IOP Scotland Teacher Network

AH Physics - Uncertainties

7:30 pm, Wednesday, 7 October 2020

Uncertainties at AH

National Physical Laboratory

Practical ideas to introduce measuring

Uncertainties Experiment 1
What do we measure and how did this arise?
Title: Measuring in "Hargreaves" (add your own unit)

Instructions

- Measuruy your height in Harrreaves'
- Measurure your head sime of the in Hesson in in Hunters and Surretts

Measure the time of the lesson in Hunters and Surcetts
Determin your average ppeed to run around the school field (or alternative).
Express your answers in
Issues to consider

- Why are Hargreaves and Hunters not standard units?
- Is it possible to meassure all lengths in Heargreaves' and all times in Hunters?
Research the basis cl
defined and why son

On behalrofthe Iop
Uncertainties Experiment 2 Watch your sig fig when you measure

Uncertainties Experiment 3

Title: systematic effect
Instructions
Obtain a supply of identical marbles or paper clips and a Butchart balance. Set up the
balance but make sure its $z e r o$ setring dalance but make sure its zero setting is
incorrect before you start to use it. Do oot take note of the amount of this error.
Now take a handful martes Now ftind the total mass. Taike noter ort the
anumber of martes and their mass. Record your results in a table.

- Repeat this for different sized handfuls and
then make a sraph of moss against number of marbles.
- Work out from the groph the mass of one
marble or paper clip and the size of the zero
error on your
- Check this against the uncertainty from the

Dther bolances ore evvilable especially kitchen scales

Calibrate a thermometer
\qquad 2020
AH Physics: Uncertainties

IOP Institute of Physics
Scotland

Sequence of experiments for AH Physics

Designed to cover useful equipment and develop basic skills of measurement and uncertainties. Booklet compiled from HSDU exemplars, SSERC guide, own ideas.

1. Marbles and cups - rationale for uncertainties, finding means, line of best-fit
2. Density of microscope slide - combining uncertainties - Vernier calipers and micrometer
3. Density of ball bearing - combining uncertainties - a power
4. The travelling microscope - Vernier scale
5. The simple pendulum - graphs
6. Mystery density set - consolidation puzzle, graph analysis

Uncertainties

Good Science
Important at AH for your project and in SQA exam questions.

A big chunk of the SQA AH marks

Every measurement is liable to uncertainty.

So go looking to quantify it.

Types:
(SCALE) READING, RANDOM, CALIBRATION (and watch out for SYSTEMATIC)

And this should form the basis of your project evaluation.

Introducing Uncertainties

Which experiment has the best design?

D
Explain your reasoning.

Accuracy v Precision

NB: Difference between IoP and SQA views

Occasionally there is a little disagreement as to the correct Physics. For the sake of the students put this aside and explain what the SQA wants, eg Rounding up and down in uncertainties.

IOP Institute of Physics

For each reading there should be, where appropriate:

Calibration Scale reading
 Random

These should be combined using Pythagorean relationship.

$$
\begin{gathered}
\Delta T=\sqrt{\Delta X^{2}+\Delta Y^{2}+\Delta Z^{2}} \\
\frac{\Delta T}{T}=\sqrt{\left(\frac{\Delta X}{X}\right)^{2}+\left(\frac{\Delta Y}{Y}\right)^{2}+\left(\frac{\Delta Z}{Z}\right)^{2}} \\
\text { Check for shortcuts for } \frac{1}{3} .
\end{gathered}
$$

More detail about each uncertainty

(Scale) Reading: Analogue: \pm half least division, Digital: \pm least division Random: $\frac{\text { max-min }}{\text { no.of readings }}$ works for 5-12 readings of the same measurement.
Nuclear experiments: square root of mean count rate (statistical approach).
Calibration: Don't ignore it if you can't find it! Estimate it or use a table. Better still contact manufacturer etc. and don't estimate it to be too high to use the law of thirds!
Systematic: often found as the graphical results don't go through the origin. This is usually worth 1 mark- although no fast rule.
No requirement of standard deviation at this level. There should be a minimum of 5 pairs of readings repeated 5 times (good range selected).

Calibration Uncertainties

Manufacturer gives information

Appendix 2: Calibration uncertainties in instruments
Metre stick (wood, plastic) $= \pm 0.5 \mathrm{~mm}$
Steel Rule $= \pm 0.1 \mathrm{~mm}$
Vernier callipers $= \pm 0.1 \mathrm{~mm}$
Micrometer $= \pm 0.002 \mathrm{~mm}$
Digital meter - 0.5\% of reading plus I digit
e.g. for a reading of 2.56 mA
0.5% of $2.56=0.0128$ plus 1 digit (least significant in reading) gives $0.0228= \pm 0.02 \mathrm{~mA}$ rounded.

Manufacturers of scientific measuring instruments know that it is important to state how precisely the scale on the instrument has been calibrated. This table gives typical maximum values for the calibration uncertainties of several common laboratory instruments. The actual calibration uncertainties in particular instruments can be expected to be somewhat less than these.

Wooden metre stick	0.5 mm		
Steel rule	0.1 mm		
Vernier callipers	0.01 mm		
Micrometer	0.002 mm		
Standard masses (chemical balance)	5 mg		
Hg -in-glass thermometer $\left(0^{\circ}-100^{\circ} \mathrm{C}\right) \quad 0.5$ celsius degree			
Electrical meters			
Analogue	2\% of full-scale-deflection		
Digital (3\% digit)*	0.5% of reading +1 digit		
Audio oscillator	5% of full-scale frequency		
Decade resistance box	1% or 0.1% of value		
Resistors	Brown band or code letter	F	1\% of value
and	Red	G	2\%
Capacitors	Gold	J	5\%
	Silver	K	10\%

What is absolute about an uncertainty?

Absolute Uncertainty: is the uncertainty in the measured quantity and has the same units as the quantity itself. For example if you know a length is $0.428 \mathrm{~m} \pm 0.002 \mathrm{~m}$, the 0.002 m is an absolute uncertainty.

Fractional Uncertainty: is obtained by dividing the absolute error in the quantity by the quantity itself. The fractional uncertainty is usually more significant than the absolute uncertainty. For example a 1 mm uncertainty in the diameter of a ball bearing is probably more serious than a 1 mm error in measuring the height of a pupil. Note that fractional uncertainties are dimensionless.
\% Uncertainty When reporting fractional uncertainties it is usual to multiply the fractional error by 100 and report it as a percentage.

Combining Uncertainties in one measurement

Let's take the pendulum as an example

Teach students where to find symbols

IOP Institute of Physics
Scotland

Presentation of Results

Have a table with clear headings and units
> For one variable you should show the value of the C.U. S.R.U. A.R.U. ($\Delta C U \quad \Delta S U \Delta R$)
$>$ Combine these appropriately - no need for fractional or percentage uncertainties at this stage.
$>$ Again give one example of the calculations and state the others were carried out in the same way.
$>$ Show how the uncertainties were combined to give the final absolute uncertainty.
$>$ Round this to one S.F.

Some student data to work up uncertainties.

		Tim	for	ree	vings					T	$(T)^{2}$		\mathbf{g}					fractional uncertainty in T					combining absolute uncertainty in I
m	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(av)	(s)	(s)	$\left(s^{2}\right)$	$\left(s^{2}\right)$	$\left(\mathrm{ms}^{-2}\right)$	(s)	(s)	(s)	(s)			$\left(s^{2}\right)$	(m)	(m)	(m)
0.250	3.04	2.99	2.93	3.08	2.99	2.99	3.00	3.00	0.02	1.00	1.00	1.00	9.85	0.02	0.02	0.0250	0.039	0.013	0.026	0.026	0.001	0.0005	0.0011
0.500	3.26	4.36	4.96	4.34	4.46	4.38	4.59	4.34	0.24	1.45	2.09	2.09	9.45	0.24	0.02	0.0317	0.246	0.057	0.113	0.237	0.001	0.0005	0.0011
0.750	4.99	5.06	5.06	5.06	5.06	5.06	5.06	5.05	0.01	1.68	2.83	2.83	10.45	0.01	0.02	0.0353	0.042	0.008	0.017	0.047	0.001	0.0005	0.0011
1.000	6.24	6.22	6.08	6.06	6.18	6.10	6.14	6.15	0.03	2.05	4.20	4.20	9.41	0.03	0.02	0.0407	0.052	0.008	0.017	0.071	0.001	0.0005	0.0011
1.100	6.59	6.40	6.55	6.47	6.47	6.51	6.54	6.50	0.03	2.17	4.70	4.70	9.24	0.03	0.02	0.0425	0.054	0.008	0.017	0.078	0.001	0.0005	0.0011
1.200	6.39	6.68	6.56	6.44	6.86	6.45	6.46	6.55	0.07	2.18	4.76	4.76	9.94	0.07	0.02	0.0427	0.082	0.013	0.025	0.119	0.001	0.0005	0.0011
1.300	6.32	6.38	6.40	6.64	6.59	6.63	6.39	6.48	0.05	2.16	4.66	4.66	11.00	0.05	0.02	0.0424	0.065	0.010	0.020	0.094	0.001	0.0005	0.0011
1.500	7.45	7.62	7.32	7.31	7.55	7.52	7.27	7.43	0.05	2.48	6.14	6.14	9.64	0.05	0.02	0.0472	0.072	0.010	0.019	0.118	0.001	0.0005	0.0011
1.750	7.93	7.93	8.11	7.63	7.63	7.68	7.69	7.80	0.07	2.60	6.76	6.76	10.22	0.07	0.02	0.0490	0.087	0.011	0.022	0.150	0.001	0.0005	0.0011
2.000	9.01	8.59	8.55	8.41	8.41	8.60	8.82	8.63	0.09	2.88	8.27	8.27	9.55	0.09	0.02	0.0531	0.103	0.012	0.024	0.197	0.001	0.0005	0.0011

Find the excel spreadsheet on mrsphysics or on talkphysics

The wrong way to calculate g-but an OK table!

$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \\ & \hline \end{aligned}$	Time for three swings (s)								T		8
m	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(av)	(s)	$\left(s^{2}\right)$	$\left(\mathrm{ms}^{-2}\right)$
0.250	3.04	2.99	2.93	3.08	2.99	2.99	3.00	3.00	1.00	1.00	9.85
0.500	3.26	4.36	4.96	4.34	4.46	4.38	4.59	4.34	1.45	2.09	9.45
0.750	4.99	5.06	5.06	5.06	5.06	5.06	5.06	5.05	1.68	2.83	10.45
1.000	6.24	6.22	6.08	6.06	6.18	6.10	6.14	6.15	2.05	4.20	9.41
1.100	6.59	6.40	6.55	6.47	6.47	6.51	6.54	6.50	2.17	4.70	9.24
										av	9.88

Taking mean value or random uncertainty of g in these values is invalid.
If possible put all the results, including uncertainties in one table

The right way!

length of thread
average $3 T(s)$
Period
Period $(T)^{2}$
a.r.u in $3 T$

Time for three swings (s)

(m)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(av)	(s)	$\left(\mathrm{s}^{2}\right)$
0.250	3.04	2.99	2.93	3.08	2.99	2.99	3.00	3.00	1.00	1.00

Length - increase the scale reading uncertainty to allow for centre of bob or measure 5 times etc.

$\text { mean }=\frac{\sum x}{n}$	$\Delta \boldsymbol{R}=\frac{R_{\max }-R_{\min }}{n}$	Calibration $\pm 0.5 \%+1$ digit	Combining in T
mean $=\frac{3.26+4.36+4.96+4.34+4.46+4.38+4.59}{7}$	$\Delta \boldsymbol{R}=\frac{4.96-3.26}{7}$	$\begin{aligned} & \frac{0.5}{100} \times 4.34+0.01 \\ = & 0.0317 \end{aligned}$	$\Delta T=\sqrt{0.24^{2}+0.02^{2}+0.0317^{2}}$ $\Delta T=0.24$ Showing for rule of 3 0.24 is $3 x$ greater \therefore overall ΔT Simplify on the rule of 3
Uncertainty in T^{2} As T is raised to the power 2 then the uncertainty in T^{2} is $2 x \Delta T$	$\begin{aligned} & \Delta T=0.24 \\ & \quad \Delta T^{2}=2 \times 0.24 \\ & \quad=0.491 \mathrm{~s}^{2} \end{aligned}$	Scale Reading Uncertainty=increasing to 0.02 s for reaction time. Scale reading uncertainty in length maybe double Now uncertainty in T^{2} and I can be used for error bars IOP Institute of Physics	

Measuring the length - no need to take into account the scale reading uncertainty at both ends - zero is being aligned with starting point.

Length of pendulum - repeat or increase your scale reading uncertainty to increase confidence in estimating centre of bob.

Accept \%age uncertainty in sin or tan = \%age uncertainty in angle.

CTRL + " \neg " brings up the formulae

Don't give the students the spreadsheet, but explain to them how they can devise one and how to put in the formula
Be aware that sometimes EXCEL doesn't give the same answer as you'd calculate as excel doesn't round up it just displays rounded numbers!

Linest- the easiest way to find the overall uncertainty

Formula for linest- an array

=LINEST(M3:M12,A3:A12,1,1)		$=017 / 016 * 100$
	4.2	
		The magic number!

Linest cuts down on hours of parallelogram plots but you'll need to go through with the students what this does. It saves the students hours in working out combinations!
Overall uncertainty best obtained from the graph, (ie Linest)

2010 SQA AH Paper

(b) Data recorded for the turntable is shown belo

Angle of rotation	$(3 \cdot 1 \pm 0 \cdot 1) \mathrm{rad}$
Time taken for angle of rotation	$(4 \cdot 5 \pm 0 \cdot 1) \mathrm{s}$
Radius of disk	$(0 \cdot 148 \pm 0 \cdot 001) \mathrm{m}$

(i) Calculate the tangential speed v.
$\% \Delta \theta=\frac{0 \cdot 1}{3 \cdot 1} \times 100=3 \cdot 2 \%$
$\% \Delta \mathrm{t}=\frac{0 \cdot 1}{4 \cdot 5} \times 100=2 \cdot 2 \%$
$\% \Delta \mathrm{r}=\frac{0 \cdot 001}{0 \cdot 148} \times 100=0 \cdot 68 \%$
Check correct rounding

$$
\begin{aligned}
\% \Delta v & =\sqrt{ }\left(\% \Delta \theta^{2}+\% \Delta \mathrm{t}^{2}+\% \Delta \mathrm{r}^{2}\right) \\
& =\sqrt{ }\left(3 \cdot 2^{2}+2 \cdot 2^{2}+0 \cdot 68^{2}\right) \\
& =3 \cdot 9(\%)
\end{aligned}
$$

(ii) Calculate the percentage uncertainty in this value of v.

2015 SQA Revised AH

Shortcut of ignoring uncertainty less

 than $\frac{1}{3}$ of the largest.iii

$$
\% \text { unc in } D=\frac{0 \cdot 005}{4 \cdot 250} \times 100=0 \cdot 12 \%
$$

$$
\% \text { unc in } L=\frac{2}{67} \times 100=3 \cdot 0 \%
$$

$$
\% \text { unc in } d=\frac{0 \cdot 01}{0 \cdot 25} \times 100=4 \cdot 0 \%
$$

$$
\text { Total } \% \text { unc }=\left(3 \cdot 0^{2}+4 \cdot 0^{2}\right)^{1 / 2}
$$

$$
=5 \cdot 0 \%
$$

Absolute unc $=0.05 \times 6.5 \times 10^{-7}$

$$
\begin{equation*}
=3 \times 10^{-8} \mathrm{~m} \tag{1}
\end{equation*}
$$

Explaining Uncertainties in Exam questions

By measuring multiple fringe separations rather than just one, the student states that they have more confidence in the value of diameter of the wire which was obtained.
Suggest one reason why the student's statement is correct.
Reduces the uncertainty in the value of x or d obtained. OR
Reduces the impact/significance of any uncertainty on the value obtained for x or d.

2011 SQA AH Q7

(b) A student investigating the force on a current carrying wire placed perpendicular to a uniform magnetic field obtains the following measurements and uncertainties.

Force (N)	$0.0058 \quad 0.0061$ Scale reading uncertainty Calibration uncertainty	0.0057 ± 1 digit $\pm 0.00005 \mathrm{~N}$	0.0058	0.0062
	Reading	1.98 A		
Current (A)	Absolute uncertainty	$\pm 0.02 \mathrm{~A}$		
	Reading	0.054 m Absolute uncertainty	$\pm 0.0005 \mathrm{~m}$	

(i) From this data, calculate the magnetic induction, B.

3
(ii) Calculate the absolute uncertainty in the value of the force.
(iii) Calculate the overall absolute uncertainty in the value of the magnetic induction.

2011 SQA AH answer

$$
\begin{aligned}
& F=\frac{0.0058+0.0061+0.0063+0.0057+0.0058+0.0062}{6} \\
& F=0.0060 N \\
& \cdots \\
& \mathrm{~F}=\mathrm{BI} l \\
& 6.0 \times 10^{-3}=\mathrm{B} \times 1.98 \times 0.054 \\
& B=\frac{6.0 \times 10^{-3}}{1.98 \times 0.054} \\
& B=0.056 \mathrm{~T}
\end{aligned}
$$

Random uncertainty (RU)
Scale Reading uncertainty (SRU)

$$
\begin{equation*}
\pm 1 \text { digit } \Rightarrow \pm 0.0001 \mathrm{~N} \tag{1/2}
\end{equation*}
$$

$$
\begin{equation*}
=\left(\frac{\max -\min }{n}\right) \tag{1/2}
\end{equation*}
$$

$$
\begin{equation*}
=\left(\frac{0.0063-0.0057}{6}\right)=0.0001 \mathrm{~N} \tag{1/2}
\end{equation*}
$$

$$
\begin{equation*}
\Delta F=\sqrt{\mathrm{SRU}^{2}+\mathrm{RU}^{2}+\text { calibration uncert }}{ }^{2} \tag{2}
\end{equation*}
$$

$$
\Delta F=\sqrt{0.0001^{2}+0.0001^{2}+0.00005^{2}}=\sqrt{2.25 \times 10^{-8}}
$$

$$
\begin{equation*}
\Delta F=1.5 \times 10^{-4} \mathrm{~N} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \% \Delta \mathrm{~F}=2.5 \% \tag{1/2}\\
& \% \Delta \mathrm{I}=1.0 \% \tag{1/2}\\
& \% \Delta \mathrm{l}=0.93 \% \tag{1/2}
\end{align*}
$$

$$
\begin{equation*}
\frac{\Delta B}{B}=\sqrt{\left(\frac{\Delta F}{F}\right)^{2}+\left(\frac{\Delta I}{I}\right)^{2}+\left(\frac{\Delta l}{l}\right)^{2}} \tag{1/2}
\end{equation*}
$$

Allow carry through of incorrect
$(1 / 2)+$ $(1 / 2)+$ (1/2)+
$\frac{\Delta B}{B}=\sqrt{8.12 \times 10^{-4}}$
$\frac{\Delta B}{B}=0.029$
$\therefore B=(0.056) \pm 0.0016 \mathrm{~T}$ $\Delta \mathrm{F}$ must compare / combine with $\%$ uncertainties in I and 1 to show dominance if required
2.9% or 2.8% of B
FINAL ANSWER MUST BE ABSOLUTE NOT \%

2001 SQA AH Q 1

1. A car accelerates uniformly from rest from a point A and is timed over the distance AB as shown in Figure 1.

IOP Institute of Physics
Scotland

2006 SQA AH Q1

A child's toy consists of a model aircraft attached to a light cord. The aircraft is swung in a vertical circle at constant speed as shown in Figure 1.

X is the highest point and Y the lowest point in the circle.

Figure 1
(a) The time taken for the aircraft to complete 20 revolutions is measured five times.
The mass of the aircraft and the radius of the circle are also measured. The following data is obtained.
Time for 20 revolutions: $10.05 \mathrm{~s} ; 9.88 \mathrm{~s} ; 10.30 \mathrm{~s} ; 9.80 \mathrm{~s} ; 9.97 \mathrm{~s}$. Radius of circle $=0.500 \pm 0.002 \mathrm{~m}$.
Mass of aircraft $=0 \cdot 200 \pm 0 \cdot 008 \mathrm{~kg}$.
(i) (A) Calculate the average period of revolution of the aircraft. (B) Assuming that the scale reading and the calibration uncerts are negligible calculate the absolute uncertainty in the period.
(i) Show that the centripetal force acting on the aircraft is 15.8 N .
(iii) Calculate the absolute uncertainty in this value for the centripetal force. Express your answer in the form
$F=(15.8 \pm \quad) N$

2006 SQA AH Q1 answer

$$
\left.\begin{array}{rl}
1(\mathrm{a})(\mathrm{i})(\mathrm{A}) \overline{\mathrm{t}} & =\frac{\text { sum }}{\text { number }} \\
\overline{\mathrm{t}} & =\frac{10 \cdot 05+9 \cdot 88+10 \cdot 30+9 \cdot 80+9 \cdot 97}{5} \\
\overline{\mathrm{t}} & =\frac{50 \cdot 00}{5}=\quad 10 \cdot 00 \\
\overline{\mathrm{~T}} & =\frac{10 \cdot 00}{20}=0 \cdot 500 \mathrm{~s}
\end{array}\right\}
$$

(B) uncertainty $=\frac{\max -\min }{\mathrm{N}}$
uncertainty $=\frac{10 \cdot 30-9 \cdot 80}{5}$
uncertainty $=\frac{0 \cdot 500}{5}=0 \cdot 100$
uncertainty in $T=\frac{0 \cdot 100}{20}= \pm 0.005 \mathrm{~s}$
(1/2)
(1/2)
(1/2)
$\overline{\mathrm{T}}=\underline{0.5025+0.494+0.515+0 \cdot 490+0 \cdot 4985}$ 5
(1/2)
uncertainty in $\mathrm{T}=\frac{0.025}{5}$
uncertainty in $T= \pm 0.005 \mathrm{~s}$

Ite of Physics

2006 SQA AH Q1 answer

(a) (iii) $\%$ uncertainty in $\mathrm{r}=\frac{0.002}{0.500} \times 100=0.4 \%(1 / 2)$
$\%$ uncertainty in $\mathrm{m}=\frac{0.008}{0.200} \times 100=4 \%$
$\%$ uncertainty in $\mathrm{T}=\underline{0.005} \times 100=1 \%$
$\%$ uncertainty in $\mathrm{T}^{2}=2 \times 1=2 \%$
$\%$ uncertainty in $\mathrm{F}=\sqrt{\left(4^{2}+2^{2}\right)}$

$$
\begin{equation*}
=4 \cdot 47 \% \tag{1/2}
\end{equation*}
$$

$$
\begin{equation*}
F=(15.8 \pm 0.7) \mathrm{N} \tag{1}
\end{equation*}
$$

ALLOW CARRY THROUGH WRONG ANSWER FROM 1(a)(i)(B)

Allow $\sqrt{\left(4^{2}+2^{2}+0.4^{2}\right.}$

$$
=4 \cdot 49 \% \quad \text { OR } 4 \cdot 5 \%
$$

2017 SQA AH

An LED from the traffic light is tested to determine the wavelength by shining its light through a set of Young's double slits, as shown in Figure 10B.

The fringe separation is $(13.0 \pm 0.5) \mathrm{mm}$ and the double slit separation is (0.41 ± 0.01) mm.

Figure 10B
(i) Calculate the wavelength of the light from the LED.
(ii)Determine the absolute uncertainty in this wavelengtt. $0 \cdot 123 \%$
(can be ignored)
\% Uncertainty in fringe separation
$=\left(\frac{0 \cdot 5}{13 \cdot 0}\right) \times 100$
1
$=3 \cdot 85 \%$
\% Uncertainty in slit separation
$=\left(\frac{0 \cdot 01}{0.41}\right) \times 100$
1
$=2 \cdot 44 \%$
\% Uncertainty in slit-screen
separation
$=\left(\frac{0 \cdot 01}{8 \cdot 11}\right) \times 100$
\% uncertainty in wavelength

$$
\begin{aligned}
& =\sqrt{\left(\frac{0 \cdot 5}{13 \cdot 0}\right)^{2}+\left(\frac{0 \cdot 01}{0 \cdot 41}\right)^{2}} \times 100 \% \\
& =4 \cdot 56 \% \\
& \Delta \lambda=\frac{4 \cdot 56}{100} \times 6 \cdot 6 \times 10^{-7} \\
& \Delta \lambda=0 \cdot 3 \times 10^{-7} \mathrm{~m}
\end{aligned}
$$

IOP Institute of Physics
Scotland

2016 SQA AH

Uncertainties in r			Uncertainties in B	
reading	$\pm 0.002 \mathrm{~m}$	reading	$\pm 0.1 \mu \mathrm{~T}$	
calibration	$\pm 0.0005 \mathrm{~m}$	calibration	$\pm 1.5 \%$ of reading	

(i)	ignore calibration (less than $1 / 3$) $\% \text { unc }=0 \cdot 002 / 0 \cdot 1 \times 100=2 \%$		1	Accept $2 \cdot 1 \%$ if calibration not ignored. (Accept 2\%, 2•06\%, 2.062\%)
(ii)	reading $5=0 \cdot 1 / 5 \times 100=2 \%$ total $\%=\int\left(\right.$ reading $\%^{2}+$ calibration $\left.\%^{2}\right)$ total $\%=\int\left(1 \cdot 5^{2}+2^{2}\right)=2 \cdot 5 \%$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	3	Accept 3\%, 2•50\%, 2•500\%
(iii)	$\begin{aligned} & \text { total } \%=\int\left(2^{2}+2 \cdot 5^{2}\right)=\int 10.25 \% \\ & \text { abs u/c= } \frac{\sqrt{ } 10.25}{100} \times 2.5=0.08 \mathrm{~A} \end{aligned}$	1 1	2	Accept 0.1, 0.080, 0.0800 Consistent with b (i) and (ii).
	Uncertainty in measuring exact distance from wire to position of sensor.		1	

The student estimates the uncertainties in the measurements of B and r.
(i) Calculate the percentage uncertainty in the measurement of r.
(ii) (ii) Calculate the percentage uncertainty in the measurement of B.

2007 SQA AH

The following data are obtained.

Distance between adjacent nodes $=(0 \cdot 150 \pm 0 \cdot 005) \mathrm{m}$
Frequency of signal generator $=(250 \pm 10) \mathrm{Hz}$
(a) Show that the wave speed is $75 \mathrm{~m} \mathrm{~s}^{-1}$.
(b) Calculate the absolute uncertainty in this value for the wave speed. Express your answer in the form $(75 \pm) \mathrm{m} \mathrm{s}^{-1}$.
(c) (i) In an attempt to reduce the absolute uncertainty, the frequency of the signal generator is increased to $(500 \pm 10) \mathrm{Hz}$. Explain why this will not result in a reduced absolute uncertainty.
(ii) State how the absolute uncertainty in wave speed could be reduced.
(ii) measure the distance over several nodes and take an average
(b) $\%$ uncertainty in $\lambda=\frac{0.005}{0 \cdot 150} \times 100$

$$
\begin{equation*}
=3 \cdot 3 \% \tag{1/2}
\end{equation*}
$$

$$
\% \text { uncertainty in } \mathrm{f}=\frac{10}{250} \times 100
$$

$$
\begin{equation*}
=4 \% \tag{1/2}
\end{equation*}
$$

$$
\begin{equation*}
\% \text { uncertainty in } \mathrm{v}=\sqrt{4^{2}+3 \cdot 3^{2}} \tag{1/2}
\end{equation*}
$$

$$
\begin{equation*}
=5 \% \tag{1/2}
\end{equation*}
$$

$$
=4 \mathrm{~ms}^{-1}
$$

$$
\begin{equation*}
\mathrm{v}=(75 \pm 4) \mathrm{ms}^{-1} \tag{1/2}
\end{equation*}
$$

(c) (i) $\%$ uncertainty in λ will increase

Appendix 1. Using LINEST- if you have problems

Note: If you have a current version of Microsoft 365, then you can simply enter the formula in the top-left-cell of the output range, then press ENTER to confirm the formula as a dynamic array formula. Otherwise, the formula must be entered as a legacy array formula by first selecting the output range, entering the formula in the top-left-cell of the output range, and then pressing CTRL+SHIFT+ENTER to confirm it. Excel inserts curly brackets at the beginning and end of the formula for you. For more information on array formulas, see Guidelines and examples of array formulas.

Use of Spreadsheet (Excel)

Highlight numerical columns you want plotted.
Go to charts - select scatterplot - from chart styles select smallest points possible.
From menu - select chart layout.
Input major and minor gridlines.
Label axes - remember units.
Chart title - insert title
From menu - go to trendline
select linear trendline
Go to trendline options select "display equation on chart".
Ensure the graph is expanded to at least half a page.

Use of Spreadsheet (Excel)

Error Bars - x and y. Set for each individual point.
Format Data Series - allows change in style and size of plotted point.
Linest - uncertainty in gradient . This can be taken as the overall
uncertainty $\left(\frac{\Delta m}{m}\right)$ fractional uncertainty in gradient $=$ fractional uncertainty in the experiment. Expand graph to at least half a page.

Incorrect Use of Random Uncertainty

Calculation of λ using a diffraction grating. Values calculated for $n=1,2$ \& 3. Incorrect to find mean value plus max-min / 3.

Must calculate the uncertainty in λ for each value of n.
Comment on best value obtained.
(Accuracy / precision)
Accuracy - comparison of calculated value to accepted value.
Precision - indication of uncertainty in value.

Correct Use of Random Uncertainty

For each length used, calculate the random uncertainty and compare this with the scale reading / calibration uncertainty.
Combine using Pythagorean relationship
(3 times smaller can be ignored)
Plot a graph of T^{2} against L .
Use Excel to calculate the gradient of the line of best fit.
Error bars - good indicator - use in discussion.

■ $\mathrm{R}=\mathrm{V} / \mathrm{I}$ - Use Pythagorean rule

- $\% \Delta \mathrm{R}^{2}=\% \Delta \mathrm{~V}^{2}+\% \Delta \mathrm{I}^{2}$

(probability of some cancellation)

- This rule does not apply for powers.

■ \% uncertainty in $t^{2}=2 \times \%$ uncertainty in t (no cancellation of uncertainties in this case).

