{3}\right)^{2} / 3.85 \times 10^{8}=2.73 \times 10^{-3} \mathrm{~ms}^{-2}$
- or $\omega=2 \pi / \mathrm{t} \mathrm{rad} \mathrm{s}^{-1}=2.66 \times 10^{-6}$
$\cdot a=r \omega^{2}=3.85 \times 10^{8} \times\left(2.66 \times 10^{-6}\right)^{2}=2.73 \times 10^{-3} \mathrm{~ms}^{-2}$

Do these with the turntable or

 https://physicsflashrepo.cyou/ah-physicsexperiments/- AH Exp - Mechanics 01: Measurement of angular velocity

Aim - To measure the angular velocity of a rotating turntable

- AH Exp - Mechanics 02: Measurement of angular acceleration

Aim - To measure the angular acceleration of a rotating turntable

- AH Exp - Mechanics 03A: Variation of central force with angular velocity
Aim - To investigate the relationship between the central force
required to maintain circular motion of a rubber stopper and the
angular velocity of the stopper.
- AH Exp - Mechanics 03B: Central force and angular velocity

Aim - To investigate the relationship between the central force
maintaining the circular motion of a ball and the angular velocity of the ball.

[^0]: $\theta=5 \mathrm{t}+4$ radians, where t is the time in seconds.

