

2022

AH Physics Compendium

J Hargreaves
1/1/2022

DATA SHEET

COMMON PHYSICAL QUANTITIES

Quantity	Symbol	Value	Quantity	Symbol	Value
Gravitational acceleration on Earth Radius of Earth Mass of Earth Mass of Moon Radius of Moon Mean Radius of Moon Orbit Solar radius Mass of Sun 1 AU Stefan-Boltzmann constant Universal constant of gravitation	g R_{E} M_{E} M_{M} R_{M} σ G	$\begin{aligned} & 9.8 \mathrm{~m} \mathrm{~s} \\ & 6.4 \times 10^{-2} \mathrm{~m} \\ & 6.0 \times 10^{24} \mathrm{~kg} \\ & 7.3 \times 10^{22} \mathrm{~kg} \\ & 1.7 \times 10^{6} \mathrm{~m} \\ & 3.84 \times 10^{8} \mathrm{~m} \\ & 6.955 \times 11^{8} \mathrm{~m} \\ & 2.0 \times 10^{00} \mathrm{~kg} \\ & 1.5 \times 10^{11} \mathrm{~m} \\ & 5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4} \\ & 6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2} \end{aligned}$	Mass of electron Charge on electron Mass of neutron Mass of proton Mass of alpha particle Charge on alpha particle Planck's constant Permittivity of free space Permeability of free space Speed of light in vacuum Speed of sound in air	$\begin{aligned} & m_{\mathrm{e}} \\ & e \\ & m_{\mathrm{n}} \\ & m_{\mathrm{p}} \\ & m_{\mathrm{a}} \end{aligned}$ h ε_{0} μ_{0} c ϑ	$\begin{aligned} & 9.11 \times 10^{-31} \mathrm{~kg} \\ & -1.60 \times 10^{-19} \mathrm{C} \\ & 1.675 \times 10^{-27} \mathrm{~kg} \\ & 1.673 \times 10^{-27} \mathrm{~kg} \\ & 6.645 \times 10^{-27} \mathrm{~kg} \\ & 3.20 \times 10^{-19} \mathrm{C} \\ & 6.63 \times 10^{-34} \mathrm{Js} \\ & 8.85 \times 10^{-12} \mathrm{Fm}^{-1} \\ & \\ & 4 \pi \times 10^{-7} \mathrm{Hm}^{-1} \\ & 3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\ & 3.4 \times 10^{2} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$

REFRACTIVE INDICES
The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K.

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Glycerol	1.47
Glass	1.51	Water	1.33
Ice	1.31	Air	1.00
Perspex	1.49	Magnesium Fluoride	1.38

SPECTRAL LINES

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	$\begin{aligned} & 656 \\ & 486 \\ & 434 \\ & 410 \\ & 397 \\ & 389 \end{aligned}$	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	644	Red
				509	Green
				480	Blue
				Lasers	
			Element	Wavelength/nm	Colour
Sodium	589	Yellow	Carbon dioxide Helium-neon	$\left.\begin{array}{c} 9550 \\ 10590 \end{array}\right\}$ 633	Infrared Red

PROPERTIES OF SELECTED MATERIALS

Substance	Density/ kg m	Melting Point/ K	Boiling Point/K	Specific Heat Capacity/ $\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$	Specific Latent Heat of Fusion/ Jkg^{-1}	Specific Latent Heat of Vaporisation/ Jkg^{-1}
Aluminium	2.70×10^{3}	933	2623	9.02×10^{2}	3.95×10^{5}	
Copper	8.96×10^{3}	1357	2853	3.86×10^{2}	2.05×10^{5}	
Glass	2.60×10^{3}	1400		6.70×10^{2}		
Ice	9.20×10^{2}	273	\cdots	2.10×10^{3}	3.34×10^{5}	
Glycerol	1.26×10^{3}	291	563	2.43×10^{3}	1.81×10^{5}	8.30×10^{5}
Methanol	7.91×10^{2}	175	338	2.52×10^{3}	9.9×10^{4}	$1 \cdot 12 \times 10^{6}$
Sea Water	1.02×10^{3}	264	377	3.93×10^{3}		
Water	1.00×10^{3}	273	373	4.19×10^{3}	3.34×10^{5}	2.26×10^{6}
Air	1.29	\cdots			. . .	
Hydrogen	9.0×10^{-2}	14	20	1.43×10^{4}		4.50×10^{5}
Nitrogen	1.25	63	77	1.04×10^{3}		2.00×10^{5}
Oxygen	1.43	55	90	9.18×10^{2}		2.40×10^{4}

Relationships Required For Higher Physics

$d=\bar{v} t$
$s=\bar{v} t$
$v=u+a t$
$s=u t+\frac{1}{2} a t^{2}$
$v^{2}=u^{2}+2 a s$
$s=\frac{1}{2}(u+v) t$
$W=m g$
$F=m a$
$E_{w}=F d$
$E_{p}=m g h$
$E_{k}=\frac{1}{2} m v^{2}$
$P=\frac{E}{t}$
$p=m v$
$F t=m v-m u$
$F=G \frac{m_{1} m_{2}}{r^{2}}$
$t^{\prime}=\frac{t}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
$l^{\prime}=l \sqrt{1-\left(\frac{v}{c}\right)^{2}}$
$f_{o}=f_{s}\left(\frac{v}{v \pm v_{s}}\right)$
$z=\frac{v}{c}$
$V_{r m s}=\frac{V_{\text {peak }}}{\sqrt{2}}$
$v=H_{0} d$
$W=Q V$
$E=m c^{2}$
$V=I R$
$I=\frac{P}{A}$
$I=\frac{k}{d^{2}}$
$I_{1} d_{1}^{2}=I_{2} d_{2}^{2}$
$E=h f$
$E_{k}=h f-h f_{0}$
$v=f \lambda$
$E_{2}-E_{1}=h f$
$d \sin \theta=m \lambda$
$n=\frac{\sin \theta_{1}}{\sin \theta_{2}}$
$\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{\lambda_{1}}{\lambda_{2}}=\frac{v_{1}}{v_{2}}$
$\sin \theta_{c}=\frac{1}{n}$

Path difference $=m \lambda$ or $(m+1 / 2) \lambda$ where $m=0,1,2 \ldots .$.
random uncertainty $=\frac{\max . \text { value }-\min . \text { value }}{\text { number of values }}$

Relationships Required for Advanced Higher Physics

$$
\begin{aligned}
& v=\frac{d s}{d t} \\
& a=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}} \\
& v=u+a t \\
& s=u t+\frac{1}{2} a t^{2} \\
& E_{k_{(\text {rotational })}}=\frac{1}{2} I \omega^{2} \\
& E_{P}=E_{k_{(\text {translational })}}+E_{k_{(\text {rotational })}} \\
& F=\frac{G M m}{r^{2}} \\
& F=\frac{G M m}{r^{2}}=\frac{m v^{2}}{r}=m r \omega^{2}=m r\left(\frac{2 \pi}{T}\right)^{2} \\
& V=-\frac{G M}{r} \\
& \omega=\frac{d \theta}{d t} \\
& \alpha=\frac{d \omega}{d t}=\frac{d^{2} \theta}{d t^{2}} \\
& \omega=\omega_{0}+\alpha t \\
& \theta=\omega_{0} t+\frac{1}{2} \alpha t^{2} \\
& E_{p}=V m=-\frac{G M m}{r} \\
& v_{\text {esc }}=\sqrt{\frac{2 G M}{r}} \\
& r_{\text {Schwarzchild }}=\frac{2 G M}{c^{2}} \\
& b=\frac{L}{4 \pi d^{2}} \\
& \frac{P}{A}=\sigma T^{4} \\
& L=4 \pi r^{2} \sigma T^{4} \\
& \omega=2 \pi f \\
& \omega=\frac{2 \pi}{T} \\
& a_{r}=\frac{v^{2}}{r}=r \omega^{2} \\
& F=\frac{m v^{2}}{r}=m r \omega^{2} \\
& I=\sum m r^{2} \\
& \tau=F r \\
& \tau=I \alpha \\
& L=m v r=m r^{2} \omega \\
& L=I \omega \\
& E=h f \\
& m v r=\frac{n h}{2 \pi} \\
& \lambda=\frac{h}{p} \\
& \Delta x \Delta p_{x} \geq \frac{h}{4 \pi} \\
& \Delta E \Delta t \geq \frac{h}{4 \pi} \\
& F=q v B \\
& F=\frac{m v^{2}}{r}
\end{aligned}
$$

$$
\begin{array}{cc}
F=-k y & F=Q E \\
\omega=2 \pi f=\frac{2 \pi}{T} & V=E d \\
a=\frac{d^{2} y}{d t^{2}}=-\omega^{2} y & W=Q V \\
y=A \sin \omega t \text { or } y=A \cos \omega t & E_{k}=\frac{1}{2} m v^{2} \\
v= \pm \omega \sqrt{\left(A^{2}-y^{2}\right)} & B=\frac{\mu_{0} I}{2 \pi r} \\
E_{k}=\frac{1}{2} m \omega^{2}\left(A^{2}-y^{2}\right) & F=I l B \sin \theta \\
E_{P}=\frac{1}{2} m \omega^{2} y^{2} & F=q v B \\
E=k A^{2} & \tau=R C \\
y=A \sin 2 \pi\left(f t-\frac{x}{\lambda}\right) & X_{C}=\frac{V}{I} \\
\phi=\frac{2 \pi x}{\lambda} & X_{C}=\frac{1}{2 \pi f C} \\
, & \varepsilon=-L \frac{d I}{d t}
\end{array}
$$

$$
o p d=n \times g p d
$$

opd $=m \lambda$ or $\left(m+\frac{1}{2}\right) \lambda$ where $m=0,1,2 \ldots$

$$
\begin{gathered}
\Delta x=\frac{\lambda l}{2 d} \\
d=\frac{\lambda}{4 n} \\
\Delta x=\frac{\lambda D}{d} \\
n=\tan i_{P} \\
F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} r^{2}} \\
V=\frac{Q}{4 \pi \varepsilon_{0} r} \\
E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}
\end{gathered}
$$

$$
E=\frac{1}{2} L I^{2}
$$

$$
X_{L}=\frac{V}{I}
$$

$$
X_{L}=2 \pi f L
$$

$$
c=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}
$$

$$
\Delta W=\sqrt{\Delta X^{2}+\Delta Y^{2}+\Delta Z^{2}}
$$

$$
\frac{\Delta W}{W}=\sqrt{\left(\frac{\Delta X}{X}\right)^{2}+\left(\frac{\Delta Y}{Y}\right)^{2}+\left(\frac{\Delta Z}{Z}\right)^{2}}
$$

$$
\left(\frac{\Delta W^{n}}{W^{n}}\right)=n\left(\frac{\Delta W}{W}\right)
$$

Additional relationships

Circle
circumference $=2 \pi r$
area $=\pi r^{2}$
Sphere
area $=4 \pi r^{2}$
volume $=\frac{4}{3} \pi r^{3}$

Trigonometry

$\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}$
$\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}$
$\tan \theta=\frac{\text { opposite }}{\text { adjacent }}$
$\sin ^{2} \theta+\cos ^{2} \theta=1$

Moment of inertia

point mass
$I=m r^{2}$
rod about centre
$I=\frac{1}{12} m l^{2}$
rod about end
$I=\frac{1}{3} m l^{2}$
disc about centre
$I=\frac{1}{2} m r^{2}$
sphere about centre
$I=\frac{2}{5} m r^{2}$

$\begin{gathered} \text { Alpha } \\ \alpha \end{gathered}$	$\begin{gathered} \mathrm{B} \\ \text { Beta } \\ \hline \end{gathered}$	$\begin{gathered} \text { Gamma } \\ \quad \gamma \\ \hline \end{gathered}$	${ }_{c}^{\text {nemam }} \begin{gathered} \Delta \\ \text { Delta } \\ \delta \end{gathered}$
$\underset{\varepsilon}{\underset{E}{E}}$	$\underset{\substack{\text { zeta } \\ \zeta}}{ }$	$\begin{array}{r} \mathrm{H} \\ -\mathrm{Eta} \\ \eta \end{array}$	$\begin{gathered} \Theta \\ \text { Theta } \\ \theta \end{gathered}$
$\begin{gathered} \text { lota } \\ \text { lomem } \\ 1 \end{gathered}$	$\underset{\text { Kappa }}{ }$	${ }_{\substack{\text { Lambda } \\ \lambda}}$	$\begin{gathered} \mathrm{Mmom} \\ \mathrm{Mu} \\ \mathrm{M} \end{gathered}$
$\begin{gathered} \mathrm{N} \\ \mathrm{Nu} \\ v \end{gathered}$	$\begin{array}{r} \Xi \\ \underset{x_{i}}{ } \\ \xi \end{array}$		$\begin{gathered} -\infty \\ \cdots \\ \cdots \end{gathered}$
$\underset{\sim}{-\infty} \underset{\sim}{P}$	$\sum_{\text {Sigma }}$		$\begin{aligned} & \text { Yemom } \\ & \text { Upsilon } \end{aligned}$
$\begin{gathered} \Phi \\ \mathrm{Phi} \\ \phi \end{gathered}$	$\begin{gathered} -\infty \\ \mathrm{Chi} \\ -\mathrm{Cin} \\ \chi \end{gathered}$	$\begin{gathered} \Psi \\ P \mathrm{Psi} \\ \Psi \end{gathered}$	$\begin{gathered} \Omega \\ \text { Omega } \\ \omega \end{gathered}$

Periodic Table

Annotated AH Relationships Sheet

First derivative of displacement $=$ velocity

$$
v=\frac{d s}{d t}
$$

$$
\text { velocity }\left(\mathrm{ms}^{-1}\right)=\text { rate }\left(\mathrm{s}^{-1}\right) \text { of change of displacement }(\mathrm{m})
$$

Second derivative of displacement = acceleration

First derivative of velocity = acceleration

$$
a=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}}
$$

acceleration $\left(\mathrm{ms}^{-2}\right)=$ rate $\left(\mathrm{s}^{-1}\right)$ of change of velocity $\left(\mathrm{ms}^{-1}\right)$

$$
v=u+a t
$$

$$
\text { final velocity }\left(m s^{-1}\right)=\text { initial velocity }\left(m s^{-1}\right)+\operatorname{acceleration}\left(m s^{-2}\right) \times \text { time }(s)
$$

$s=u t+\frac{1}{2} a t^{2}$
displacement $=$ initial velocity \times time $+\frac{1}{2} \times \operatorname{acceleration}\left(\mathrm{ms}^{-2}\right) \times$ time $^{2}\left(s^{2}\right)$

$$
v^{2}=u^{2}+2 a s
$$

final velocity ${ }^{2}\left(\mathrm{~ms}^{-1}\right)^{2}=$ initial velocity ${ }^{2}\left(\mathrm{~ms}^{-1}\right)^{2}+2 \times \operatorname{acceleration}\left(\mathrm{ms}^{-2}\right) \times$ dispacement (m)
First derivative of angular displacement =angular velocity

$$
\omega=\frac{d \theta}{d t}
$$

angular velocity $\left(\mathrm{ms}^{-1}\right)=$ rate $\left(s^{-1}\right)$ of change of angular displacement (rad)

$$
a=\frac{d \omega}{d t}=\frac{d^{2} \theta}{d t^{2}}
$$

angular acceleration (rad s$\left.{ }^{-2}\right)=$ rate $\left(s^{-1}\right)$ of change of angular velocity (rad sin)
Equation for motion for uniform angular acceleration

$$
\omega=\omega_{o}+a t
$$

$\begin{array}{r}\text { final angular velocity } \\ \left(\text { rad s }^{-1}\right)\end{array}=\begin{gathered}\text { initial angular velocity } \\ \left(\operatorname{rad~s}^{-1}\right)\end{gathered}+\begin{gathered}\text { angular acceleration } \\ \left(\operatorname{rad~s}^{-2}\right)\end{gathered} x_{(s)}^{\text {time }}$

Equation for motion for uniform angular acceleration
Equation for motion for uniform angular acceleration
To convert from angular quantity to linear equivalent. Angles must be in radians $\begin{gathered} \boldsymbol{s}=\boldsymbol{r} \boldsymbol{\theta} \\ \underset{(\boldsymbol{m})}{\text { linear distance }}=\underset{(\boldsymbol{m})}{\text { radius }} \times \begin{array}{r} \text { angular displacement } \\ (\mathrm{rad}) \end{array} \end{gathered}$
To convert from angular quantity to linear equivalent. $\begin{gathered} v=r \omega \\ \text { tangential velocity } \\ \left(m \operatorname{s}^{-1}\right) \end{gathered}=\underset{(m)}{\text { radius }} \times \begin{gathered} \text { angular velocity } \\ \left(\operatorname{rad~s}^{-1}\right) \end{gathered}$
To convert from angular quantity to linear equivalent $\begin{gathered} a_{t}=\boldsymbol{r a} \\ \text { tangential acceleration } \\ \left(\mathrm{m} \mathrm{~s}^{-2}\right) \end{gathered} \underset{\substack{\text { radius } \\ (\mathrm{m})}}{\times \begin{array}{c} \text { angular acceleration } \\ \left(\mathrm{rad} \mathrm{~s}^{-2}\right) \end{array}}$
Converts between angular velocity, frequency and period $N B 2 \pi \mathrm{rad}=1$ revolution $\begin{gathered} \omega=\frac{2 \pi}{T} \\ \operatorname{angular} \text { velocity }\left(\mathrm{rad} \mathrm{~s}^{-1}\right)=\frac{2 \pi}{\text { Period }(\mathrm{s})} \end{gathered}$

For equating the gravitational force providing the central force to keep objects in orbit

Gravitational potential is the work done (energy transferred) per unit mass needed to move an object from infinity to that location. As 0 J is at infinity all gravitational potentials are negative

$$
\begin{gathered}
V=-\frac{G M}{r} \\
\text { gravitational potential }\left(J \mathrm{~kg}^{-1}\right)=-\frac{\text { Universal Gravitational Constant }\left(\mathrm{m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}\right) \times \text { mass }(\mathrm{kg})}{\text { separationdistance }(\mathrm{m})}
\end{gathered}
$$

Gravitational potential energy is the work done (energy transferred) needed to move an object from infinity to that location. As $0 J$ is at infinity all gravitational potential energies are negative

$$
E_{p}=V m=-\frac{G M m}{r}
$$

$$
\text { gravitational potential energy }(J)=\text { gravitational potential }\left(J k^{-1}\right) \times \operatorname{mass}(k g)
$$

As the gravitational potential is negative the equation is Vm and not -Vm !

$$
\text { gravitational potential energy }(J)=-\frac{\text { Universal gravitational Constant }\left(\mathrm{m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}\right) \times \operatorname{Mass}_{1}(\mathrm{~kg}) \times \operatorname{Mass}_{2}(\mathrm{~kg})}{\text { separation distance }(\mathrm{m})}
$$

$$
\begin{aligned}
& F=\frac{G M m}{r^{2}}=\frac{\boldsymbol{m} v^{2}}{r}=\boldsymbol{m r} \omega^{2}=\boldsymbol{m r}\left(\frac{2 \pi}{\boldsymbol{T}}\right)^{2} \\
& \text { gravitational Force }(N)=\frac{\text { Universal gravitational Constant }\left(m^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}\right) \times \operatorname{Mass}_{1}(\mathrm{~kg}) \times \operatorname{Mass}_{2}(\mathrm{~kg})}{\text { separation distance }{ }^{2}\left(\mathrm{~m}^{2}\right)}= \\
& =\underset{(N)}{\text { Centripetal Force }}=\frac{\text { mass }(\mathrm{kg}) \times \text { tangential speed }{ }^{2}\left(\mathrm{~m} \mathrm{~s}^{\mathbf{- 1}}\right)^{2}}{\text { radius of the circular motion }(\mathrm{m})} \\
& =\text { centripetal force }=\underset{(\mathrm{kg})}{\text { mass } \times \text { radius of the circular motion }}{ }_{x}^{\text {angular velocity }{ }^{2}} \underset{(\mathrm{~m})}{\left(\mathrm{rad} \mathrm{~s} \mathrm{~s}^{-1}\right)^{2}} \\
& =\underset{(N)}{\text { Centripetal Force }}=\underset{(\mathrm{kg})}{\text { mass } \times \text { radius of the circular motion }} \times\left(\frac{2 \pi}{(\mathrm{~m})} \mathrm{orbital} \mathrm{period} \mathrm{(s)}\right)^{2}
\end{aligned}
$$

Escape velocity from the surface of an object. i.e. the minimum velocity required for unpowered flight to escape the gravitational field. As this has the number 2 in the equation it is derived from energy and not from forces.

$$
\begin{gathered}
v_{\text {esc }}=\sqrt{\frac{2 G M}{r}} \\
\text { escape velocity }\left(\mathrm{ms}^{-1}\right)=\sqrt{\frac{2 \times \text { Universal gravitational Constant }\left(\mathrm{m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}\right) \times \text { Mass being escaped from }(\mathrm{kg})}{\text { radius of the object being escaped from }(\mathrm{m})}}
\end{gathered}
$$

The Schwarzchild radius- the radius of the event horizon of a black hole

$$
r_{\text {schwarzschild }}=\frac{2 G M}{c^{2}}
$$

Schwarzschild radius $(m)=\frac{2 \times \text { Universal Gravitational Constant }\left(\mathrm{m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}\right) \times \text { Mass of the black hole }(\mathrm{kg})}{\text { speed of light }\left(\mathrm{ms}^{-1}\right)^{2}}$
Apparent brightness how bright the star appears to a detector here on Earth

$$
\begin{aligned}
& b=\frac{L}{4 \pi d^{2}} \\
& \text { apparent brightness }\left(W^{-2}\right)=\frac{\text { Luminosity }(W)}{4 \pi \times \operatorname{distanc}^{2}(m)^{2}}
\end{aligned}
$$

Power radiated from a black body

$$
\frac{P}{A}=\sigma T^{4}
$$

$$
\begin{aligned}
& \text { Power per unit area } \\
& \left(\mathrm{Wm}^{-2}\right)
\end{aligned}=\begin{gathered}
\text { Stefan Boltzmann Constant } \\
\left(5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{4}\right)
\end{gathered} \times \begin{gathered}
(\text { temperature })^{4} \\
(K)^{4}
\end{gathered}
$$

NB The Stefan Boltzmann Constant can be found on page 2 of the exam paper on the Data Sheet and is equal to $5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{4}$

Equation for the luminosity of a star

$$
L=4 \pi r^{2} \sigma T^{4}
$$

$$
\begin{aligned}
& \text { Luminosity } \\
& \left(\mathrm{Wm}^{-2}\right)
\end{aligned}=4 \pi \times \begin{gathered}
\text { radius of the star }{ }^{2} \\
(\mathrm{~m})^{2}
\end{gathered} \times \begin{gathered}
\text { Stefan Boltzmann Constant } \\
\left(5.67 \times \mathbf{1 0}^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{4}\right)
\end{gathered} \times \underset{(K)^{4}}{\text { Temperature }^{4}}
$$

NB The Stefan Boltzmann Constant can be found on page 2 of the exam paper on the Data Sheet and is equal to $5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{4}$

$$
E=h f
$$

energy $(J)=$ Planck's Constant $(J s) \times$ frequency $(H z)$
NB Planck's constant $=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Bohr's Quantisation of Angular Momentum

$$
\begin{gathered}
\operatorname{mvr}=\frac{n h}{2 \pi} \\
(\mathrm{~kg}) \times \underset{\left(\mathrm{ms}^{-1}\right)}{\text { mass }} \times \underset{(\mathrm{m})}{\text { velocity }}=\frac{\text { no.of shell } \times \text { Planck's Constant }(J \text { s })}{2 \pi}
\end{gathered}
$$

The 2π is an indication of the circular nature equalling 1 full circle. NB Planck's constant $=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
The de Broglie wavelength, when a particle behaves like a wave and this is the wavelength associated with that.

$$
\begin{gathered}
\lambda=\frac{h}{p} \\
\text { de Broglie wavelength }(m)=\frac{\text { Planck' }^{\prime} \operatorname{sconstant}(J s)}{\text { momentum }\left(\mathrm{kg} \mathrm{~ms}^{-1}\right)}
\end{gathered}
$$

Uncertainty principle as it refers to position and momentum
 $$
\Delta x \Delta p_{x} \geq \frac{h}{4 \pi}
$$

the uncertainty in position in x direction $\underset{(m)}{\times \quad \text { uncertainty in the } x \text { component of momentum }} \underset{\left(\mathrm{kg} \mathrm{ms}^{-1}\right)}{ } \geq \frac{\text { Planck's Constant }}{4 \pi}$
NB In some old resources this was incorrectly marked as divided by 2π as h was given as \hbar

$$
\text { For the minimum uncertainty the uncertainty in the two quantities will }=\frac{h}{4 \pi}
$$

Uncertainty principle as it refers to energy and time

$$
\Delta E \Delta t \geq \frac{h}{4 \pi}
$$

the uncertainty in energy ${ }_{(J)}^{\text {uncertainty in the time }} \geq \frac{\text { Planck's Constant }}{4 \pi}$
\hbar

$$
\text { For the minimum uncertainty the uncertainty in the two quantities will }=\frac{\boldsymbol{h}}{\mathbf{4 \pi}}
$$

Magnetic Force

$$
\begin{gathered}
F=q v B \\
\text { Magnetic Force }(N)=\text { Charge }(C) \times \text { velocity }\left(\mathrm{ms}^{-1}\right) \times \text { magnetic induction }(T)
\end{gathered}
$$

$$
F=\frac{\boldsymbol{m} v^{2}}{r}
$$

$$
\begin{aligned}
& \text { Centripetal Force } \\
& \qquad(N)
\end{aligned}=\frac{\text { mass }(\mathrm{kg}) \times \text { tangential speed }{ }^{2}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)^{2}}{\text { radius of the circular motion }(\mathrm{m})}
$$

Proof for an object moving in SHM

$$
F=-k y
$$

Force $(N)=$ constant $\left(\mathrm{Nm}^{-1}\right) \times$ distance (m)

Converts between angular velocity, frequency and period

$$
\begin{aligned}
\omega & =2 \pi f=\frac{2 \pi}{T} \\
\text { angular velocity }\left(\text { rad s }^{-1}\right) & =2 \pi \times \text { frequency }(\mathrm{Hz})=\frac{2 \pi}{\text { Period }(s)}
\end{aligned}
$$

NB $2 \pi \mathrm{rad}=1$ revolution
Definition of S.H.M

$$
a=\frac{d^{2} y}{d t^{2}}=-\omega^{2} y
$$

$\underset{\left(\mathrm{ms}^{-2}\right)}{\text { acceleration }}=$ second derivative of displacement $=-$ angular frequency ${ }^{2} \times$ displacementfrom rest position $^{\text {(rad sin }}$

Solution to SHM equation

Sine function occurs when $\mathrm{y}=0$ and $t=0$, cosine function occurs when $\mathrm{y}=A$ at $t=0$

$$
y=A \cos \omega t \text { or } y=A \sin \omega t
$$

$$
\text { displacement }(m)=\text { Amplitude }(m) \times \text { cosine angular frequency }\left(\operatorname{rad~s}{ }^{-1}\right) \times \text { time }(s)
$$

or

$$
\text { displacement }(m)=\text { Amplitude }(m) \times \text { sine angular frequency }\left(\operatorname{rad~s} s^{-1}\right) \times \text { time }(s)
$$

Velocity of a particle undergoing SHM

$$
v= \pm \omega \sqrt{\left(A^{2}-y^{2}\right)}
$$

velocity $\left(\mathrm{ms}^{-1}\right)= \pm$ angularfrequency $\left(\right.$ rad $\left.^{-1}\right) \times \sqrt{\left(\text { Amplitude }^{2}(m)^{2}-\operatorname{displacment}^{2}(m)^{2}\right)}$

$$
N B v_{\max } \text { occurs when } y=0 \therefore v_{\max }= \pm \omega A
$$

Kinetic energy of a particle undergoing SHM

$$
E_{k}=\frac{1}{2} m \omega^{2}\left(A^{2}-y^{2}\right)
$$

kinetic energy $(J)=\frac{1}{2} \times \operatorname{mass}(\operatorname{kg}) \times$ angular frequency $\left.{ }^{2}\left(\operatorname{rad~s} \mathbf{s}^{-1}\right)^{2} \times\left(\operatorname{Amplitude}^{2}(\boldsymbol{m})^{2}-\operatorname{displacment}^{2}(m)^{2}\right)\right)$
$N B E k$ is at a maximum when $y=0$ and zero when $y=A \quad E_{k(\max)}=\frac{1}{2} m \omega^{2} A^{2}$

Potential energy of a particle undergoing SHM

$$
E_{p}=\frac{1}{2} m \omega^{2} y^{2}
$$

potential energy $(J)=\frac{1}{2} \times \operatorname{mass}(\mathrm{kg}) \times \operatorname{angular}$ frequency ${ }^{2}\left(\operatorname{rad~s}^{-1}\right)^{2} \times \operatorname{displacment}^{2}(\boldsymbol{m})^{2}$
NB The sum of Ep and Ek remains constant
Ep is maximum when $y=A$ and zero when $y=0$
Energy of a wave

$$
E=k A^{2}
$$

$$
\text { Energy of a wave }(J)=\operatorname{constant}\left(J m^{-2}\right) \times \operatorname{amplitude}^{2}(m)^{2}
$$

Travelling Wave Equation

$$
y=A \sin 2 \pi\left(f t-\frac{x}{\lambda}\right)
$$

$$
\text { displacement }=\text { Amplitude }(m) \times \text { sine } \times 2 \times \pi\left(\text { frequency }(H z) \times \text { time }(s)-\frac{\text { distance }(m)}{\text { wavelength }(m)}\right)
$$

A wave travelling in the positive direction (left to right) has a negative sign in the equation, a wave travelling in the negative direction (right to left) has a positive in the equation.

Check out the various combinations of this equation where 2π could be multiplied out, a number can appear on the top which would equal $1 / \lambda$, and $2 \pi f$ can be replaced with ω.
It must be a travelling wave as the value of y changes with time.

$$
\begin{array}{c|r}
y=A \sin 2 \pi f\left(t-\frac{x}{f \lambda}\right) & y=A \sin \omega\left(t-\frac{x}{v}\right) \\
y=A \sin 2 \pi f\left(t-\frac{x}{v}\right) & y=A \cos \omega\left(t-\frac{x}{v}\right)
\end{array}
$$

Phase difference or phase angle between two positions on a travelling wave.

$$
\emptyset=\frac{2 \pi x}{\lambda}
$$

$$
\text { phase angle }(\mathrm{rad})=\frac{2 \times \pi \times \text { distance between the two positions }(\mathrm{m})}{\text { wavelength }(m)}
$$

$$
o p d=n \times g p d
$$

optical path difference $(m)=$ refractive index \times geometric path difference (m)

Conditions for constructive and destructive interference

$$
\text { opd }=m \lambda \text { or }\left(m+\frac{1}{2}\right) \lambda \text { where } m=0,1,2, \ldots
$$

optical path difference $=$ awhole number ofwavelength or awhole number ofwavelength $+\frac{1}{2}$ wavelength (m)
(m)
(m)

$$
\left(m+\frac{1}{2}\right) \lambda=\text { destructive interference }
$$

$m \lambda=$ constructive interference
Fringe separation for a thin wedge

$$
\text { fringe separation }(m)=\frac{\begin{array}{c}
\Delta x=\frac{\lambda l}{2 d} \\
\text { wavelength }(m) \times \text { wedge length }(m)
\end{array}}{2 \times \text { wedge thickness }(m)}
$$

Beware, sometimes the distance between a certain number of fringes is given and this is $n-1$ for the fringe separation Non- reflection lens coating thickness

$$
\begin{gathered}
\qquad d=\frac{\lambda}{4 n} \\
\text { coating thickness }(m)=\frac{\text { wavelength of light to be reduced }(m)}{4 \times \text { refraction index of the lens coating }}
\end{gathered}
$$

Fringe spacing for Young's Double Slit which only applies when D>> Δx

$$
\Delta x=\frac{\lambda D}{d}
$$

$$
\text { fringe separation }(m)=\frac{\text { wavelength }(m) \times \text { distance from the slits to screen }(m)}{\text { slit spacing }(m)}
$$

Beware, sometimes the distance between a certain number of fringes is given and this is $n-1$ for the fringe separation Brewster Angle or polarising angle formula

$$
n=\tan i_{p}
$$

$$
\text { refractive index }=\text { tan of the polarising angle }\left({ }^{\circ} \text { or rad }\right)
$$

$$
\begin{gathered}
\boldsymbol{E}_{\boldsymbol{k}}=\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{m} v^{2} \\
\text { kinetic energy }(J)=\frac{1}{2} \times \text { mass }(\mathrm{kg}) \times \text { speed }^{2}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)^{2}
\end{gathered}
$$

Magnetic induction at a perpendicular distance from an "infinite" straight current carrying conductor.

$$
\text { Magnetic Induction }(T)=\frac{B=\frac{\mu_{0} I}{2 \pi r}}{\text { Permeability of free space }\left(\mathrm{Hm}^{-1}\right) \times \operatorname{current}(A)} \begin{aligned}
& 2 \times \pi \times \operatorname{distance}(m)
\end{aligned}
$$

$\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}$
Force on a current carrying conductor in a magnetic field

$F=I l B \sin \theta$

Magnetic Force $=\begin{gathered}\text { Current } \\ (A)\end{gathered} \underset{(N)}{\text { length }} \times \begin{gathered}\text { magnetic induction }\end{gathered} \times \sin \binom{$ angle between I and B }{$\left({ }^{\circ}\right.$ or rad $)}$
Derive from $F=I l B \sin \theta$

$$
\begin{equation*}
F=q v B \tag{C}
\end{equation*}
$$

Electric Force $=$ magnitudeof the charge ${ }_{\times}$velocity of the charge ${ }_{x}$ magnetic induction (N)
($m s^{-1}$)
The time constant is the time required to charge the capacitor, through the resistor, from an initial charge voltage of zero to approximately 63.2% of the value of an applied DC voltage, or to discharge the capacitor through the resistor to approximately 36.8% of its initial charge voltage.

$$
\tau=R C
$$

time constant $(s)=$ Resistanceof series resistor $(\Omega) \times$ Capacitance (F)
Reactance (opposition to a.c.) of a capacitor. V and I may either both be peak or r.m.s

$$
X_{c}=\frac{V}{I}
$$

Capacitive reactance $(\Omega)=\frac{\operatorname{voltage}(V)}{\text { current }(A)}$
Reactance (opposition to a.c.) of a capacitor.

$$
\begin{aligned}
& X_{c}=\frac{1}{2 \pi f C} \\
& \text { Capacitive reactance }(\Omega)=\frac{1}{2 \times \pi \times f r e q u e n c y ~}(\mathrm{~Hz}) \times \operatorname{Capacitance}(\mathrm{F})
\end{aligned}
$$

$$
\varepsilon=-L \frac{d I}{d t}
$$

$$
\text { induced e.m. } f(V)=- \text { inductance }(H) \times \text { rate of change of current }\left(A s^{-1}\right)
$$

The negative sign indicates the induced e.m.f opposes the change causing it. ε is also a negative and the two negatives cancel.
Energy stored in the magnetic field of an inductor

$$
E=\frac{1}{2} L I^{2}
$$

energy stored in the magnetic field of an inductor $=\frac{1}{2} \times \underset{(J)}{\text { inductance }} \times \underset{(A)^{2}}{\text { current }}$

$$
=\frac{1}{2} \times \underset{(H)}{\text { inductance }} \times \underset{(A)^{2}}{\text { current }}
$$

Reactance (opposition to a.c.) of an inductor. V and I may either both be peak or r.m.s

$$
X_{L}=\frac{V}{I}
$$

inductive reactance $(\Omega)=\frac{\text { voltage }(V)}{\text { current }(A)}$
Reactance (opposition to a.c.) of an inductor.

$$
X_{L}=2 \pi f L
$$

inductive reactance $(\Omega)=2 \times \pi \times$ frequency $(H z) \times$ inductance (H)
Equation to calculate the speed of light and all electromagnetic radiations in a vacuum.

$$
c=\frac{1}{\sqrt{\varepsilon_{o} \mu_{o}}}
$$

$$
\text { speed of light in a vacuum }\left(\mathrm{ms}^{-1}\right)=\frac{1}{\sqrt{\text { permittivity of free space }\left(\mathrm{Fm}^{-1}\right) \times \text { permeability of free space }\left(\mathrm{Hm}^{-1}\right)}}
$$

$$
\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}, \quad \varepsilon_{o} \text { is the permitivity of free space and is } 8.85 \times 10^{-12} \mathrm{Fm}^{-1}
$$

A method for combining uncertainties in a single measurement

$$
\Delta W=\sqrt{\Delta X^{2}+\Delta \boldsymbol{Y}^{2}+\Delta Z^{2}}
$$

Total uncertainty in W is equal to the square root of the square of the uncertainties in X, Y and Z NB the units of X, Y and Z are the units of the measurement

A method of combining fractional (or percentage) uncertainties in different variables.

$$
\frac{\Delta W}{W}=\sqrt{\left(\frac{\Delta X}{X}\right)^{2}+\left(\frac{\Delta Y}{Y}\right)^{2}+\left(\frac{\Delta Z}{Z}\right)^{2}}
$$

Fractional uncertainty in W is equal to the square root of the square of the fractional uncertainties in X, Y and Z
A method of calculating an uncertainty raised to a power

$$
\left(\frac{\Delta W^{n}}{W^{n}}\right)=n\left(\frac{\Delta W}{W}\right)
$$

The fractional uncertainty in W raised to power n is n times the fractional uncertainty in W

$\begin{gathered} d=\bar{v} t \\ \text { distance }(m)=\text { average speed }\left(m^{-1}\right) \times \text { time }(s) \end{gathered}$
$\begin{gathered} s=\bar{v} t \\ \operatorname{displacement}(m)=\text { average velocity }\left(m s^{-1}\right) \times \operatorname{time}(s) \end{gathered}$
$\begin{gathered} v=u+a t \\ \text { final velocity }\left(m s^{-1}\right)=\text { initial velocity }\left(m s^{-1}\right)+\operatorname{acceleration}\left(m s^{-2}\right) \times \text { time }(s) \end{gathered}$
$\begin{aligned} & s=u t+\frac{1}{2} \boldsymbol{a} \boldsymbol{t}^{\mathbf{2}} \\ & \text { displacement }=\text { initial velocity } \times \text { time }+\frac{1}{2} \times \operatorname{acceleration}\left(m s^{-2}\right) \times \operatorname{time}^{2}\left(s^{2}\right) \end{aligned}$
$v^{2}=u^{2}+2 a s$ final velocity ${ }^{2}\left(\mathrm{~ms}^{-1}\right)^{2}=$ initial velocity ${ }^{2}\left(\mathrm{~ms}^{-1}\right)^{2}+2 \times \operatorname{acceleration}\left(\mathrm{ms}^{-2}\right) \times \operatorname{dispacement}(m)$
$\begin{gathered} s=\frac{1}{2}(v+u) t \\ \text { displacement }(m)=\frac{1}{2} \times\left(\text { final velocity }\left(m s^{-1}\right)+\text { initial velocity }\left(m s^{-1}\right)\right) \times \text { time }(s) \end{gathered}$
$\begin{gathered} F=\boldsymbol{m a} \\ \text { force }(N)=\text { mass }(\mathrm{kg}) \times \text { acceleration }\left(\mathrm{ms}^{-2}\right) \end{gathered}$
$\begin{gathered} W=\boldsymbol{m g} \\ \text { weight }(N)=\text { mass }(k g) \times \text { gravitational field strength }\left(N k^{-1}\right) \end{gathered}$

$\begin{array}{r} l^{\prime}=\boldsymbol{l} \sqrt{1-\left(\frac{v}{c}\right)^{2}} \\ \text { relativistic length }(m)=\text { length }(m) \times \sqrt{1-\left(\frac{\text { speed of light in vacuum }\left(m^{-1}\right)}{}\right)^{2}} \\ c=3.0 \times 10^{8} \mathrm{~ms}^{-1} \end{array}$
$\begin{aligned} & f_{o}=f_{s}\left(\frac{v}{v \pm v_{s}}\right) \\ & \underset{(\mathrm{Hz})}{\text { frequency observed }}=\begin{array}{c} \text { frequency of source } \\ (\mathrm{Hz}) \end{array} \end{aligned} \times\binom{\text { speed of sound }\left(\mathrm{ms}^{-1}\right)}{\frac{\text { speed of sound } \pm \text { velocityof source }}{\left(m s^{-1}\right)}\left(\mathrm{ms}^{-1}\right)}$ ADD when the object moves AWAY from the observer and TAKE AWAY (subtract) when the object comes 『OWARDS the observer
$\begin{gathered} z=\frac{\lambda_{\text {observed }}-\lambda_{\text {rest }}}{\lambda_{\text {rest }}} \\ \text { Redshift }(\text { no unit })=\frac{\text { observed wavelength }(m)-\text { rest wavelength }(m)}{\text { rest wavelength }(m)} \end{gathered}$
$\begin{gathered} z=\frac{v}{c} \\ \text { Redshift }(\text { no unit })=\frac{\text { recessional velocity }\left(m s^{-1}\right)}{\text { speed of light in vacuum }\left(m s^{-1}\right)} \end{gathered}$
$\begin{gathered} v=H_{o} d \\ \text { recessional velocity } \\ \left(\mathrm{ms}^{-1}\right) \\ N B \text { for this course the Hubble Constant Ho is given as } 2 \cdot 3 \times 10^{-18} \mathrm{~s}^{-1} \end{gathered}$
$\begin{gathered} \qquad W=Q V \\ \text { Work done moving a charge across a } p . d .(J)=\text { electrical charge }(C) \times \text { voltage }(V) \end{gathered}$

$$
E=m c^{2}
$$

Energy $(J)=$ mass $(k g) \times$ speed of light squared $\left(\mathrm{ms}^{-1}\right)^{2}$
NB the speed of light squared is equal to $9.0 \times 10^{16} \mathrm{~m}^{2} \mathrm{~s}^{-2}$

$$
E=h f
$$

$\operatorname{energy}(J)=$ Planck's Constant $(J s) \times$ frequency $(H z)$
$N B$ Planck's constant $=6.63 \times 10^{-34} \mathrm{Js}$

$$
E_{k}=h f-h f_{o}
$$

$\begin{gathered}\text { Kinetic Energy }\end{gathered}=\left(\begin{array}{c}\text { Planck's Constant } \\ (J s)\end{array} \times \begin{array}{c}\text { incident frequency } \\ (H z)\end{array}\right)-\left(\begin{array}{c}\text { Planck's Constant } \\ (J s)\end{array} \times \begin{array}{c}\text { threshold frequency } \\ (H z)\end{array}\right)$
NB Planck's constant $=6.63 \times 10^{-34} \mathrm{Js}$
$h f_{o}$ is also known as the work function (J), hf is the energy of the incident photon (J)

$\begin{gathered} E_{2}-E_{1}=h f \\ \text { most excited energy }(J)-\text { least excited energy }(J)=\text { Planck's Constant }(J s) \times \text { frequency }(H z) \end{gathered}$
$\begin{gathered} T=\frac{1}{f} \\ \operatorname{Period}(s)=\frac{1}{\text { Frequency }(\mathrm{Hz})} \end{gathered}$
$\begin{gathered} v=f \lambda \\ \text { speed }\left(\mathrm{ms}^{-1}\right)=\text { frequency }(\mathrm{Hz}) \times \text { wavelength }(m) \end{gathered}$
$d \sin \theta=m \lambda$ Slit separation (m) \times sin of angle from centre to the spot $=m$ a whole number of wavelengths (m) NB This equation is for constructive interference
$\text { Refractive index }=\frac{n=\frac{\sin \theta_{1}}{\sin \theta_{2}}}{\text { sine of the angle in vacuum/air }} \text { sine of the angle in the material }$

$$
\begin{gathered}
\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{\lambda_{1}}{\lambda_{2}}=\frac{v_{1}}{v_{2}} \\
\text { Refractive index }=\frac{\text { sin of the angle in vacuum } / \text { air }}{\text { sin of the angle in the material }}=\frac{\text { wavelength }(\text { air })(\mathrm{m})}{\text { wavelength }(\text { material })(\mathrm{m})}=\frac{\text { speed }(\text { air })\left(\mathrm{ms}^{-1}\right)}{\text { speed }(\text { material })\left(\mathrm{ms}^{-1}\right)} \\
\text { refractive index }=\text { ratio of wavelengths in vacuum/air and material } \\
\text { refractive index }=\text { ratio of the speeds in } \frac{\text { vacuum }}{\text { air }} \text { and the material }
\end{gathered}
$$

This formula really applies to material 1 being a vacuum, but there is not much difference between the refractive indexes of air and a vacuum .: we assume for Higher they have the same value.

$$
\sin \theta_{c}=\frac{1}{n}
$$

$$
\text { Sine of the critical angle }=\frac{1}{\text { refractive index }}
$$

The critical angle is the angle in the material when the angle in air is 90°

$$
\begin{gathered}
I=\frac{k}{d^{2}} \\
\text { irradiance }\left(\mathrm{Wm}^{-2}\right)=\frac{\text { constant }(W)}{\text { distance }{ }^{2}\left(\mathrm{~m}^{2}\right)} \\
\text { This is more easily understood as } \\
\text { irradiance }\left(\mathrm{Wm}^{-2}\right) \times \text { distance }^{2}\left(\mathrm{~m}^{2}\right)=\text { constant value }(\mathrm{W}) \\
\mathrm{I}=\frac{P}{A} \\
\text { irradiance }\left(\mathrm{Wm}^{-2}\right)=\frac{\operatorname{power}(\mathrm{W})}{\operatorname{area}\left(\mathrm{m}^{2}\right)} \\
V_{\text {rms }}=\frac{V_{\text {peak }}}{\sqrt{2}} \\
\text { root mean square A.C.voltage }(\mathrm{V})=\frac{\text { peak voltage }(\mathrm{V})}{1.414}
\end{gathered}
$$

$$
\begin{gathered}
\boldsymbol{l}_{\text {rms }}=\frac{I_{\text {peak }}}{\sqrt{2}} \\
\text { root mean square A.C.current }(A)=\frac{\text { peakcurrent }(A)}{1.414} \\
\qquad \begin{array}{l}
Q=I t \\
\operatorname{Charge}(C)=\operatorname{current}(A) \times \operatorname{time}(s)
\end{array}
\end{gathered}
$$

This is better explained as current is the rate of flow of charge $\left(I=\frac{Q}{\boldsymbol{t}}\right)$
$\boldsymbol{V}=\boldsymbol{I} \boldsymbol{R}$
$\mathbf{V o l t a g e}(V)=\operatorname{Current}(A) \times \operatorname{Resistance}(\Omega)$
$P=\boldsymbol{V}=I^{2} R=\frac{V^{2}}{R}$
$\operatorname{Power}(W)=\operatorname{current}(A) \times \operatorname{voltage}(V)=\operatorname{current}^{2}\left(A^{2}\right) \times \operatorname{Resistance}(\Omega)=\frac{\operatorname{Voltage}^{2}\left(V^{2}\right)}{\operatorname{Resistance}(\Omega)}$

$$
\begin{aligned}
& \text { For resistors in series } \\
& \boldsymbol{R}_{\boldsymbol{T}}=\boldsymbol{R}_{\mathbf{1}}+\boldsymbol{R}_{\mathbf{2}}+\cdots
\end{aligned}
$$

$$
\text { total resistance }(\Omega)=\text { resistance }_{1}(\Omega)+\text { resistance }_{2}(\Omega)+\cdots
$$

$$
\begin{aligned}
& \text { For resistors in parallel } \\
& \frac{1}{\text { total resistance }(\Omega)_{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots} \\
& \frac{\operatorname{Eesistance}{ }_{1}(\Omega)}{r^{2}=V+I r}+\frac{1}{\text { resistance }_{2}(\Omega)}+\cdots
\end{aligned}
$$

e.m. $f(V)=$ terminial potential difference $(V)+$ current $(A) \times$ internal resistance (Ω)

This can also be written as

$$
E=I(R+r) \quad \text { or } \quad E=I R+I r
$$

I is the total current in the circuit, r is in series with the combined circuit resistance

$$
\begin{gathered}
\qquad V_{1}=\left(\frac{R_{1}}{R_{1}+R_{2}}\right) V_{s} \\
\text { voltage across component } 1 \text { in potential divider }(V)=\left(\frac{\text { resistance } e_{1}(\Omega)}{\text { total resistance }(\Omega)}\right) \times \text { supply voltage }(V)
\end{gathered}
$$

For resistances in series (potential divider circuits)

$$
\frac{V_{1}}{V_{2}}=\frac{R_{1}}{R_{2}}
$$

Ratio of the voltages in series = ratio of the resistance in series

$$
\frac{\text { Voltage across resistor } 1(\mathrm{~V})}{\text { voltageacross resistor } 2(\mathrm{~V})}=\frac{\text { resistance of resistor } 1(\Omega)}{\text { resistance of resistor } 2(\Omega)}
$$

$$
C=\frac{Q}{V}
$$

$$
\text { Capacitance }(F)=\frac{\text { Charge }(C)}{\text { Voltage }(V)}
$$

$$
E=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{Q^{2}}{C}
$$

Energy stored in capacitor $=\frac{1}{2} x$ charge stored in capacitor $x_{(J)}^{\text {voltage across capacitor }}$
Energy stored in capacitor $=\frac{1}{2} x^{\text {capacitance }} x^{\text {voltage across capacitor }{ }^{2}}$
(J) $\quad=\frac{1}{2} x^{x}(F) \quad x \quad(V)^{2}$

Energy stored in capacitor $=\frac{1}{2} \times \frac{(\text { charge stored in capacitor })^{2}\left(C^{2}\right)}{\text { voltage across capacitor }(V)}$

$$
\begin{gathered}
\text { Path difference }=m \lambda \text { or }\left(m+\frac{1}{2}\right) \lambda, \text { where } m=0,1,2 \ldots \\
\text { Path difference } \begin{array}{c}
\text { whole number of wavelengths } \\
(m) \\
(\text { constructive interference })
\end{array} \\
\text { path difference } \begin{array}{r}
\text { whole number of wavelengths }+\frac{1}{2} \text { a wavelength } \\
(m) \\
(\text { destructive interference })
\end{array} \\
\hline \text { Random Uncertainty }=\frac{\text { Max value }- \text { minvalue }}{\text { number of values }} \quad \text { or } \Delta R=\frac{R_{\max }-R_{\min }}{n}
\end{gathered}
$$

NB for the random uncertainty in a value the units of the random uncertainty are the same as for the quantity you are finding the uncertainty for.

$$
\text { Random Uncertainty(units of the quantity) }=\frac{\text { Max value }- \text { min value }}{\text { number of values }}
$$

SI Units

There is an international standard for units called the Systeme International D'Unites, SI units for short.

These consist of seven basic units, two of which we do not use in this course (the unit of luminous intensity, the candela, and the amount of substance containing a certain number of elementary particles, the mole).

The 5 basic units we use are units of mass, length, time, temperature and current. Every other unit can be expressed using a combination of these seven basic units.

Quantity	Symbol	$\underline{\text { Units }}$
Mass	m	kilogram, kg
Length	l	metre, m
Time	t	second, s
Temperature	T	degrees Celsius, Kelvin, K
Current	I	ampere, A

Prefixes

Prefix	Symbol	Multiple	$\underline{\text { Multiple in full }}$
Peta	P	$x 10^{15}$	$x 1000000000000000$
Tera	T	$x 10^{12}$	$x 1000000000000$
Giga	G	$x 10^{9}$	$x 1000000000$
Mega	M	$x 10^{6}$	$x 1000000$
Kilo	K	$x 10^{3}$	$x 1000$
Centi	m	$x 10^{-2}$	$\div 100$
Milli	μ	$x 10^{-3}$	$\div 1000$
Micro	n	$x 10^{-6}$	$\div 1000000$
Nano	p	$x 10^{-9}$	$\div 1000000000$
Pico	f	$x 10^{-12}$	$\div 1000000000000$
femto	$x 10^{-15}$	$\div 1000000000000000$	

Above is a table of prefixes, which you will commonly find in AH Physics.

The Physics Course

Course content
The course content includes the following areas of physics：

Rotational motion and astrophysics
The topics covered are：
嫏 kinematic relationships
sp angular motion
sip rotational dynamics
sip gravitation
慨 general relativity
蕅 stellar physics

Quanta and waves
The topics covered are：
罗 introduction to quantum theory
䵟 particles from space
sie simple harmonic motion
垔 waves
sip interference
sip polarisation
Electromagnetism
The topics covered are：
sip fields
䉕 circuits
sip electromagnetic radiation

Units，prefixes and uncertainties
The topics covered are：
sip units，prefixes and scientific notation
sip uncertainties
sip data analysis
sip evaluation and significance of experimental uncertainties

Course overview

This course consists of 32 SCQF credit points, which includes time for preparation for course assessment. The notional length of time for candidates to complete the course is 160 hours.

The course assessment has two components.

Component	Marks	Scaled mark	Duration
Component 1: question paper	155	120	3 hours
Component 2: project	30	40	see 'Course assessment' section

No		$\checkmark \times$	Traffic Light		
ROTATIONAL MOTION AND ASTROPHYSICS					
Kinematic relationships			())	-)	(2)
1.1	I know that differential calculus notation is used to represent rate of change.		-	\because	\bigcirc
1.2	I know that velocity is the rate of change of displacement with time, acceleration is the rate of change of velocity with time and acceleration is the second differential of displacement with time.		-	\because	\bigcirc
1.3	I can derive the equations of motion $v=u+a t$ and $s=u t+\frac{1}{2} a t^{2}$ using calculus methods.		-)	\odot	®
1.4	I can use calculus methods to calculate instantaneous displacement, velocity and acceleration for straight line motion with a constant or varying acceleration.		-)	\because	\bigcirc
1.5	I can use appropriate relationships to carry out calculations involving displacement, velocity, acceleration, and time for straight line motion with constant or varying acceleration.		-)	\odot	®
1.6	$\left.\begin{array}{rl} v & =\frac{d s}{d t} \\ a & =\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}} \\ v & =u+a t \\ s & =u t+\frac{1}{2} a t^{2} \end{array}\right\} \text { for constant acceleration only }$		-)	\odot	®)

No		$\checkmark x$	Traffic Light		
1.7	I know that the gradient of a curve (or a straight line) on a motiontime graph represents instantaneous rate of change, and can be found by differentiation.		-)	\odot	\odot
1.8	I know that the gradient of a curve (or a straight line) on a displacement-time graph is the instantaneous velocity, and that the gradient of a curve (or a straight line) on a velocitytime graph is the instantaneous acceleration.		-	\odot	\odot
1.9	I know that the area under a line on a graph can be found by integration.		-)	\odot	\odot
1.10	I know that the area under an acceleration-time graph between limits is the change in velocity, and that the area under a velocity-time graph between limits is the displacement.		-)	\odot	\odot
	I can determine displacement, velocity or acceleration by the calculation of the gradient of the line on a graph or the calculation of the area under the line between limits on a graph.		-)	\odot	\odot
Angular motion			()	\because	(2)
2.1	I can use the radian as a measure of angular displacement.		-	\odot	¢)
2.2	I can convert between degrees and radians.		-	\odot	®
2.3	I can use appropriate relationships to carry out calculations involving angular displacement, angular velocity, angular acceleration, and time.		-)	\odot	\odot
2.4	$\left.\begin{array}{l} \omega=\frac{d \theta}{d t} \\ \left.\begin{array}{l} \alpha=\frac{d \omega}{d t}=\frac{d^{2} \theta}{d t^{2}} \\ \begin{array}{l} \omega \\ =\omega_{o}+\alpha t \\ \omega^{2} \end{array} \\ \theta=\omega_{o}^{2}+2 \alpha \theta \\ \theta \end{array}\right\} \text { for constant angular acceleration only } t+\frac{1}{2} \alpha t^{2} \end{array}\right\}$		-)	-	\bigcirc

No		$\checkmark x$	Traffic Light		
2.5	I can use appropriate relationships to carry out calculations involving angular and tangential motion.		-)	\odot	\bigcirc
2.6	$\begin{aligned} & s=r \theta \\ & v=r \omega \\ & a_{t}=r \alpha \end{aligned}$		-)	\odot	\bigcirc
2.7	I can use appropriate relationships to carry out calculations involving constant angular velocity, period and frequency.		-)	\odot	\bigcirc
2.8	$\begin{aligned} & \omega=\frac{2 \pi}{T} \\ & \omega=2 \pi f \end{aligned}$		-)	\odot	\bigcirc
2.9	I know that a centripetal (radial or central) force acting on an object is necessary to maintain circular motion, and results in centripetal (radial or central) acceleration of the object.		-)	\odot	\bigcirc
2.10	I can use appropriate relationships to carry out calculations involving centripetal acceleration and centripetal force.		-)	\odot	\bigcirc
2.11	$\begin{aligned} & a_{r}=\frac{v^{2}}{r}=r \omega^{2} \\ & F=\frac{m v^{2}}{r}=m r \omega^{2} \end{aligned}$		-)	\odot	\bigcirc
Rotational dynamics			(-)	(-)	-
3.1	I know that an unbalanced torque causes a change in the angular (rotational) motion of an object.		-)	\odot	\bigcirc
3.2	I can define the moment of inertia of an object as a measure of its resistance to angular acceleration about a given axis.		-	\odot	\bigcirc
3.3	I know that moment of inertia depends on mass and the distribution of mass about a given axis of rotation.		-)	-	\bigcirc
3.4	I can use an appropriate relationship to calculate the moment of inertia for discrete masses.		-)	\because	\bigcirc
3.5	$I=m r^{2}$		-)	\because	\bigcirc

No		$\checkmark x$	Traffic Light		
3.6	I can use an appropriate relationship to calculate the moment of inertia for discrete masses.		-	\odot	\bigcirc
3.7	$I=\sum m r^{2}$		-	\odot	\odot
3.8	I can use appropriate relationships to calculate the moment of inertia for rods, discs and spheres about given axes.		\bigcirc	\odot	\odot
3.9	rod about centre $\quad I=\frac{1}{12} m l^{2}$ rod about end $\quad I=\frac{1}{3} m l^{2}$ disc about centre $\quad I=\frac{1}{2} m r^{2}$ sphere about centre $I=\frac{2}{5} m r^{2}$		-)	-	®
3.10	I can use appropriate relationships to carry out calculations involving torque, perpendicular force, distance from the axis, angular acceleration, and moment of inertia.		-	\odot	\bigcirc
3.11	$\begin{aligned} & \tau=F r \\ & \tau=I \alpha \end{aligned}$		-)	\odot	\bigcirc
3.12	I can use appropriate relationships to carry out calculations involving angular momentum, angular velocity, moment of inertia, tangential velocity, mass and its distance from the axis.		-)	\odot	\odot
3.13	$\begin{aligned} & L=m v r=m r^{2} \omega \\ & L=I \omega \end{aligned}$		-)	\odot	©
3.14	I can make a statement of the principle of conservation of angular momentum. "In the absence of external torques the total angular momentum before a collision is the same as the total angular momentum after a collision"		-)	\odot	¢
3.15	I can use the principle of conservation of angular momentum to solve problems.		-	-	¢

No		$\checkmark x$	Traffic Light		
3.16	I can use appropriate relationships to carry out calculations involving potential energy, rotational kinetic energy, translational kinetic energy, angular velocity, linear velocity, moment of inertia, and mass.		-)	\odot	©
3.17	$E_{k}=\frac{1}{2} I \omega^{2}$ or $E_{k(\text { rotational })}=\frac{1}{2} I \omega^{2}$		-	\odot	©
3.18	$E_{P}=E_{k(\text { (translational })}+E_{k(\text { rotational })}$		-	\odot	\bigcirc
Gravitation			()	(-)	-
4.1	I can convert between astronomical unit (AU) and metres and between light years (ly) and metres		-)	\odot	®)
4.2	I can define gravitational field strength as the gravitational force acting on a unit mass.		-	\odot	®)
4.3	I can sketch of gravitational field lines and field line patterns around astronomical objects and astronomical systems involving two objects.		-)	\odot	©
4.4	I can use an appropriate relationship to carry out calculations involving gravitational force, masses and their separation.		-	\odot	®)
4.5	$F=\frac{G M m}{r^{2}}$		-	-	¢
4.6	I can use appropriate relationships to carry out calculations involving period of satellites in circular orbit, masses, orbit radius, and satellite speed.		-	-	¢)
4.7	$F=\frac{G M m}{r^{2}}=\frac{m v^{2}}{r}=m r \omega^{2}=m r\left(\frac{2 \pi}{T}\right)^{2}$		-	\odot	¢
4.8	I can define gravitational potential of a point in space as the work done in moving unit mass from infinity to that point		-	\odot	¢
4.9	I know that the energy required to move mass between two points in a gravitational field is independent of the path taken.		-	\odot	©

No		$\checkmark x$	Traffic Light		
4.10	I can use appropriate relationships to carry out calculations involving gravitational potential, gravitational potential energy, masses and their separation.		-	\odot	\bigcirc
4.11	$\begin{aligned} & V=-\frac{G M}{r} \\ & E_{P}=V m=-\frac{G M m}{r} \end{aligned}$		-	\because	®
4.12	I can define escape velocity as the minimum velocity required to allow a mass to escape a gravitational field to infinity, where the mass achieves zero kinetic energy and maximum (zero) potential energy.		-	\odot	\bigcirc
4.13	I can derive the relationship $v=\sqrt{\frac{2 G M}{r}}$.		-	\odot	\bigcirc
4.14	I can use of an appropriate relationship to carry out calculations involving escape velocity, mass and distance.		-	\odot	\bigcirc
4.15	$v=\sqrt{\frac{2 G M}{r}}$		-	\odot	®
General relativity			()	()	-
5.1	I know that special relativity deals with motion in inertial (non-accelerating) frames of reference and that general relativity deals with motion in non-inertial (accelerating) frames of reference		-	\odot	\odot
5.2	I can state the equivalence principle (that it is not possible to distinguish between the effects on an observer of a uniform gravitational field and of a constant acceleration) and I know of its consequences		-	\because	®
5.3	I consider spacetime as a representation of three dimensions of space and one dimension of time.		-	\odot	¢
5.4	I know that general relativity leads to the interpretation that mass curves spacetime, and that gravity arises from the curvature of spacetime.		-	\because	\bigcirc

No		$\sqrt{ } \times$	Traffic Light		
5.5	I know that light or a freely moving object follows a geodesic (the shortest distance between two points) in spacetime.		-)	-	\odot
5.6	I can represent world lines for objects which are stationary, moving with constant velocity and accelerating		-	-	\bigodot
5.7	I know that the escape velocity from the event horizon of a black hole is equal to the speed of light.		-)	\odot	\odot
5.8	I know that, from the perspective of a distant observer, time appears to be frozen at the event horizon of a black hole.		-)	\because	\bigcirc
5.9	I know that the Schwarzschild radius of a black hole is the distance from its centre (singularity) to its event horizon.		-)	\because	\odot
5.10	I can use an appropriate relationship to solve problems relating to the Schwarzschild radius of a black hole.		-)	\odot	\bigcirc
5.11	$r_{\text {Schwarsschild }}=\frac{2 G M}{c^{2}}$		-)	-	\bigcirc
Stellar physics			()	()	¢
6.1	I can use appropriate relationships to solve problems relating to luminosity, apparent brightness, b, distance between the observer and the star, power per unit area, stellar radius, and stellar surface temperature. (Using the assumption that stars behave as black bodies.)		-)	\odot	\odot
6.2	apparent brightness $\quad b=\frac{L}{4 \pi d^{2}}$ $\frac{P}{A}=\sigma T^{4}$ $L=4 \pi r^{2} \sigma T^{4}$		-	\odot	\bigcirc
6.3	I know that stars are formed in interstellar clouds when gravitational forces overcome thermal pressure and cause a molecular cloud to contract until the core becomes hot enough to sustain nuclear fusion, which them provides a thermal poressure that balances the gravitational force.		-)	-	\bigcirc

No		$\checkmark x$	Traffic Light		
6.4	I know of the stages in the proton-proton chain ($p-p$ chain) in stellar fusion reactions which convert hydrogen to helium. One example of a p-p chain is:		-	\odot	\bigcirc
6.5	$\begin{aligned} & { }_{1}^{1} \mathrm{H}+{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{1}^{2} \mathrm{H}+{ }_{+1}^{0} \mathrm{e}+v_{\mathrm{e}} \\ & { }_{1}^{2} \mathrm{H}+{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{2}^{3} \mathrm{He}+\gamma \\ & { }_{2}^{3} \mathrm{He}+{ }_{2}^{3} \mathrm{He} \rightarrow{ }_{2}^{4} \mathrm{He}+2{ }_{1}^{1} \mathrm{H} \end{aligned}$		-	\odot	\odot
6.6	I know that the Hertzsprung-Russell ($H-R$) diagram is a representation of the classification of stars.		-	\odot	®
6.7	I can classify stars and position in Hertzsprung-Russell (H-R) diagram, including main sequence, giant, supergiant and white dwarf.		-	\because	©
6.8	I can use Hertzsprung-Russell ($H-R$) diagram to determine stellar properties, including prediction of colour of stars from their position in the $H-R$ diagram.		-	\odot	\odot
6.9	I know that the fusion of hydrogen occurs in the core of stars in the main sequence of a Hertzsprung-Russell (H-R) diagram.		-	\odot	¢
6.10	I know that when hydrogen fusion in the core of a star supplies the energy that maintains the star's outward thermal pressure to balance inward gravitational forces. When the hydrogen in the core becomes depleted, nuclear fusion in the core ceases. The gas surrounding the core, however, will still contain hydrogen. Gravitational forces cause both the core, and the surrounding shell of hydrogen to shrink. In a star like the Sun, the hydrogen shell becomes hot enough for hydrogen fusion in the shell of the star. This leads to an increase in pressure which pushes the surface of the star outwards, causing it to cool. At this stage, the star will be in the giant or supergiant regions of a Hertzspung-Russell (H-R) diagram.		-	-	\bigcirc
6.11	I know that in a star like the Sun, the core shrinks and will become hot enough for the helium in the core to begin fusion		-	\odot	®
6.12	I know that the mass of a star will determine its lifetime		-	-	®)

No		$\checkmark x$	Traffic Light		
6.13	I know that every star will ultimately become a white dwarf, a neutron star or a black hole. The mass of the star will determine its eventual fate		-	\odot	©
	QUANTA AND WAVES				
Introduction to quantum theory			()	()	\because
7.1	I know of experimental observations that cannot be explained by classical physics, but can be explained using quantum theory:		-	\odot	\odot
$7.1 a$	Black-body radiation curves (ultraviolet catastrophe);		-	\odot	¢
7.1b	The formation of emission and absorption spectra. ;		-	\odot	\odot
7.1c	The photoelectric effect.		-	\because	®
7.2	I can use an appropriate relationship to solve problems involving photon energy and frequency.		()	\odot	®
7.3	$E=h f$		-	\because	®
7.4	I know that the Bohr model of the atom in terms of the quantisation of angular momentum, the principal quantum number n and electron energy states, and how this explains the characteristics of atomic spectra.		()	\odot	\bigodot
7.5	I can use an appropriate relationship to solve problems involving the angular momentum of an electron and its principal quantum number.		()	\odot	\bigcirc
7.6	$m v r=\frac{n h}{2 \pi}$		-	\odot	©
7.7	I can provide a description of experimental evidence for the particle-like behaviour of 'waves' and for the wave-like behaviour of 'particles'.		-)	\because	\bigodot
7.8	I can use an appropriate relationship to solve problems involving the de Broglie wavelength of a particle and its momentum.		()	\odot	®)

No		$\checkmark x$	Traffic Light		
7.9	$\lambda=\frac{h}{p}$		-)	-	©
7.10	I know that it is not possible to know the position and the momentum of a quantum particle simultaneously		-	\%	©
7.11	I know that it is not possible to know the lifetime of a quantum particle and the associated energy change simultaneously.		-)	-	\bigcirc
7.12	I can use appropriate relationships to solve problems involving the uncertainties in position, momentum, energy and time. The lifetime of a quantum particle can be taken as the uncertainty in time.		-)	-	\bigcirc
7.13	$\begin{aligned} & \Delta x \Delta p_{x} \geq \frac{h}{4 \pi} \\ & \Delta E \Delta t \geq \frac{h}{4 \pi} \end{aligned}$		-	\%	©
7.14	I know of implications of the Heisenberg uncertainty principle, including the concept of quantum tunnelling, in which a quantum particle can exist in a position that, according to classical physics, it has insufficient energy to occupy.		-	\because	©
Particles from space			()	()	-)
8.1	I know of the origin and composition of cosmic rays and the interaction of cosmic rays with Earth's atmosphere		-	\odot	¢
8.2	I know of the composition of the solar wind as charged particles in the form of plasma.		-)	\because	©
8.3	I can explain the helical motion of charged particles in the Earth's magnetic field.		-	\odot	©
8.4	I can use appropriate relationships to solve problems involving the force on a charged particle, its charge, its mass, its velocity, the radius of its path, and the magnetic induction of a magnetic field.		-)	\odot	¢

No		$\checkmark x$	Traffic Light		
8.5	$\begin{aligned} & F=q v B \\ & F=\frac{m v^{2}}{r} \end{aligned}$		-)	\odot	©
Simple harmonic motion (SHM)			()	-)	\bigcirc
9.1	I can define SHM in terms of the restoring force and acceleration proportional to, and in the opposite direction to, the displacement from the rest position.		-)	\odot	©
9.2	I can use of calculus methods to show that the expressions $y=A \sin \omega t$ and $y=A \cos \omega t$ are consistent with the definition of $\operatorname{SHM}\left(a=-\omega^{2} y\right)$		-)	\odot	©
9.3	I can derive the relationships $v= \pm \omega \sqrt{\left(A^{2}-y^{2}\right)}$ and $E_{k}=\frac{1}{2} m \omega^{2}\left(A^{2}-y^{2}\right)$.		-)	\odot	\bigcirc
9.4	I can use appropriate relationships to solve problems involving the displacement, velocity, acceleration, angular frequency, period, and energy of an object executing SHM.		-	\odot	©
9.5	$\begin{aligned} & F=-k y \\ & \omega=2 \pi f=\frac{2 \pi}{T} \\ & a=\frac{d^{2} y}{d t^{2}}=-\omega^{2} y \\ & y=A \cos \omega t \text { or } y=A \sin \omega t \\ & v= \pm \omega \sqrt{\left(A^{2}-y^{2}\right)} \\ & E_{k}=\frac{1}{2} m \omega^{2}\left(A^{2}-y^{2}\right) \\ & E_{P}=\frac{1}{2} m \omega^{2} y^{2} \end{aligned}$		-)	-	©
9.6	I know of the effects of damping in SHM (to include underdamping, critical damping and overdamping).		-)	\odot	©

No		$\checkmark x$	Traffic Light		
Waves			()	()	\bigcirc
10.1	I can use an appropriate relationship to solve problems involving the energy transferred by a wave and its amplitude.		(-)	\odot	\bigcirc
10.2	$E=k A^{2}$		-	\because	\bigcirc
10.3	I know of the mathematical representation of travelling waves.		-	\because	\bigcirc
10.4	I can use appropriate relationships to solve problems involving wave motion, phase difference and phase angle.		()	-	\bigcirc
10.5	$\begin{aligned} & y=A \sin 2 \pi\left(f t-\frac{x}{\lambda}\right) \\ & \phi=\frac{2 \pi x}{\lambda} \end{aligned}$		-)	-	\bigcirc
10.6	I know that stationary waves are formed by the interference of two waves, of the same frequency and amplitude, travelling in opposite directions. A stationary wave can be described in terms of nodes and antinodes.		-)	\odot	\bigcirc
Interference			()	()	\bigcirc
11.1	I know that two waves are coherent if they have a constant phase relationship		-	\because	\bigcirc
11.2	I know of the conditions for constructive and destructive interference in terms of coherence and phase		()	-	\bigcirc
11.3	I can use an appropriate relationship to solve problems involving optical path difference, geometrical path difference and refractive index.		-	\because	\bigcirc
11.4	optical path difference $=n \times$ geometrical path difference		-)	-	\bigcirc
11.5	I know that a wave experiences a phase change of π when it is travelling in a less dense medium and reflects from an interface with a more dense medium.		-)	-	\bigcirc

No		$\checkmark x$	Traffic Light		
11.6	I know that a wave does not experience a phase change when it is travelling in a more dense medium and reflects from an interface with a less dense medium		()	\odot	\bigcirc
11.7	I can explain interference by division of amplitude, including optical path length, geometrical path length, phase difference, optical path difference,		-	\odot	©
11.8	I know of thin film interference and wedge fringes.		-	\odot	()
11.9	For light interfering by division of amplitude, I can use an appropriate relationship to solve problems involving the optical path difference between waves, wavelength and order number.		-	\odot	\bigcirc
11.10	optical path difference $=m \lambda$ or $\left(m+\frac{1}{2}\right) \lambda$ where $m=0,1,2 \ldots$		()	\odot	©
11.11	I know that a coated (bloomed) lens can be made nonreflective for a specific wavelength of light.		()	\odot	\bigcirc
11.12	I can derive the relationship $d=\frac{\lambda}{4 n}$ for glass lenses with a coating such as magnesium fluoride.		()	\odot	©
11.13	I can use appropriate relationships to solve problems involving interference of waves by division of amplitude		-	\odot	\bigcirc
11.14	$\Delta x=\frac{\lambda l}{2 d}$		()	\odot	¢
11.15	$d=\frac{\lambda}{4 n}$		-	\odot	\bigcirc
11.16	I can explain interference by division of wavefront.		-	\odot	®)
11.17	I have a knowledge of Young's slits interference.		-	-	\bigcirc
11.18	I can use an appropriate relationship to solve problems involving interference of waves by division of wavefront.		()	\odot	©
11.19	$\Delta x=\frac{\lambda D}{d}$		-	\odot	\odot

No		$\checkmark x$	Traffic Light		
Polarisation			()	(-)	-
12.1	I know of what is meant by a plane-polarised wave.		-)	\because	®
12.2	I know of the effect on light of polarisers and analysers.		-)	\odot	©
12.3	I know that when a ray of unpolarised light is incident on the surface of an insulator at Brewster's angle the reflected ray becomes plane-polarised.		-)	\odot	\bigcirc
12.4	I can derive the relationship $n=\tan i_{p}$.		-)	\because	®
12.5	I can use an appropriate relationship to solve problems involving Brewster's angle and refractive index.		-)	\odot	¢
12.6	$n=\tan i_{p}$		-	\odot	O)
ELECTROMAGNETISM					
Fields			()	()	\rightleftharpoons
13.1	I know that an electric field is the region that surrounds electrically charged particles in which a force is exerted on other electrically charged particles.		-)	\%	\bigcirc
13.2	I can define electric field strength as the electrical force acting on unit positive charge.		-)	-	\bigcirc
13.3	I can sketch electric field patterns around single point charges, a system of charges and a uniform electric field.		-	\odot	\bigcirc
13.4	I can define electrical potential at a point as the work done in moving unit positive charge from infinity to that point.		-)	\odot	\odot
13.5	I know that the energy required to move charge between two points in an electric field is independent of the path taken.		-)	\because	®
13.6	I can use appropriate relationships to solve problems involving electric force, electric potential and electric field strength, around a point charge and a system of charges.		-)	-	®

No		$\sqrt{ } \times$	Traffic Light		
13.7	$\begin{aligned} & F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{o} r^{2}} \\ & E=\frac{Q}{4 \pi \varepsilon_{o} r^{2}} \\ & V=\frac{Q}{4 \pi \varepsilon_{o} r} \end{aligned}$		-)	\odot	\odot
13.8	I can use appropriate relationships to solve problems involving charge, energy, potential difference, and electric field strength, in situations involving a uniform electric field.		-)	\odot	\bigcirc
13.9	$\begin{aligned} & F=Q E \\ & V=E d \\ & W=Q V \end{aligned}$		-)	\odot	\bigcirc
13.10	I know Millikan's experimental method for determining the charge on an electron.		-)	\odot	©
13.11	I can use appropriate relationships to solve problems involving the motion of charged particles in uniform electric fields.		-)	\because	\bigcirc
13.12	$\begin{aligned} & F=Q E \\ & V=E d \\ & W=Q V \\ & E_{k}=\frac{1}{2} m v^{2} \end{aligned}$		-	\odot	®)
13.13	I know that the electronvolt (eV) is the energy acquired when one electron accelerates through a potential difference of one volt.		-	\odot	\bigcirc
13.14	I can convert between electronvolts and joules		-)	\odot	\bigcirc
13.15	I know that electrons are in motion around atomic nuclei and individually produce a magnetic effect.		-	\odot	\bigcirc

No		$\checkmark x$	Traffic Light		
13.16	I know that, for example, iron, nickel, cobalt, and some rare earths exhibit a magnetic effect called ferromagnetism, in which magnetic dipoles can be made to align, resulting in the material becoming magnetised.		-)	\odot	\odot
13.17	I can sketch magnetic field patterns between magnetic poles, and around solenoids, including the magnetic field pattern around the Earth.		-)	\odot	\odot
13.18	I can compare gravitational, electrostatic, magnetic and nuclear forces in terms of their relative strength and range.		-)	\odot	\bigcirc
13.19	I can use an appropriate relationship to solve problems involving magnetic induction around a current carrying wire, the current in the wire and the distance from the wire.		\bigcirc	\odot	¢
13.20	$B=\frac{\mu_{0} I}{2 \pi r}$		-)	\odot	©
13.21	I can explain the helical path followed by a moving charged particle in a magnetic field.		-)	\because	©
13.22	I can use appropriate relationships to solve problems involving the forces acting on a current-carrying wire in a magnetic field and a charged particle in a magnetic field.		\bigcirc	\odot	©
13.23	$\begin{aligned} & F=I l B \sin \theta \\ & F=q v B \\ & F=\frac{m v^{2}}{r} \end{aligned}$		\bigcirc	\odot	©
Circuits			()	()	-
14.1	I know of the variation of current and potential difference with time in an RC circuit during charging and discharging.		-	\because	\bigodot
14.2	I can define the time constant for an RC circuit as the time to increase the charge stored by 63% of the difference between initial charge and full charge, or the time taken to discharge the capacitor to 37% of initial charge		\bigcirc	\odot	\bigcirc

No		$\sqrt{ } \times$	Traffic Light		
14.3	I can use an appropriate relationship to determine the time constant for an RC circuit.		-)	\odot	\odot
14.4	$\tau=R C$		-)	\because	®
14.5	I know that, in an RC circuit, an uncharged capacitor can be considered to be fully charged after a time approximately equal to 5τ		-)	\odot	\bigodot
14.6	I know that, in an RC circuit, a fully charged capacitor can be considered to be fully discharged after a time approximately equal to 5τ.		-)	\odot	\odot
14.7	I can determine graphically the time constant for an $R C$ circuit.		-)	\odot	®
14.8	I know that capacitive reactance is the opposition of a capacitor to changing current		-)	\odot	\bigodot
14.9	I can use appropriate relationships to solve problems involving capacitive reactance, voltage, current, frequency, and capacitance.		-	\odot	\bigcirc
14.10	$\begin{aligned} & X_{C}=\frac{V}{I} \\ & X_{C}=\frac{1}{2 \pi f C} \end{aligned}$		-	\odot	\odot
14.11	I know of the growth and decay of current in a DC circuit containing an inductor		-)	\odot	\bigodot
14.12	I can explain the self-inductance (inductance) of a coil.		-)	\odot	®)
14.3	I have knowledge of Lenz's law and its implications		-)	\because	®
14.4	I can define inductance and back EMF.		-)	\odot	®
14.5	I know that energy is stored in the magnetic field around a current-carrying inductor.		-)	\odot	\odot
14.6	I know of the variation of current with frequency in an $A C$ circuit containing an inductor.		-	\because	\odot

No		$\checkmark x$	Traffic Light		
14.7	I know that inductive reactance is the opposition of an inductor to changing current.		-	\bigcirc	\bigcirc
14.8	I can use appropriate relationships to solve problems relating to inductive reactance, voltage, current, frequency, energy, and self-inductance (inductance).		-)	\because	\bigcirc
14.9	$\begin{aligned} & \mathcal{E}=-L \frac{d I}{d t} \\ & E=\frac{1}{2} L I^{2} \\ & X_{L}=\frac{V}{I} \\ & X_{L}=2 \pi f L \end{aligned}$		-)	\because	\bigcirc
Electromagnetic radiation			-)	\odot	©)
15.1	I have a knowledge of the unification of electricity and magnetism.		-)	\because	\bigcirc
15.2	I know that electromagnetic radiation exhibits wave properties as it transfers energy through space. It has both electric and magnetic field components which oscillate in phase, perpendicular to each other and to the direction of energy propagation.		-	\odot	\bigcirc
15.3	I can use an appropriate relationship to solve problems involving the speed of light, the permittivity of free space and the permeability of free space.		-	\odot	©
15.4	$c=\frac{1}{\sqrt{\varepsilon_{o} \mu_{o}}}$		-)	\odot	\odot
UNITS, PREFIXES AND UNCERTAINTIES					
Units, prefixes and scientific notation			()	\because	®)
16.1	I can make appropriate use of units, including electronvolt (eV), light year (ly) and astronomical unit (AU).		-	\odot	\bigcirc

No		$\checkmark x$	Traffic Light		
16.2	I can use SI units with all physical quantities where appropriate.		-	;	©
16.3	I can use prefixes where appropriate. These include femto (f), pico (p), nano (n), micro (μ), milli (m), kilo (k), mega (M), giga (G), tera (T), and peta (P)		-	O	©
16.4	I can use the appropriate number of significant figures in final answers. This means that the final answer can have no more significant figures than the data with fewest number of significant figures used in the calculation.		-	-	©
16.5	I can make appropriate use of scientific notation		-	-	©
Uncertainties			-)	-	-
17.1	I know and can use uncertainties, including systematic uncertainties, scale reading uncertainties, random uncertainties, and calibration uncertainties.		-	-	©
17.2	I know systematic uncertainty occurs when readings taken are either all too small or all too large. This can arise due to measurement techniques or experimental design		-	O	©
17.3	I know a scale reading uncertainty is an indication of how precisely an instrument scale can be read		-	O	©
17.4	I know random uncertainty arises when measurements are repeated and slight variations occur. Random uncertainty may be reduced by increasing the number of repeated measurements.		-	-	©
17.5	I know calibration uncertainty arises when there is a difference between a manufacturer's claim for the accuracy of an instrument compared with an approved standard.		-	O	©
17.6	I can solve problems involving absolute uncertainties and fractional/percentage uncertainties		-	;	©
17.7	I can make appropriate use of significant figures in absolute uncertainties.		-	-	©

No		$\checkmark \times$	Traffic Light		
17.8	Absolute uncertainty should be rounded to one significant figure. In some instances a second significant figures may be retained (if the absolute uncertainty is small).		\bigcirc	\odot	\bigodot
Data analysis			-)	\because	®)
18.1	I can combine various types of uncertainties to obtain the total uncertainty in a measurement.		-)	\odot	®
18.2	I know that, when uncertainties in a single measurement are combined, an uncertainty can be ignored if it is less than one third of one of the other uncertainties in the measurement.		\bigcirc	\odot	\bigodot
18.3	I can use an appropriate relationship to determine the total uncertainty in a measured value.		-)	\because	®
18.4	$\Delta W=\sqrt{\Delta X^{2}+\Delta Y^{2}+\Delta Z^{2}}$		-)	\because	O
18.5	I can combine uncertainties in measured values to obtain the total uncertainty in a calculated value		-)	\odot	®
18.6	I know that, when uncertainties in measured values are combined, a fractional/percentage uncertainty in a measured value can be ignored if it is less than one third of the fractional/percentage uncertainty in another measured value.		\bigcirc	\odot	®
18.7	I can use an appropriate relationship to determine the total uncertainty in a value calculated from the product or quotient of measured values.		-)	-	®
18.8	$\frac{\Delta W}{W}=\sqrt{\left(\frac{\Delta X}{X}\right)^{2}+\left(\frac{\Delta Y}{Y}\right)^{2}+\left(\frac{\Delta Z}{Z}\right)^{2}}$		-)	\odot	®
18.9	I can use an appropriate relationship to determine the uncertainty in a value raised to a power.		-)	\odot	\bigodot
18.10	$\left(\frac{\Delta W^{n}}{W^{n}}\right)=n\left(\frac{\Delta W}{W}\right)$		-)	\because	®
18.11	I can use error bars to represent absolute uncertainties on graphs.		-)	-	\bigcirc

No		$\sqrt{ } \times$	Traffic Light		
18.12	I can estimate uncertainty in the gradient and intercept of the line of best fit on a graph.		-)	\odot	¢
18.13	I can correctly use the terms accuracy and precision in the context of an evaluation of experimental results. The accuracy of a measurement compares how close the measurement is to the 'true' or accepted value. The precision of a measurement gives an indication of the uncertainty in the measurement.		-)	-	®)
Data	alysis		-	\odot	(2)
19.1	I can identify the dominant uncertainty/uncertainties in an experiment or in experimental data.				
19.2	I can suggest potential improvements to an experiment, which may reduce the dominant uncertainty/uncertainties.				

Course assessment structure: project

Project 30 marks

The project has 30 marks. This is scaled by SQA to represent 25% of the overall marks.
The purpose of the project is to allow you to carry out an in-depth investigation of a physics topic and produce a project report. You are required to plan and carry out a physics investigation.

You should keep a record of their work (daybook) as this will form the basis of your project report. This record should include details of your research, experiments and recorded data.

It gives you an opportunity to demonstrate the following skills, knowledge and understanding:

- extending and applying knowledge of physics to new situations, interpreting and analysing information to solve more complex problems
- planning and designing physics experiments/investigations, using reference material, to test a hypothesis or to illustrate particular effects
- recording systematic detailed observations and collecting data
- selecting information from a variety of sources
- presenting detailed information appropriately in a variety of forms
- processing and analysing physics data (using calculations, significant figures and units, where appropriate)
- making reasoned predictions from a range of evidence/information
- drawing valid conclusions and giving explanations supported by evidence/justification
- critically evaluating experimental procedures by identifying sources of uncertainty, and suggesting and implementing improvements
- drawing on knowledge and understanding of physics to make accurate statements, describe complex information, provide detailed explanations, and integrate knowledge
- communicating physics findings/information fully and effectively
- analysing and evaluating scientific publications and media reports

Project overview

Candidates carry out an in-depth investigation of a physics topic. Candidates choose their topic and individually investigate/research its underlying physics. Candidates must discuss potential topics with their teacher and/or lecturer to ensure that they do not waste time researching unsuitable topics. This is an open-ended task that may involve candidates carrying out a significant part of the work without supervision.

Section	Expected response	Mark allocation
Abstract	A brief abstract (summary) stating the overall aim and findings/conclusion(s) of the project.	1
Underlying physics	A description of the underlying physics that: - is relevant to the project - demonstrates an understanding of the physics theory underpinning the project - is of an appropriate level and commensurate with the demands of Advanced Higher Physics	4
Procedures	Labelled diagrams and/or descriptions of apparatus, as appropriate	2
	Clear descriptions of how the apparatus was used to obtain experimental readings.	2
	Procedures are at an appropriate level of complexity and demand. Factors to be considered include: - range of procedures - control of variables - accuracy and precision - originality of approach and/or experimental techniques - degree of sophistication of experimental design and/or equipment	3
Results (including uncertainties)	Data is sufficient and relevant to the aim of the project.	1
	Appropriate analysis of data, for example, quality of graphs, lines of best fit, calculations.	4
	Uncertainties in individual readings and final results.	3
Discussion (conclusion(s) and evaluation)	Valid conclusion(s) that relate to the aim of the project	1
	Evaluations of experimental procedures to include, as appropriate, comment on: - accuracy and precision of experimental measurements - adequacy of repeated readings - adequacy of range over which variables are altered - adequacy of control of variables - limitations of equipment - reliability of methods - sources of uncertainties	3
	Coherent discussion of overall conclusion(s) and critical evaluation of the project as a whole, to include, as appropriate, comment on: - selection of procedures - problems encountered during planning - modifications to planned procedures - interpretation and significance of findings - suggestions for further improvements to procedures - suggestions for further work	3

Section	Expected response	Mark allocation
Presentation A report which indicates a quality project.	1	
	Appropriate structure, including informative title, contents page and page numbers.	1
	References cited in the text and listed at an appropriate point in the report. Citing and listing using either Vancouver or Harvard referencing system.	1
Total		30

