Advanced Higher Past Papers

Mr Davie

October 2022

1 Intro

This document was created in order to make it easier to find past paper questions, both for teachers and students. I will do my best to keep this document up to date and include new past paper questions as they become available. If you spot any mistakes, or want to suggest any improvements, send me an email at MrDaviePhysics@gmail.com. I am more than happy to send you the Tex file used to produce the document so that you can modify it as you wish.

2 How to Use

The table on the next page contains links to questions sorted by topic and year. Clicking on a link will take you to that question. The marking instructions follow directly after each question with the exception open ended questions. I have not included the marking instructions for open ended questions as they do not contain enough information for you to mark your own work. Instead ask your teacher to have a look at what you have written or compare your answer to notes you have on the topic. To return to the table click on Back to Table at the top or bottom of any page. Trying to navigate the document without doing this is tedious.

Before starting any past paper questions I recommend that you have paper copies of the Relationships Sheet and Data Sheet.

	2016	2017	2018	2019	2020	2022
Kinematic relationships	1	1	1	1	1	1
Angular motion	2	2	2	2,4	$2 \mathrm{a}, 6 \mathrm{c}(\mathrm{i})$	2
Rotational dynamics	16	3	3	3	$2 \mathrm{~b}, 3$	3
Gravitation	3	4,5	4	5	$4,6 \mathrm{c}(\mathrm{ii})$	4
General relativity	5		5	6	$4 \mathrm{~b}, 5$	
Stellar physics	4	6	6,8	7	$6 \mathrm{a}, \mathrm{b}$	5
Introduction to quantum theory	$6,7,8$	7	7	8,9	$7,8 \mathrm{a}, \mathrm{b}$	$6,7,8$
Particles from space			8 d	10	$8 \mathrm{c}(\mathrm{i})(\mathrm{B}), 8 \mathrm{~d}$	9
Simple harmonic motion	10	8	9	11	9	10
Waves	11	9	10	12 a	10 d	11
Interference		10	11	13	$10 \mathrm{a}-\mathrm{c}$	12
Polarisation	12		12		11	13 a
Fields	$9,13,14$	11,12	13,14	14,15	$8,13,14$	14,15
Circuits		13,14	15	16	15	16
Electromagnetic radiation	$15 \mathrm{a}(\mathrm{ii})$					
Graph work \& Experimental methods	15,16				16	13
Uncertainties	$14 \mathrm{~b}, \mathrm{c}$	$10 \mathrm{c}(\mathrm{ii})$	$14 \mathrm{~b}(\mathrm{ii}), \mathrm{d}$	$12 \mathrm{~b}, \mathrm{c}$	12,16	12

\square

TUESDAY, 24 MAY
9:00 AM - 11:30 AM

Fill in these boxes and read what is printed below.
Full name of centre
Town

Forename(s)

Surname

Number of seat

Date of birth
Day

	Month	Year	Scottish candidate number				
:---	:---	:---	:---	:---	:---	:---	:---

Total marks - 140
Attempt ALL questions.
Reference may be made to the Physics Relationships Sheet X757/77/11 and the Data Sheet on Page 02.
Write your answers clearly in the spaces provided in this booklet. Additional space for answers and rough work is provided at the end of this booklet. If you use this space you must clearly identify the question number you are attempting. Any rough work must be written in this booklet. You should score through your rough work when you have written your final copy.
Care should be taken to give an appropriate number of significant figures in the final answers to calculations.
Use blue or black ink.
Before leaving the examination room you must give this booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

COMMON PHYSICAL QUANTITIES

Quantity	Symbol	Value	Quantity	Symbol	Value
Gravitational acceleration on Earth Radius of Earth Mass of Earth Mass of Moon Radius of Moon Mean Radius of Moon Orbit Solar radius Mass of Sun 1 AU Stefan-Boltzmann constant Universal constant of gravitation	g R R_{E} M_{E} M_{M} R_{M} σ G	$\begin{aligned} & 9.8 \mathrm{~m} \mathrm{~s}^{-2} \\ & 6.4 \times 10^{6} \mathrm{~m} \\ & 6.0 \times 10^{24} \mathrm{~kg} \\ & 7.3 \times 10^{22} \mathrm{~kg} \\ & 1.7 \times 10^{6} \mathrm{~m} \\ & 3.84 \times 10^{8} \mathrm{~m} \\ & 6.955 \times 10^{8} \mathrm{~m} \\ & 2.0 \times 10^{30} \mathrm{~kg} \\ & 1.5 \times 10^{11} \mathrm{~m} \\ & 5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4} \\ & 6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2} \end{aligned}$	Mass of electron Charge on electron Mass of neutron Mass of proton Mass of alpha particle Charge on alpha particle Planck's constant Permittivity of free space Permeability of free space Speed of light in vacuum Speed of sound in air	$\begin{aligned} & m_{\mathrm{e}} \\ & e \\ & m_{\mathrm{n}} \\ & m_{\mathrm{p}} \\ & m_{\alpha} \end{aligned}$ h ε_{0} μ_{0} c	$\begin{aligned} & 9.11 \times 10^{-31} \mathrm{~kg} \\ & -1.60 \times 10^{-19} \mathrm{C} \\ & 1.675 \times 10^{-27} \mathrm{~kg} \\ & 1.673 \times 10^{-27} \mathrm{~kg} \\ & 6.645 \times 10^{-27} \mathrm{~kg} \\ & 3.20 \times 10^{-19} \mathrm{C} \\ & 6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\ & 8.85 \times 10^{-12} \mathrm{Fm}^{-1} \\ & 4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \\ & 3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\ & 3.4 \times 10^{2} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$

REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K .

Substance	Refractive index	Substance	Refractive index
Diamond	$2 \cdot 42$	Glycerol	$1 \cdot 47$
Glass	1.51	Water	$1 \cdot 33$
Ice	1.31	Air	$1 \cdot 00$
Perspex	1.49	Magnesium Fluoride	$1 \cdot 38$

SPECTRAL LINES

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	$\begin{aligned} & 656 \\ & 486 \\ & 434 \\ & 410 \\ & 397 \\ & 389 \end{aligned}$	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	$\begin{aligned} & 644 \\ & 509 \\ & 480 \\ & \hline \end{aligned}$	Red Green Blue
				Lasers	
			Element	Wavelength/nm	Colour
Sodium		Yellow	Carbon dioxide Helium-neon	$\left.\begin{array}{c} 9550 \\ 10590 \end{array}\right\}$ 633	Infrared Red

PROPERTIES OF SELECTED MATERIALS

Substance	Density/ $\mathrm{kg} \mathrm{m}^{-3}$	Melting Point/ K	Boiling Point/ K	Specific Heat Capacity/ $\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$	Specific Latent Heat of Fusion/ Jkg^{-1}	Specific Latent Heat of Vaporisation/ Jkg^{-1}
Aluminium	2.70×10^{3}	933	2623	9.02×10^{2}	3.95×10^{5}	
Copper	8.96×10^{3}	1357	2853	3.86×10^{2}	2.05×10^{5}	
Glass	2.60×10^{3}	1400	. . .	6.70×10^{2}		
Ice	9.20×10^{2}	273		$2 \cdot 10 \times 10^{3}$	3.34×10^{5}	
Glycerol	1.26×10^{3}	291	563	2.43×10^{3}	1.81×10^{5}	8.30×10^{5}
Methanol	7.91×10^{2}	175	338	2.52×10^{3}	9.9×10^{4}	1.12×10^{6}
Sea Water	1.02×10^{3}	264	377	3.93×10^{3}		
Water	1.00×10^{3}	273	373	4.19×10^{3}	$3 \cdot 34 \times 10^{5}$	$2 \cdot 26 \times 10^{6}$
Air	$1 \cdot 29$			
Hydrogen	9.0×10^{-2}	14	20	1.43×10^{4}		4.50×10^{5}
Nitrogen	1.25	63	77	1.04×10^{3}		2.00×10^{5}
Oxygen	1.43	55	90	9.18×10^{2}		2.40×10^{4}

The gas densities refer to a temperature of 273 K and a pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.
1.

A car on a long straight track accelerates from rest. The car's run begins at time $t=0$.

Its velocity v at time t is given by the equation

$$
v=0.135 t^{2}+1.26 t
$$

where v is measured in $\mathrm{m} \mathrm{s}^{-1}$ and t is measured in s .
Using calculus methods:
(a) determine the acceleration of the car at $t=15.0 \mathrm{~s}$;

Space for working and answer
(b) determine the displacement of the car from its original position at this time.

Space for working and answer

Back to Table

Detailed Marking Instructions for each question

Question		Answer		Additional Guidance
1.	(a)	$\begin{aligned} & v=0 \cdot 135 t^{2}+1 \cdot 26 \mathrm{t} \\ & a=\frac{d v}{d t}=0 \cdot 135 \times 2 t+1 \cdot 26 \\ & a=(0 \cdot 135 \times 2 \times 15 \cdot 0)+1 \cdot 26 \\ & a=5.31 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	3	$\begin{aligned} & \text { Accept } 5 \cdot 3 \mathrm{~m} \mathrm{~s}^{-2}, 5 \cdot 310 \mathrm{~m} \mathrm{~s}^{-2} \text {, } \\ & 5 \cdot 3100 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$
	(b)	$\begin{aligned} & v=0 \cdot 135 t^{2}+1 \cdot 26 \mathrm{t} \\ & s=\int_{0}^{15 \cdot 0} v \cdot d t=\left[0 \cdot 045 t^{3}+0 \cdot 63 t^{2}\right]_{0}^{15 \cdot 0} \\ & s=\left(0 \cdot 045 \times 15 \cdot 0^{3}\right)+\left(0 \cdot 63 \times 15 \cdot 0^{2}\right) \\ & \mathbf{1} \\ & s=294 \mathrm{~m} \end{aligned}$	3	Accept $290 \mathrm{~m}, 293.6 \mathrm{~m}, 293.63 \mathrm{~m}$ Constant of integration method acceptable.

2. (a) An ideal conical pendulum consists of a mass moving with constant speed in a circular path, as shown in Figure 2A.

Figure 2A
(i) Explain why the mass is accelerating despite moving with constant speed.
(ii) State the direction of this acceleration.
2. (continued)
(b) Swingball is a garden game in which a ball is attached to a light string connected to a vertical pole as shown in Figure 2B.
The motion of the ball can be modelled as a conical pendulum.
The ball has a mass of 0.059 kg .

Figure 2B
(i) The ball is hit such that it moves with constant speed in a horizontal circle of radius 0.48 m .
The ball completes 1.5 revolutions in 2.69 s .
(A) Show that the angular velocity of the ball is $3.5 \mathrm{rad} \mathrm{s}^{-1}$.

Space for working and answer
(B) Calculate the magnitude of the centripetal force acting on the ball.
Space for working and answer
2. (b) (i) (continued)
(C) The horizontal component of the tension in the string provides this centripetal force and the vertical component balances the weight of the ball.
Calculate the magnitude of the tension in the string.
(ii) The string breaks whilst the ball is at the position shown in Figure 2 C .

Figure 2C

On Figure 2C, draw the direction of the ball's velocity immediately after the string breaks.
(An additional diagram, if required, can be found on Page 39.)

Question			Answer		Additional Guidance
2.	(a)	(i)	velocity changing or changing direction or an unbalanced force is acting or a centripetal/central/radial force is acting	1	
		(ii)	towards the centre	1	towards the axis/pole
	(b)	(i) (A)	SHOW QUESTION $\begin{aligned} & \omega=\frac{d \theta}{d t} \text { OR } \omega=\frac{\theta}{t} \\ & \omega=\frac{1 \cdot 5 \times 2 \pi}{2 \cdot 69} \\ & \omega=3 \cdot 5 \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$	2	$\begin{aligned} & \omega=\frac{v}{r} \text { and } v=\frac{d}{t} \\ & \omega=\frac{1.5 \times 2 \times \pi \times 0.48}{2 \cdot 69 \times 0.48} \\ & \omega=3.5 \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$ If final answer not stated, max 1 mark
		(B)	$\begin{aligned} & F=m r \omega^{2} \\ & F=0.059 \times 0.48 \times 3.5^{2} \\ & F=0.35 \mathrm{~N} \end{aligned}$	3	Accept 0.3, 0.347, 0.3469 $\begin{aligned} & F=\frac{m v^{2}}{r} \\ & F=\frac{0.059 \times\left(\frac{1.5 \times 2 \times \pi \times 0.48}{2.69}\right)^{2}}{1} \\ & F=0.35 \mathrm{~N} \end{aligned}$
		(C)	$\begin{array}{ll} W=m g \\ W=0 \cdot 059 \times 9 \cdot 8 \\ T^{2}=0 \cdot 35^{2}+(0 \cdot 059 \times 9 \cdot 8)^{2} & 1 \tag{1}\\ T=0 \cdot 68 \mathrm{~N} \\ \\ 1 \text { mark for calculating weight } \\ 1 \text { mark for Pythagorean relationship } \\ 1 \text { mark for final answer } \end{array}$	3	Accept 0.7, 0.676, 0.6759 $\begin{aligned} & W=m g \\ & W=0 \cdot 059 \times 9.8 \\ & \theta=\tan ^{-1}\left(\frac{0 \cdot 35}{0 \cdot 059 \times 9 \cdot 8}\right) \\ & \sin \theta=\frac{0 \cdot 35}{T} \\ & T=0.68 \mathrm{~N} \end{aligned}$
		(ii)	In a straight line at a tangent to the circle	1	Any parabolic path is not acceptable.

3. A spacecraft is orbiting a comet as shown in Figure 3.

The comet can be considered as a sphere with a radius of $2 \cdot 1 \times 10^{3} \mathrm{~m}$ and a mass of $9.5 \times 10^{12} \mathrm{~kg}$.

Figure 3 (not to scale)
(a) A lander was released by the spacecraft to land on the surface of the comet. After impact with the comet, the lander bounced back from the surface with an initial upward vertical velocity of $0.38 \mathrm{~m} \mathrm{~s}^{-1}$.

By calculating the escape velocity of the comet, show that the lander returned to the surface for a second time.
Space for working and answer

3. (continued)

(b) (i) Show that the gravitational field strength at the surface of the comet is $1.4 \times 10^{-4} \mathrm{~N} \mathrm{~kg}^{-1}$.

Space for working and answer
(ii) Using the data from the space mission, a student tries to calculate the maximum height reached by the lander after its first bounce.

The student's working is shown below
$v^{2}=u^{2}+2 a s$
$0=0.38^{2}+2 \times\left(-1.4 \times 10^{-4}\right) \times s$
$s=515.7 \mathrm{~m}$

The actual maximum height reached by the lander was not as calculated by the student.
State whether the actual maximum height reached would be greater or smaller than calculated by the student.
You must justify your answer.

Question			Answer		Additional Guidance
3.	(a)		$\begin{aligned} & v=\sqrt{\frac{2 G M}{r}} \\ & \mathrm{v}=\sqrt{\frac{2 \times 6 \cdot 67 \times 10^{-11} \times 9 \cdot 5 \times 10^{12}}{2 \cdot 1 \times 10^{3}}} \\ & v=\sqrt{0 \cdot 603} \\ & v=0 \cdot 78\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$ (lander returns to surface as) lander v less than escape velocity of comet	4	
	(b)	(i)	SHOW QUESTION $\begin{aligned} & \left(F_{g}=W\right) \\ & \begin{array}{l} \frac{G M m}{r^{2}}=m g \quad \mathbf{1} \text { for both eqns, } \\ g=\frac{G M}{r^{2}} \\ \mathrm{~g}=\frac{6 \cdot 67 \times 10^{-11} \times 9 \cdot 5 \times 10^{12}}{\left(2 \cdot 1 \times 10^{3}\right)^{2}} \\ g=1 \cdot 4 \times 10^{-4} \mathrm{~N} \mathrm{~kg}^{-1} \end{array} \end{aligned}$	3	Show question, if final line is missing then a maximum of two marks. If the $2^{\text {nd }}$ line is missing then 1 mark maximum for $F_{g}=W$ $\frac{F}{m}=\frac{G M}{r^{2}}$ or $\mathrm{g}=\frac{G M}{r^{2}}$ As a starting point, zero marks
		(ii)	Height will be greater $\mathbf{1}$ Because ' a ' reduces $\mathbf{1}$ with height $\mathbf{1}$	3	'Must justify' question Alternative: Assumption that ' a ' is constant is invalid 1 The value for ' a ' is too large 1

4. Epsilon Eridani is a star $9.94 \times 10^{16} \mathrm{~m}$ from Earth. It has a diameter of $1.02 \times 10^{9} \mathrm{~m}$. The apparent brightness of Epsilon Eridani is measured on Earth to be $1.05 \times 10^{-9} \mathrm{Wm}^{-2}$.
(a) Calculate the luminosity of Epsilon Eridani.

Space for working and answer
(b) Calculate the surface temperature of Epsilon Eridani.

Space for working and answer
(c) State an assumption made in your calculation in (b).

Back to Table

Question		Answer		Additional Guidance
4.	(a)	$\begin{align*} & b=\frac{L}{4 \pi r^{2}} \tag{1}\\ & 1.05 \times 10^{-9}=\frac{L}{4 \pi\left(9.94 \times 10^{16}\right)^{2}} \\ & L=1.30 \times 10^{26} \mathrm{~W} \end{align*}$	3	Accept 1-3, 1-304, 1-3037
	(b)	$\begin{aligned} & L=4 \pi r^{2} \sigma T^{4} \\ & 1 \cdot 30 \times 10^{26}=4 \pi\left(5 \cdot 10 \times 10^{8}\right)^{2} \times \\ & 5 \cdot 67 \times 10^{-8} \times T^{4} \\ & T=5150 \mathrm{~K} \end{aligned}$	3	Or consistent with (a) Accept 5100, 5146, 5146.4
	(c)	That the star is a black body (emitter/radiator) OR the star is spherical/constant radius OR the surface temperature of the star is constant/uniform OR no energy absorbed between star and Earth	1	

5. Einstein's theory of general relativity can be used to describe the motion of objects in non-inertial frames of reference. The equivalence principle is a key assumption of general relativity.
(a) Explain what is meant by the terms:
(i) non-inertial frames of reference;
(ii) the equivalence principle.
(b) Two astronauts are on board a spacecraft in deep space far away from any large masses. When the spacecraft is accelerating one astronaut throws a ball towards the other.
(i) On Figure 5A sketch the path that the ball would follow in the astronauts' frame of reference.

Figure 5A
(An additional diagram, if required, can be found on Page 39.)
5. (b) (continued)
(ii) The experiment is repeated when the spacecraft is travelling at constant speed. On Figure 5B sketch the path that the ball would follow in the astronauts' frame of reference.

Figure 5B
(An additional diagram, if required, can be found on Page 40.)
(c) A clock is on the surface of the Earth and an identical clock is on board a spacecraft which is accelerating in deep space at $8 \mathrm{~m} \mathrm{~s}^{-2}$.
State which clock runs slower.
Justify your answer in terms of the equivalence principle.

Question	Answer	Max Mark	Additional Guidance

5.	(a)	(i)Frames of reference that are accelerating (with respect to an inertial frame)	$\mathbf{1}$		
	(b)	(i)	(ii) It is impossible to tell the difference between the effects of gravity and acceleration.	$\mathbf{1}$	
	(ii)	\longrightarrow	1	Any convex upward parabola.	
(c)		The clock on the surface of the Earth would run more slowly. 1 The (effective) gravitational field for the spacecraft is smaller. 1 Or vice versa.	2	Any straight line.	

6. A student makes the following statement.
"Quantum theory - I don't understand it. I don't really know what it is. I believe that classical physics can explain everything."
Use your knowledge of physics to comment on the statement.
7. (a) The Earth can be modelled as a black body radiator.

The average surface temperature of the Earth can be estimated using the relationship

$$
T=\frac{b}{\lambda_{\text {peak }}}
$$

where
T is the average surface temperature of the Earth in kelvin;
b is Wien's Displacement Constant equal to $2.89 \times 10^{-3} \mathrm{Km}$;
$\lambda_{\text {peak }}$ is the peak wavelength of the radiation emitted by a black body radiator.
The average surface temperature of Earth is $15^{\circ} \mathrm{C}$.
(i) Estimate the peak wavelength of the radiation emitted by Earth.

Space for working and answer
(ii) To which part of the electromagnetic spectrum does this peak wavelength correspond?
(b) In order to investigate the properties of black body radiators a student makes measurements from the spectra produced by a filament lamp. Measurements are made when the lamp is operated at its rated voltage and when it is operated at a lower voltage.
The filament lamp can be considered to be a black body radiator.
A graph of the results obtained is shown in Figure 7.

Figure 7
(i) State which curve corresponds to the radiation emitted when the filament lamp is operating at its rated voltage.

You must justify your answer.
(ii) The shape of the curves on the graph on Figure 7 is not as predicted by classical physics.
On Figure 7, sketch a curve to show the result predicted by classical physics.
(An additional graph, if required, can be found on Page 40.)

Back to Table

Question			Answer	Max Mark	Additional Guidance
7.	(a)	(i)	$\begin{align*} & T_{\mathrm{K}}=15+273 \\ & T_{\text {kelvin }}=\frac{b}{\lambda_{\text {peak }}} \\ & 288=\frac{2 \cdot 89 \times 10^{-3}}{\lambda_{\text {peak }}} \\ & \lambda_{\text {peak }}=1 \cdot 0 \times 10^{-5} \mathrm{~m} \tag{1} \end{align*}$	3	Accept 1, 1•00, 1.003 Also accept 1.0035 Incorrect/no conversion to kelvin - zero marks
		(ii)	Infrared	1	Consistent with answer to a(i).
	(b)	(i)	(curve) A Peak at shorter wavelength/higher frequency (as Temperature is higher) OR Higher/greater (peak) intensity (as greater energy)	2	
		(ii)	curve (approximately) asymptotic to y-axis and decreasing with increased wavelength	1	Intercept of y-axis - zero marks

8. Werner Heisenberg is considered to be one of the pioneers of quantum mechanics.
He is most famous for his uncertainty principle which can be expressed in the equation

$$
\Delta x \Delta p_{x} \geq \frac{h}{4 \pi}
$$

(a) (i) State what quantity is represented by the term Δp_{x}.
(ii) Explain the implications of the Heisenberg uncertainty principle for experimental measurements.

8. (continued)

(b) In an experiment to investigate the nature of particles, individual electrons were fired one at a time from an electron gun through a narrow double slit. The position where each electron struck the detector was recorded and displayed on a computer screen.
The experiment continued until a clear pattern emerged on the screen as shown in Figure 8.
The momentum of each electron at the double slit is $6.5 \times 10^{-24} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$.

Figure $8 \quad$ not to scale
(i) The experimenter had three different double slits with slit separations $0.1 \mathrm{~mm}, 0.1 \mu \mathrm{~m}$ and 0.1 nm .
State which double slit was used to produce the image on the screen.

You must justify your answer by calculation of the de Broglie wavelength.
Space for working and answer
8. (b) (continued)
(ii) The uncertainty in the momentum of an electron at the double slit is $6.5 \times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$.
Calculate the minimum absolute uncertainty in the position of the electron.

Space for working and answer
(iii) Explain fully how the experimental result shown in Figure 8 can be interpreted.

Question			Answer		Additional Guidance
8.	(a)	(i)	$\Delta p_{x}=$ the uncertainty in the momentum (in the x-direction.)	1	
		(ii)	The precise position of a particle/ system and its momentum cannot both be known at the same instant. 1 OR If the uncertainty in the location of the particle is reduced, the minimum uncertainty in the momentum of the particle will increase (or vice-versa). OR The precise energy and lifetime of a particle cannot both be known at the same instant. OR If the uncertainty in the energy of the particle is reduced, the minimum uncertainty in the lifetime of the particle will increase (or vice-versa).	1	"At the same instant/ simultaneously" required Confusion of accuracy with precision award zero marks.
	(b)	(i)	$\begin{aligned} & \lambda=\frac{h}{p} \\ & \lambda=\frac{6 \cdot 63 \times 10^{-34}}{6 \cdot 5 \times 10^{-24}} \\ & \lambda=1 \cdot 0 \times 10^{-10}(\mathrm{~m}) \\ & \text { slit width } 0 \cdot 1 \mathrm{~nm} \text { used } \end{aligned}$	4	
		(ii)	$\begin{aligned} & \Delta x \Delta p_{x} \geq \frac{h}{4 \pi} \\ & \Delta x \times 6 \cdot 5 \times 10^{-26} \geq \frac{6 \cdot 63 \times 10^{-34}}{4 \pi} \\ & \Delta x \geq 8 \cdot 1 \times 10^{-10} \\ & \text { min uncertainty }=8 \cdot 1 \times 10^{-10} \mathrm{~m} \end{aligned}$	3	Accept 8, 8.12, 8.117
		(iii)	Electron behaves like a wave "Interference" Uncertainty in position is greater than slit separation Electron passes through both slits	3	Any three of the statements can be awarded 1 mark each.

9. A particle with charge q and mass m is travelling with constant speed v. The particle enters a uniform magnetic field at 90° and is forced to move in a circle of radius r as shown in Figure 9.

The magnetic induction of the field is B.

Figure 9
(a) Show that the radius of the circular path of the particle is given by

$$
r=\frac{m v}{B q}
$$

9. (continued)

(b) In an experimental nuclear reactor, charged particles are contained in a magnetic field. One such particle is a deuteron consisting of one proton and one neutron.
The kinetic energy of each deuteron is 1.50 MeV .
The mass of the deuteron is $3.34 \times 10^{-27} \mathrm{~kg}$.
Relativistic effects can be ignored.
(i) Calculate the speed of the deuteron.

Space for working and answer
(ii) Calculate the magnetic induction required to keep the deuteron moving in a circular path of radius 2.50 m .
Space for working and answer

Back to Table

9. (b) (continued)

(iii) Deuterons are fused together in the reactor to produce isotopes of helium.
${ }_{2}^{3} \mathrm{He}$ nuclei, each comprising 2 protons and 1 neutron, are present in the reactor.
A ${ }_{2}^{3} \mathrm{He}$ nucleus also moves in a circular path in the same magnetic field.
The ${ }_{2}^{3} \mathrm{He}$ nucleus moves at the same speed as the deuteron.
State whether the radius of the circular path of the ${ }_{2}^{3} \mathrm{He}$ nucleus is greater than, equal to or less than 2.50 m .
You must justify your answer.

Question			Answer		Additional Guidance
9.	(a)		SHOW QUESTION $m \frac{v^{2}}{r}=B q v(\sin \theta)$ 1 for both relationships 1 for equating $r=\frac{m v}{B q}$	2	If the final line is missing then a maximum of 1 mark can be awarded
	(b)	(i)	$\begin{aligned} & 1.50(\mathrm{MeV})=1 \cdot 50 \times 10^{6} \times 1.60 \times 10^{-19} \\ & =2.40 \times 10^{-13}(\mathrm{~J}) \\ & \\ & E_{k}=\frac{1}{2} m v^{2} \\ & 2 \cdot 40 \times 10^{-13}=0 \cdot 5 \times 3 \cdot 34 \times 10^{-27} \times v^{2} \\ & v=1.20 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	4	Accept 1•2, 1•199, 1•1988 No conversion to J-Max 1 mark Calculation of deuteron mass by adding mass of proton and neutron is incorrect - max 2
		(ii)	$\begin{aligned} & r=\frac{m v}{B q} \\ & 2 \cdot 50=\frac{3 \cdot 34 \times 10^{-27} \times 1 \cdot 20 \times 10^{7}}{B \times 1 \cdot 60 \times 10^{-19}} \\ & B=0 \cdot 100 \mathrm{~T} \end{aligned}$	2	Final answer consistent with b(i) Suspend the significant figure rule and accept $0 \cdot 1$
		(iii)	r will be less $r \propto \frac{m}{q}$ and q increases more than m does or q doubles but $m \times 1.5$	2	Justification involving an increase in charge without mentioning mass - max 1

10. (a) (i) State what is meant by simple harmonic motion.
(ii) The displacement of an oscillating object can be described by the expression

$$
y=A \cos \omega t
$$

where the symbols have their usual meaning.
Show that this expression is a solution to the equation

$$
\frac{d^{2} y}{d t^{2}}+\omega^{2} y=0
$$

(b) A mass of 1.5 kg is suspended from a spring of negligible mass as shown in Figure 10. The mass is displaced downwards 0.040 m from its equilibrium position.
The mass is then released from this position and begins to oscillate. The mass completes ten oscillations in a time of 12 s .
Frictional forces can be considered to be negligible.

(i) Show that the angular frequency ω of the mass is $5 \cdot 2 \mathrm{rad} \mathrm{s}^{-1}$. Space for working and answer
(ii) Calculate the maximum velocity of the mass.
10. (b) (continued)
(iii) Determine the potential energy stored in the spring when the mass is at its maximum displacement.
Space for working and answer
(c) The system is now modified so that a damping force acts on the oscillating mass.
(i) Describe how this modification may be achieved.
(ii) Using the axes below sketch a graph showing, for the modified system, how the displacement of the mass varies with time after release.

Numerical values are not required on the axes.

(An additional graph, if required, can be found on Page 41.)

Question			Answer			Additional Guidance
10.	(a)	(i)	displacement is proportional to and in the opposite direction to the acceleration		1	$F=-\mathrm{k} y$ or equivalent
		(ii)	SHOW QUES $\begin{aligned} & y=A \cos \omega t \\ & \frac{d y}{d t}=-\omega A \sin \omega t \\ & \frac{d^{2} y}{d t^{2}}=-\omega^{2} A \cos \omega t \\ & \frac{d^{2} y}{d t^{2}}=-\omega^{2} y \\ & \frac{d^{2} y}{d t^{2}}+\omega^{2} y=0 \end{aligned}$		2	If final line not shown then max 1 mark can be awarded Award zero marks if: $\frac{d y}{d t}=\omega A \sin \omega t \quad \text { appears }$ First mark can only be awarded if both the first and second differentiations are included.
	(b)	(i)	$\begin{aligned} & T=\frac{12 \cdot 0}{10} \\ & \omega=\frac{2 \pi}{T} \\ & \omega=\frac{2 \pi \times 10}{12} \\ & \omega=5 \cdot 2 \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$	1 1 1	3	If final line not shown maximum 2 marks $\begin{aligned} & f=\frac{10}{12} \\ & \omega=2 \pi f \\ & \omega=\frac{2 \pi \times 10}{12} \\ & \omega=5 \cdot 2 \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$ OR $\begin{aligned} & \theta=2 \pi \times 10 \\ & \omega=\frac{\theta}{t} \\ & \omega=\frac{2 \pi \times 10}{12} \\ & \omega=5 \cdot 2 \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$
		(ii)	$\begin{aligned} & v=(\pm) \omega \sqrt{A^{2}-y^{2}} \\ & v=5.2 \times 0.04 \\ & v=0.21 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	3	Accept $v_{\text {max }}=\omega A$ Accept 0.2, 0.208, 0.2080

Question		Answer		Additional Guidance
	(iii)	$\begin{array}{ll} E_{P}=\frac{1}{2} m \omega^{2} y^{2} & \mathbf{1} \\ E_{P}=\frac{1}{2} \times 1.5 \times 5.2^{2} \times 0.04^{2} & \mathbf{1} \\ E_{P}=0.032 \mathrm{~J} & \mathbf{1} \end{array}$	3	Accept 0.03, 0.0324. 0.03245 $\begin{aligned} & E_{K}=\frac{1}{2} m v^{2} \\ & =0.5 \times 1 \cdot 5 \times 0.21^{2} \\ & =0.033 \mathrm{~J} \end{aligned}$ Accept 0.03, 0.0331, 0.03308
(c)	(i)	Any valid method of damping.	1	A practical method must be described. For example, place mass in a more viscous medium, increase the surface area of the mass.
	(ii)	amplitude of harmonic wave reducing.	1	Graph must show positive and negative amplitude.

11.

A ship emits a blast of sound from its foghorn. The sound wave is described by the equation

$$
y=0.250 \sin 2 \pi(118 t-0.357 x)
$$

where the symbols have their usual meaning.
(a) Determine the speed of the sound wave.

Space for working and answer
(b) The sound from the ship's foghorn reflects from a cliff. When it reaches the ship this reflected sound has half the energy of the original sound. Write an equation describing the reflected sound wave at this point.

Back to Table

12. Some early 3D video cameras recorded two separate images at the same time to create two almost identical movies.
Cinemas showed 3D films by projecting these two images simultaneously onto the same screen using two projectors. Each projector had a polarising filter through which the light passed as shown in Figure 12.

Figure 12
(a) Describe how the transmission axes of the two polarising filters should be arranged so that the two images on the screen do not interfere with each other.
(b) A student watches a 3D movie using a pair of glasses which contains two polarising filters, one for each eye.
Explain how this arrangement enables a different image to be seen by each eye.
12. (continued)
(c) Before the film starts, the student looks at a ceiling lamp through one of the filters in the glasses. While looking at the lamp, the student then rotates the filter through 90°.
State what effect, if any, this rotation will have on the observed brightness of the lamp.
Justify your answer.
(d) During the film, the student looks at the screen through only one of the does not observe any change in brightness. Explain this observation.

Question		Answer		Additional Guidance
12.	(a)	(The axes should be arranged) at 90° to each other (eg horizontal and vertical.)	1	Perpendicular to each other.
	(b)	The filter for each eye will allow light from one projected image to pass through. while blocking the light from the other projector.	2	'only one projected image to pass through to each eye' OR 'Light from one projector gets through to one eye. Light from the other projector gets through to the other eye'
	(c)	There will be no change to the brightness. Light from the lamp is unpolarised.	2	
	(d)	(As the student rotates the filter,) the image from one projector will decrease in brightness, while the image from the other projector will increase in brightness. (The two images are almost identical).	1	

13. (a) Q_{1} is a point charge of +12 nC . Point Y is 0.30 m from Q_{1} as shown in Figure 13A.

Figure 13A
Show that the electrical potential at point Y is +360 V .
Space for working and answer
(b) A second point charge Q_{2} is placed at a distance of 0.40 m from point Y as shown in Figure 13B. The electrical potential at point Y is now zero.

Figure 13B
(i) Determine the charge of Q_{2}.

Space for working and answer
13. (b) (continued)
(ii) Determine the electric field strength at point Y .

Space for working and answer
(iii) On Figure 13C, sketch the electric field pattern for this system of charges.

- Q_{2}

Figure 13C
(An additional diagram, if required, can be found on Page 41)
[Turn over

Question			Answer	Max Mark 2	Additional Guidance
13	(a)		SHOW QUESTION $\begin{gather*} V=\frac{1}{4 \pi \varepsilon_{o}} \frac{Q_{1}}{r} \tag{1}\\ V=\frac{1}{4 \pi \times 8 \cdot 85 \times 10^{-12}} \frac{12 \times 10^{-9}}{0 \cdot 30} \tag{1}\\ V=(+) 360 \mathrm{~V} \end{gather*}$		$\begin{aligned} & V=k \frac{Q_{1}}{r} \\ & V=\frac{9 \times 10^{9} \times 12 \times 10^{-9}}{0.30} \end{aligned}$ OR $\begin{gathered} V=\frac{12 \times 10^{-9}}{1 \cdot 1 \times 10^{-10} \times 0 \cdot 30} \\ V=(+) 360 \mathrm{~V} \end{gathered}$ If either a value for k or ε_{0} is not given, then a maximum of 1 mark can be awarded. If the final line is missing then a maximum of 1 mark can be awarded
	(b)	(i)	$\begin{aligned} & V=-360(\mathrm{~V}) \\ & V=\frac{1}{4 \pi \varepsilon_{o}} \frac{Q_{2}}{r} \\ & -360=\frac{Q_{2}}{4 \pi \times 8 \cdot 85 \times 10^{-12} \times 0.40} \\ & \quad Q_{2}=-1 \cdot 6 \times 10^{-8} \mathrm{C} \end{aligned}$	3	Accept 2, 1.60, 1.601 Use of 9×10^{9} acceptable Accept 2, 1•60, 1•600 Use of ratio method acceptable. Must start with $\mathrm{V}_{1}+\mathrm{V}_{2}=0$ or equivalent. $\mathrm{V}=+360 \mathrm{~V}$ - zero marks
		(ii)	$\begin{aligned} & E_{1}=\frac{1}{4 \pi \varepsilon_{o}} \frac{Q_{1}}{r^{2}} \\ & E_{1}=\frac{1}{4 \pi \times 8 \cdot 85 \times 10^{-12}} \frac{12 \times 10^{-9}}{0 \cdot 30^{2}} \\ & E_{1}=1200\left(\mathrm{~N} \mathrm{C}^{-1} \text { to right }\right) \\ & E_{2}=\frac{1}{4 \pi \times 8 \cdot 85 \times 10^{-12}} \frac{1 \cdot 6 \times 10^{-8}}{0 \cdot 40^{2}} \\ & E_{2}=900\left(\mathrm{~N} \mathrm{C}^{-1} \text { to right }\right) \\ & \text { Total }=2100 \mathrm{~N} \mathrm{C}^{-1} \text { (to right) } \end{aligned}$	4	Accept 2000, 2098 Allow correct answer or consistent with b(i).
		(iii)	Shape of attractive field, including correct direction Skew in correct position	2	Field consistent with (b) (i)

14. A student measures the magnetic induction at a distance r from a long straight current carrying wire using the apparatus shown in Figure 14.

Figure 14
The following data are obtained.
Distance from wire $r=0.10 \mathrm{~m}$
Magnetic induction $B=5 \cdot 0 \mu \mathrm{~T}$
(a) Use the data to calculate the current I in the wire.

Space for working and answer
(b) The student estimates the following uncertainties in the measurements of B and r.

Uncertainties in r			Uncertainties in B	
reading	$\pm 0.002 \mathrm{~m}$	reading	$\pm 0.1 \mu \mathrm{~T}$	
calibration	$\pm 0.0005 \mathrm{~m}$	calibration	$\pm 1.5 \%$ of reading	

(i) Calculate the percentage uncertainty in the measurement of r.

Space for working and answer
14. (b) (continued)
(ii) Calculate the percentage uncertainty in the measurement of B. Space for working and answer
Space for working and answer
(iii) Calculate the absolute uncertainty in the value of the current in the wire.
Space for working and answer
(c) The student measures distance r, as shown in Figure 14, using a metre stick. The smallest scale division on the metre stick is 1 mm .

Suggest a reason why the student's estimate of the reading uncertainty in r is not $\pm 0.5 \mathrm{~mm}$.

Question			Answer			Additional Guidance
14.	(a)		$\begin{aligned} & B=\frac{\mu_{o} I}{2 \pi r} \\ & B=5 \times 10^{-6}=\frac{4 \pi \times 10^{-7} \times I}{2 \pi \times 0 \cdot 1} \\ & I=2.5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	3	Accept 3, 2.50, 2-500
	(b)	(i)	ignore calibration (less than $1 / 3$) $\% \text { unc }=0 \cdot 002 / 0 \cdot 1 \times 100=2 \%$		1	Accept 2-1\% if calibration not ignored. (Accept 2\%, 2.06\%, 2.062\%)
		(ii)	$\begin{aligned} & \text { reading } 5=0 \cdot 1 / 5 \times 100=2 \% \\ & \text { total\% }=J\left(\text { reading } \%^{2}+\text { calibration } \%^{2}\right) \\ & \text { total } \%=\int\left(1 \cdot 5^{2}+2^{2}\right)=2 \cdot 5 \% \end{aligned}$	1 1 1	3	Accept 3\%, 2•50\%, 2•500\%
		(iii)	$\begin{aligned} & \text { total } \%=\int\left(2^{2}+2.5^{2}\right)=\int 10.25 \% \\ & \text { abs u/c= } \frac{\sqrt{ } 10.25}{100} \times 2.5=0.08 \mathrm{~A} \end{aligned}$	1 1	2	Accept 0.1, 0.080, 0.0800 Consistent with b(i) and (ii).
	(c)		Uncertainty in measuring exact distance from wire to position of sensor.		1	

15. A student constructs a simple air-insulated capacitor using two parallel metal plates, each of area A, separated by a distance d. The plates are separated using small insulating spacers as shown in Figure 15A.

Figure 15A
The capacitance C of the capacitor is given by

$$
C=\varepsilon_{0} \frac{A}{d}
$$

The student investigates how the capacitance depends on the separation of the plates. The student uses a capacitance meter to measure the capacitance for different plate separations. The plate separation is measured using a ruler.
The results are used to plot the graph shown in Figure 15B.
The area of each metal plate is $9.0 \times 10^{-2} \mathrm{~m}^{2}$.

Figure 15B
15. (continued)
(a) (i) Use information from the graph to determine a value for ε_{0}, the permittivity of free space.
Space for working and answer
(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air.

Space for working and answer
(b) The best fit line on the graph does not pass through the origin as theory predicts.
Suggest a reason for this.

Question			Answer		Additional Guidance
15.	(a)	(i)		3	Accept 9, 9•22, 9.222 If gradient calculated using two points from best fit line, full credit possible.
		(ii)	$\begin{align*} & c=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}} \tag{1}\\ & c=\frac{1}{\sqrt{9 \cdot 2 \times 10^{-12} \times 4 \pi \times 10^{-7}}} \\ & c=2 \cdot 9 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \end{align*}$	3	Accept 3, 2.94, 2.941 Or consistent with (a)(i)
	(b)		Systematic uncertainty specific to capacitance or spacing measurement	1	Systematic uncertainty: Large \% uncertainty in smallest values of d Stray capacitance Dip in plates/non uniform plate separation. Insufficient/poor choice of range. 'Systematic uncertainty' on its own - 0 marks

16. A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre.
(a) In the first method the student measures the mass of the sphere to be 3.8 kg and the radius to be 0.053 m .

Calculate the moment of inertia of the sphere.
Space for working and answer
(b) In the second method, the student uses conservation of energy to determine the moment of inertia of the sphere.

The following equation describes the conservation of energy as the sphere rolls down the slope

$$
m g h=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}
$$

where the symbols have their usual meanings.
The equation can be rearranged to give the following expression

$$
2 g h=\left(\frac{I}{m r^{2}}+1\right) v^{2}
$$

This expression is in the form of the equation of a straight line through the origin,

$$
y=\text { gradient } \times x
$$

[Turn over
16. (b) (continued)

The student measures the height of the slope h. The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16.

Figure 16
The following is an extract from the student's notebook.

$h(\mathrm{~m})$	$v\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	$2 g h\left(\mathrm{~m}^{2} \mathrm{~s}^{-2}\right)$	$v^{2}\left(\mathrm{~m}^{2} \mathrm{~s}^{-2}\right)$
0.020	0.42	0.39	0.18
0.040	0.63	0.78	0.40
0.060	0.68	1.18	0.46
0.080	0.95	1.57	0.90
0.100	1.05	1.96	1.10

$m=3.8 \mathrm{~kg} \quad r=0.053 \mathrm{~m}$
(i) On the square-ruled paper on Page 37, draw a graph that would allow the student to determine the moment of inertia of the sphere.
(ii) Use the gradient of your line to determine the moment of inertia of the sphere.
Space for working and answer
16. (continued)
(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method.
Use your knowledge of experimental physics to comment on the student's statement.

Back to Table

Question			Answer		Additional Guidance
16.	(a)		$\begin{aligned} & I=\frac{2}{5} m r^{2} \\ & I=\frac{2}{5} \times 3 \cdot 8 \times 0 \cdot 053^{2} \\ & I=4 \cdot 3 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{2} \end{aligned}$	3	Accept 4, 4•27, 4.270
	(b)	(i)	Labelling \& scales $\mathbf{1}$ Plotting $\mathbf{1}$ best fit line $\mathbf{1}$ $1 / 2$ box tolerance applies for plotting	3	If rogue point not ignored, do not award the mark for best fit line, unless incorrect plotting does not expose a rogue point.

\square

WEDNESDAY, 17 MAY
9:00 AM - 11:30 AM

Fill in these boxes and read what is printed below.

Full name of centre

Town
\square

Forename(s)

Surname

Number of seat

Date of birth

Scottish candidate number

Total marks - 140
Attempt ALL questions.
Reference may be made to the Physics Relationship Sheet X757/77/11 and the Data Sheet on Page 02.
Write your answers clearly in the spaces provided in this booklet. Additional space for answers and rough work is provided at the end of this booklet. If you use this space you must clearly identify the question number you are attempting. Any rough work must be written in this booklet. You should score through your rough work when you have written your final copy.
Care should be taken to give an appropriate number of significant figures in the final answers to calculations.

Use blue or black ink.
Before leaving the examination room you must give this booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

COMMON PHYSICAL QUANTITIES

Quantity	Symbol	Value	Quantity	Symbol	Value
Gravitational acceleration on Earth Radius of Earth Mass of Earth Mass of Moon Radius of Moon Mean Radius of Moon Orbit Solar radius Mass of Sun 1 AU Stefan-Boltzmann constant Universal constant of gravitation	$\begin{aligned} & g \\ & R_{\mathrm{E}} \\ & M_{\mathrm{E}} \\ & M_{\mathrm{M}} \\ & R_{\mathrm{M}} \end{aligned}$ σ	$\begin{aligned} & 9.8 \mathrm{~ms}^{-2} \\ & 6.4 \times 10^{6} \mathrm{~m} \\ & 6.0 \times 10^{24} \mathrm{~kg} \\ & 7 \cdot 3 \times 10^{22} \mathrm{~kg} \\ & 1.7 \times 10^{6} \mathrm{~m} \end{aligned}$ $\begin{aligned} & 3.84 \times 10^{8} \mathrm{~m} \\ & 6.955 \times 10^{8} \mathrm{~m} \\ & 2.0 \times 10^{30} \mathrm{~kg} \\ & 1.5 \times 10^{11} \mathrm{~m} \end{aligned}$ $\begin{aligned} & 5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4} \\ & 6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2} \end{aligned}$	Mass of electron Charge on electron Mass of neutron Mass of proton Mass of alpha particle Charge on alpha particle Planck's constant Permittivity of free space Permeability of free space Speed of light in vacuum Speed of sound in air	$\begin{aligned} & m_{\mathrm{e}} \\ & e \\ & m_{\mathrm{n}} \\ & m_{\mathrm{p}} \\ & m_{\alpha} \end{aligned}$ h ε_{0} μ_{0} c	$\begin{aligned} & 9.11 \times 10^{-31} \mathrm{~kg} \\ & -1.60 \times 10^{-19} \mathrm{C} \\ & 1.675 \times 10^{-27} \mathrm{~kg} \\ & 1.673 \times 10^{-27} \mathrm{~kg} \\ & 6.645 \times 10^{-27} \mathrm{~kg} \\ & 3.20 \times 10^{-19} \mathrm{C} \\ & 6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\ & 8.85 \times 10^{-12} \mathrm{Fm}^{-1} \\ & 4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \\ & 3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\ & 3.4 \times 10^{2} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$

REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K .

Substance	Refractive index	Substance	Refractive index
Diamond	$2 \cdot 42$	Glycerol	$1 \cdot 47$
Glass	1.51	Water	$1 \cdot 33$
Ice	1.31	Air	$1 \cdot 00$
Perspex	1.49	Magnesium Fluoride	$1 \cdot 38$

SPECTRAL LINES

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	$\begin{aligned} & \hline 656 \\ & 486 \\ & 434 \\ & 410 \\ & 397 \\ & 389 \end{aligned}$	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	$\begin{aligned} & 644 \\ & 509 \\ & 480 \\ & \hline \end{aligned}$	Red Green Blue
			Lasers		
			Element	Wavelength/nm	Colour
			Carbon dioxide	$9550\}$	Infrared
Sodium	589	Yellow	Helium-neon	كـ	Red

PROPERTIES OF SELECTED MATERIALS

Substance	Density/ $\mathrm{kg} \mathrm{m}^{-3}$	Melting Point/ K	Boiling Point/ K	Specific Heat Capacity/ $\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$	Specific Latent Heat of Fusion/ Jkg^{-1}	Specific Latent Heat of Vaporisation/ Jkg^{-1}
Aluminium	2.70×10^{3}	933	2623	9.02×10^{2}	3.95×10^{5}	
Copper	8.96×10^{3}	1357	2853	3.86×10^{2}	2.05×10^{5}	
Glass	2.60×10^{3}	1400	. . .	6.70×10^{2}		
Ice	9.20×10^{2}	273	\cdots	$2 \cdot 10 \times 10^{3}$	3.34×10^{5}	
Glycerol	1.26×10^{3}	291	563	2.43×10^{3}	1.81×10^{5}	8.30×10^{5}
Methanol	7.91×10^{2}	175	338	2.52×10^{3}	9.9×10^{4}	$1 \cdot 12 \times 10^{6}$
Sea Water	1.02×10^{3}	264	377	3.93×10^{3}		
Water	1.00×10^{3}	273	373	4.18×10^{3}	3.34×10^{5}	2.26×10^{6}
Air	$1 \cdot 29$			
Hydrogen	9.0×10^{-2}	14	20	1.43×10^{4}		4.50×10^{5}
Nitrogen	1.25	63	77	1.04×10^{3}		2.00×10^{5}
Oxygen	1.43	55	90	9.18×10^{2}		2.40×10^{4}

The gas densities refer to a temperature of 273 K and a pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.

1. An athlete competes in a one hundred metre race on a flat track, as shown in Figure 1A.

Figure 1A

Starting from rest, the athlete's speed for the first $3 \cdot 10$ seconds of the race can be modelled using the relationship

$$
v=0 \cdot 4 t^{2}+2 t
$$

where the symbols have their usual meaning.
According to this model:
(a) determine the speed of the athlete at $t=3.10 \mathrm{~s}$;

Space for working and answer
(b) determine, using calculus methods, the distance travelled by the athlete in this time.

Space for working and answer

Back to Table

Detailed Marking Instructions for each question

Question		Answer		Max mark 2	Additional guidance
1.	(a)	$\begin{aligned} & v=0 \cdot 4 t^{2}+2 t \\ & v=\left(0 \cdot 4 \times 3 \cdot 10^{2}\right)+(2 \times 3 \cdot 10) \\ & v=10 \cdot 0 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ Accept: 10, 10•04, 10•044	1		
	(b)	$\begin{aligned} & s=\int\left(0 \cdot 4 t^{2}+2 t\right) \cdot d t \\ & s=\frac{0 \cdot 4}{3} t^{3}+t^{2}(+c) \\ & s=0 \text { when } t=0, c=0 \\ & s=\frac{0 \cdot 4}{3} \times(3 \cdot 10)^{3}+3 \cdot 10^{2} \\ & s=13 \cdot 6 \mathrm{~m} \end{aligned}$ Accept: 14, 13•58, 13•582	1 1 1	3	Solution with limits also acceptable. $\begin{align*} & s=\int_{0}^{3.10}\left(0 \cdot 4 t^{2}+2 \mathrm{t}\right) \cdot d t \\ & s=\left[\frac{0 \cdot 4 \times t^{3}}{3}+t^{2}\right]_{(0)}^{(3.10)} \tag{1}\\ & s=\left(\frac{0 \cdot 4 \times 3 \cdot 10^{3}}{3}+3 \cdot 10^{2}\right)-0 \tag{1}\\ & s=13 \cdot 6 \mathrm{~m} \end{align*}$

2. (a) As part of a lesson, a teacher swings a sphere tied to a light string as shown in Figure 2A. The path of the sphere is a vertical circle as shown in Figure 2B.

Figure 2A

Figure 2B
(i) On Figure 2C, show the forces acting on the sphere as it passes through its highest point.
You must name these forces and show their directions.

Figure 2C

Back to Table

2. (a) (continued)
(ii) On Figure 2D, show the forces acting on the sphere as it passes through its lowest point.

You must name these forces and show their directions.
Figure 2D

(iii) The sphere of mass 0.35 kg can be considered to be moving at a constant speed.
The centripetal force acting on the sphere is 4.0 N .
Determine the magnitude of the tension in the light string when the sphere is at:
(A) the highest position in its circular path;
Space for working and answer
(B) the lowest position in its circular path.

Space for working and answer
\square
\square
\square
\square
\square
\square
\square
2. (continued)
(b) The speed of the sphere is now gradually reduced until the sphere no longer travels in a circular path.
Explain why the sphere no longer travels in a circular path.
(c) The teacher again swings the sphere with constant speed in a vertical circle. The student shown in Figure 2E observes the sphere moving up and down vertically with simple harmonic motion.
The period of this motion is 1.4 s .

Figure 2E

Figure 2 F represents the path of the sphere as observed by the student.

Figure 2F
2. (c) (continued)

On Figure 2G, sketch a graph showing how the vertical displacement s of the sphere from its central position varies with time t, as it moves from its highest position to its lowest position.

Numerical values are required on both axes.

Figure 2G
(An additional diagram, if required, can be found on Page 42.)
[Turn over

Back to Table

| Question | | Answer | Max
 mark | Additional guidance |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3. A student uses a solid, uniform circular disc of radius 290 mm and mass 0.40 kg as part of an investigation into rotational motion.

The disc is shown in Figure 3A.

Figure 3 A
(a) Calculate the moment of inertia of the disc about the axis shown in Figure 3A.

Back to Table

3. (continued)

(b) The disc is now mounted horizontally on the axle of a rotational motion sensor as shown in Figure 3B.
The axle is on a frictionless bearing. A thin cord is wound around a stationary pulley which is attached to the axle.
The moment of inertia of the pulley and axle can be considered negligible.
The pulley has a radius of 7.5 mm and a force of 8.0 N is applied to the free end of the cord.

Figure 3B
(i) Calculate the torque applied to the pulley.
Space for working and answer
(ii) Calculate the angular acceleration produced by this torque.
3. (b) (continued)
(iii) The cord becomes detached from the pulley after 0.25 m has unwound.

By considering the angular displacement of the disc, determine its angular velocity when the cord becomes detached.

Space for working and answer
3. (continued)
(c) In a second experiment the disc has an angular velocity of $12 \mathrm{rad} \mathrm{s}^{-1}$.

The student now drops a small 25 g cube vertically onto the disc. The cube sticks to the disc.
The centre of mass of the cube is 220 mm from the axis of rotation, as shown in Figure 3C.

Figure 3C
Calculate the angular velocity of the system immediately after the cube was dropped onto the disc.

Back to Table

Question			Answer	Max mark 3	Additional guidance
3.	(a)		$\begin{align*} & I=\frac{1}{2} m r^{2} \tag{1}\\ & I=\frac{1}{2} \times 0 \cdot 40 \times\left(290 \times 10^{-3}\right)^{2} \\ & I=0 \cdot 017 \mathrm{kgm}^{2} \tag{1} \end{align*}$ Accept: 0.02, 0.0168, 0.01682		
	(b)	(i)	$\begin{array}{ll} T=F r & 1 \\ T=8.0 \times 7.5 \times 10^{-3} & 1 \\ T=0.060 \mathrm{Nm} & 1 \end{array}$ Accept: 0.06, 0.0600, 0.06000	3	
		(ii)	$\begin{array}{ll} T=I \alpha & 1 \\ 0 \cdot 060=0 \cdot 017 \times \alpha & 1 \\ \alpha=3 \cdot 5 \mathrm{rads}^{-2} & 1 \end{array}$ Accept: 4, 3•53, 3•529	3	Or consistent with (a) and (b)(i)
		(iii)	$\begin{align*} & \theta=\frac{s}{r} \\ & \theta=\frac{0.25}{7 \cdot 5 \times 10^{-3}} \tag{1}\\ & \omega^{2}=\omega_{0}^{2}+2 \alpha \theta \\ & \omega^{2}=0^{2}+2 \times 3 \cdot 5 \times \frac{0 \cdot 25}{7 \cdot 5 \times 10^{-3}} 1 \\ & \omega=15 \mathrm{rads}^{-1} \end{align*}$ Accept: 20, 15•3, 15•28	5	Or consistent with (a), (b)(i) and (b)(ii) $\theta=\omega_{0} t+\frac{1}{2} \alpha t^{2} \text { and } \alpha=\frac{\omega-\omega_{0}}{t} \quad 1$
	(c)		$\begin{array}{lr} I_{\text {cube }}=m r^{2} & 1 \\ I_{\text {cube }}=25 \times 10^{-3} \times\left(220 \times 10^{-3}\right)^{2} 1 \\ & 1 \\ I_{1} \omega_{1}=\left(I_{1}+I_{\text {cube }}\right) \omega_{2} & 1 \\ 0 \cdot 017 \times 12=(0 \cdot 017+ \\ \left.\left(25 \times 10^{-3} \times\left(220 \times 10^{-3}\right)^{2}\right)\right) \omega_{2} & 1 \\ \omega_{2}=11 \mathrm{rad} \mathrm{~s}^{-1} & 1 \end{array}$ Accept: 10, 11•2, 11•20	5	Or consistent with (a)

4. The NASA space probe Dawn has travelled to and orbited large asteroids in the solar system. Dawn has a mass of 1240 kg .

The table gives information about two large asteroids orbited by Dawn. Both asteroids can be considered to be spherical and remote from other large objects.

Name	Mass $\left(\times 10^{20} \mathrm{~kg}\right)$	Radius (km)
Vesta	2.59	263
Ceres	9.39	473

(a) Dawn began orbiting Vesta, in a circular orbit, at a height of 680 km above the surface of the asteroid. The gravitational force acting on Dawn at this altitude was $24 \cdot 1 \mathrm{~N}$.
(i) Show that the tangential velocity of Dawn in this orbit is $135 \mathrm{~m} \mathrm{~s}^{-1}$.

Space for working and answer
(ii) Calculate the orbital period of Dawn.

Space for working and answer

Back to Table

4. (continued)
(b) Later in its mission, Dawn entered orbit around Ceres. It then moved from a high orbit to a lower orbit around the asteroid.
(i) State what is meant by the gravitational potential of a point in space.
(ii) Dawn has a gravitational potential of $-1.29 \times 10^{4} \mathrm{Jkg}^{-1}$ in the high orbit and a gravitational potential of $-3.22 \times 10^{4} \mathrm{~J} \mathrm{~kg}^{-1}$ in the lower orbit.

Determine the change in the potential energy of Dawn as a result of this change in orbit.
Space for working and answer

Back to Table

Question			Answer	Max mark 2	Additional guidance
4.	(a)	(i)	$\begin{align*} & F=\frac{m v^{2}}{r} \tag{1}\\ & 24 \cdot 1=\frac{1240 \times v^{2}}{\left(263 \times 10^{3}+680 \times 10^{3}\right)} \\ & v=135 \mathrm{~ms}^{-1} \end{align*}$		SHOW question $\begin{aligned} & \frac{m v^{2}}{r}=\frac{G M m}{r^{2}} \\ & v=\sqrt{\frac{G M}{r}} \\ & v=\sqrt{\frac{6 \cdot 67 \times 10^{-11} \times 2 \cdot 59 \times 10^{20}}{(263+680) \times 10^{3}}} \\ & v=135 \mathrm{~ms}^{-1} \end{aligned}$ If final answer not shown a maximum of 1 mark can be awarded.
		(ii)	$\begin{aligned} & v_{c}=\frac{2 \pi r}{T} \\ & 135=\frac{2 \pi\left(263 \times 10^{3}+680 \times 10^{3}\right)}{T} \\ & T=4 \cdot 39 \times 10^{4} \mathrm{~s} \end{aligned}$ Accept: 4.4, 4.389, 4.3889	3	
	(b)	(i)	The work done in moving unit mass from infinity (to that point).	1	
		(ii)	$\begin{aligned} & V_{\text {low }}-V_{\text {high }}=-3.22 \times 10^{4}-\left(-1.29 \times 10^{4}\right) 1 \\ & V_{\text {low }}-V_{\text {high }}=-1.93 \times 10^{4} \end{aligned}$ $(\Delta) E=(\Delta) V m$ $(\Delta) E=-1.93 \times 10^{4} \times 1240$ $(\Delta) E=-2.39 \times 10^{7} \mathrm{~J}$ Accept: 2•4, 2•393, 2•3932	4	Can also be done by calculating potential energy in each orbit and subtracting. 1 for relationship 1 for all substitutions 1 for subtraction 1 for final answer including unit

5. Two students are discussing objects escaping from the gravitational pull of the Earth. They make the following statements:

Student 1: A rocket has to accelerate until it reaches the escape velocity of the Earth in order to escape its gravitational pull.

Student 2: The moon is travelling slower than the escape velocity of the Earth and yet it has escaped.

Use your knowledge of physics to comment on these statements.
6. A Hertzsprung-Russell (H-R) diagram is shown in Figure 6A.

Figure 6A
(a) All stars on the main sequence release energy by converting hydrogen to helium. This process is known as the proton-proton ($p-p$) chain. One stage in the $\mathrm{p}-\mathrm{p}$ chain is shown.

$$
{ }_{1}^{1} \mathrm{H}+{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{1}^{2} \mathrm{H}+\mathrm{x}+\mathrm{y}
$$

Name particles x and y .
(b) The luminosity of the Sun is $3.9 \times 10^{26} \mathrm{~W}$. The star Procyon B has a luminosity of 4.9×10^{-4} solar units and a radius of 1.2×10^{-2} solar radii.
(i) On the H-R diagram, circle the star at the position of Procyon B.
(An additional diagram, if required, can be found on Page 42.)
(ii) What type of star is Procyon B?
6. (b) (continued)
(iii) The apparent brightness of Procyon B when viewed from Earth is $1 \cdot 3 \times 10^{-12} \mathrm{~W} \mathrm{~m}^{-2}$.

Calculate the distance of Procyon B from Earth.
Space for working and answer
(c) The expression

$$
\frac{L}{L_{0}}=1 \cdot 5\left(\frac{M}{M_{0}}\right)^{3 \cdot 5}
$$

can be used to approximate the relationship between a star's mass M and its luminosity L.
L_{0} is the luminosity of the Sun (1 solar unit) and M_{0} is the mass of the Sun.

This expression is valid for stars of mass between $2 M_{0}$ and $20 M_{0}$.
Spica is a star which has mass $10 \cdot 3 M_{0}$.
Determine the approximate luminosity of Spica in solar units.

Space for working answer

Back to Table

Question			Answer		Additional guidance
6.	(a)		(electron) neutrino (1) and positron (1)	2	e^{+}and v acceptable
	(b)	(i)	Correctly marked 1	1	
		(ii)	(White) Dwarf 1	1	Or consistent with (b)(i)
		(iii)	$\begin{aligned} & L=4 \cdot 9 \times 10^{-4} \times 3.9 \times 10^{26} \\ & \mathrm{~b}=\frac{L}{4 \pi r^{2}} \\ & 1 \cdot 3 \times 10^{-12}=\frac{4 \cdot 9 \times 10^{-4} \times 3 \cdot 9 \times 10^{26}}{4 \pi r^{2}} \\ & r=1 \cdot 1 \times 10^{17} \mathrm{~m} \end{aligned}$ Accept: 1, 1•08, 1•082	4	
	(c)		$\begin{align*} & \frac{L}{L_{0}}=1 \cdot 5\left(\frac{M}{M_{0}}\right)^{3 \cdot 5} \\ & \frac{L}{L_{0}}=1 \cdot 5\left(\frac{10 \cdot 3}{1}\right)^{3 \cdot 5} 1 \\ & L=5260\left(L_{0}\right) \tag{1} \end{align*}$ Accept: 5300, 5260•4	2	

7. Laser light is often described as having a single frequency. However, in practice a laser will emit photons with a range of frequencies.
Quantum physics links the frequency of a photon to its energy.
Therefore the photons emitted by a laser have a range of energies (ΔE). The range of photon energies is related to the lifetime (Δt) of the atom in the excited state.

A graph showing the variation of intensity with frequency for light from two types of laser is shown in Figure 7A.

Figure 7A
(a) By considering the Heisenberg uncertainty principle, state how the lifetime of atoms in the excited state in the neodymium:YAG laser compares with the lifetime of atoms in the excited state in the argon ion laser.

Justify your answer.

7. (continued)

(b) In another type of laser, an atom is in the excited state for a time of $5.0 \times 10^{-6} \mathrm{~s}$.
(i) Calculate the minimum uncertainty in the energy $\left(\Delta E_{\min }\right)$ of a photon emitted when the atom returns to its unexcited state.
Space for working and answer
(ii) Determine a value for the range of frequencies (Δf) of the photons emitted by this laser.

Space for working and answer

Back to Table

Question			Answer		Additional guidance
7.	(a)		Atoms in the Nd:YAG have a shorter lifetime (in the excited state) OR Atoms in the Ar have a longer lifetime (in the excited state) 1 $\Delta f \propto \Delta E$ and $\Delta t \propto \frac{1}{\Delta E}$ or $\Delta t \propto \frac{1}{\Delta f}$	2	
	(b)	(i)	$\begin{align*} & \Delta E \Delta t \geq \frac{h}{4 \pi} \tag{1}\\ & \Delta E_{(\min)} \times 5 \cdot 0 \times 10^{-6}=\frac{6 \cdot 63 \times 10^{-34}}{4 \pi} 1 \\ & \Delta E_{(\min)}=1 \cdot 1 \times 10^{-29} \mathrm{~J} \tag{1} \end{align*}$ Accept: 1, 1.06, 1.055	3	
		(ii)	$\begin{array}{ll} (\Delta) E=h(\Delta) f & 1 \\ 1 \cdot 1 \times 10^{-29}=6 \cdot 63 \times 10^{-34} \times(\Delta) f & 1 \\ (\Delta) f=1 \cdot 7 \times 10^{4} \mathrm{~Hz} & 1 \end{array}$ Accept: 2, 1.66, 1.659	3	Or consistent with (b)(i)

8. A student is investigating simple harmonic motion. An oscillating mass on a spring, and a motion sensor connected to a computer, are used in the investigation. This is shown in Figure 8A.

Figure 8A

The student raises the mass from its rest position and then releases it. The computer starts recording data when the mass is released.
(a) The student plans to model the displacement y of the mass from its rest position, using the expression

$$
y=A \sin \omega t
$$

where the symbols have their usual meaning.
Explain why the student is incorrect.

8. (continued)

(b) (i) The unbalanced force acting on the mass is given by the expression

$$
F=-m \omega^{2} y
$$

Hooke's Law is given by the expression

$$
F=-k y
$$

where k is the spring constant.
By comparing these expressions, show that the frequency of the oscillation can be described by the relationship

$$
f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}
$$

(ii) The student measures the mass to be 0.50 kg and the period of oscillation to be 0.80 s .

Determine a value for the spring constant k.
Space for working and answer
8. (b) (continued)
(iii) The student plans to repeat the experiment using the same mass and a second spring, which has a spring constant twice the value of the original.

Determine the expected period of oscillation of the mass.
(c) The student obtains graphs showing the variation of displacement with time, velocity with time and acceleration with time.
The student forgets to label the y-axis for each graph.
Complete the labelling of the y-axis of each graph in Figure 8B.
\square

Figure 8B

Back to Table

Question			Answer At $t=0 \sin \omega t=0$, which would mean that $y=0$. This is not the case in the example here, where $y=A$ at $t=0$		Additional guidance
8.	(a)			1	Accept assumptions that no energy is lost
	(b)	(i)	$\begin{aligned} & (F=)(-) m \omega^{2} y=(-) k y \\ & \omega^{2}=\frac{k y}{m y} \\ & \omega=\sqrt{\frac{k}{m}} \\ & \omega=2 \pi f \\ & 2 \pi f=\sqrt{\frac{k}{m}} \\ & f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}} \end{aligned}$	2	
		(ii)	$\begin{aligned} & f=\frac{1}{T}=\left(\frac{1}{0 \cdot 80}\right) \\ & f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}} \\ & \frac{1}{0 \cdot 80}=\frac{1}{2 \pi} \sqrt{\frac{k}{0 \cdot 50}} \\ & k=31 \mathrm{Nm}^{-1} \end{aligned}$ Accept: 30, 30.8, 30.84	3	
		(iii)	$\begin{align*} & T=\frac{0.80}{\sqrt{2}} \tag{1}\\ & T=0.57 \mathrm{~s} \end{align*}$ Accept: 0.6, 0.566, 0.5657	2	$\begin{aligned} & f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}} \text { and } \mathrm{T}=\frac{1}{f} \\ & T=2 \times \pi \sqrt{\frac{0 \cdot 50}{2 \times 31}} \\ & T=0.56 \mathrm{~s} \end{aligned}$ 1 Accept: $0.6,0.564,0.5642$ Or consistent with (b)(ii)

Back to Table

Question		Answer		Max mark	Additional guidance
(c)			(2) marks all three correct		
(1) mark for two correct					

9. A wave travelling along a string is represented by the relationship

$$
y=9.50 \times 10^{-4} \sin (922 t-4.50 x)
$$

(iii) The wave loses energy as it travels along the string.

At one point, the energy of the wave has decreased to one eighth of its original value.
Calculate the amplitude of the wave at this point.
Space for working and answer
(a) (i) Show that the frequency of the wave is 147 Hz .

Space for working and answer
(ii) Determine the speed of the wave.

Space for working and answer
\square
9. (continued)
(b) The speed of a wave on a string can also be described by the relationship

$$
v=\sqrt{\frac{T}{\mu}}
$$

where v is the speed of the wave,
T is the tension in the string, and
μ is the mass per unit length of the string.
A string of length 0.69 m has a mass of $9.0 \times 10^{-3} \mathrm{~kg}$.
A wave is travelling along the string with a speed of $203 \mathrm{~m} \mathrm{~s}^{-1}$.
Calculate the tension in the string.
Space for working and answer
9. (continued)
(c) When a string is fixed at both ends and plucked, a stationary wave is produced.
(i) Explain briefly, in terms of the superposition of waves, how the stationary wave is produced.
(ii) The string is vibrating at its fundamental frequency of 270 Hz and produces the stationary wave pattern shown in Figure 9A.

Figure 9A

Figure 9B shows the same string vibrating at a frequency called its third harmonic.

Figure 9B
Determine the frequency of the third harmonic.

Back to Table

Question			Answer		Additional guidance
9	(a)	(i)	$\begin{aligned} & (\omega=2 \pi f) \\ & 922=2 \pi f \\ & f=147 \mathrm{~Hz} \end{aligned}$	1	
		(ii)	$\begin{aligned} & 4 \cdot 50=\left(\frac{2 \pi}{\lambda}\right) \\ & v=f \lambda \\ & v=147 \times\left(\frac{2 \pi}{4 \cdot 50}\right) \\ & v=205 \mathrm{~ms}^{-1} \end{aligned}$ Accept:210, 205•3, 205•25	4	
		(iii)	$\begin{array}{ll} E=k A^{2} & 1 \\ \frac{E}{\left(9 \cdot 50 \times 10^{-4}\right)^{2}}=\frac{E}{8 \times A^{2}} & 1 \\ A=3.36 \times 10^{-4} \mathrm{~m} & 1 \end{array}$ Accept: 3•4, 3•359, 3•3588	3	$\frac{E_{1}}{A_{1}^{2}}=\frac{E_{2}}{A_{2}^{2}}$ acceptable
	(b)		$\begin{aligned} & \mu=\frac{9 \cdot 0 \times 10^{-3}}{0 \cdot 69} \\ & \nu=\sqrt{\frac{T}{\mu}} \\ & 203=\sqrt{\frac{T}{\left(\frac{9 \cdot 0 \times 10^{-3}}{0 \cdot 69}\right)}} \\ & T=540 \mathrm{~N} \end{aligned}$ Accept: 500, 538, 537.5	3	
	(c)	(i)	Waves reflected from each end interfere (to create maxima and minima).	1	
		(ii)	$f_{3}=(3 \times 270=) 810 \mathrm{~Hz} \quad 1$	1	

10. The internal structure of some car windscreens produces an effect which can be likened to that obtained by slits in a grating.
A passenger in a car observes a distant red traffic light and notices that the red light is surrounded by a pattern of bright spots.
This is shown in Figure 10A.

Figure 10A
(a) Explain how the two-dimensional pattern of bright spots shown in Figure 10A is produced.
(b) The traffic light changes to green. Apart from colour, state a difference that would be observed in the pattern of bright spots.

Justify your answer.
10. (continued)
(c) An LED from the traffic light is tested to determine the wavelength by shining its light through a set of Young's double slits, as shown in Figure 10B.

The fringe separation is $(13.0 \pm 0.5) \mathrm{mm}$ and the double slit separation is (0.41 ± 0.01) mm.

Figure 10B
(i) Calculate the wavelength of the light from the LED.

Space for working and answer
10. (c) (continued)
(ii) Determine the absolute uncertainty in this wavelength.
(iii) The experiment is now repeated with the screen moved further away from the slits.

Explain why this is the most effective way of reducing the uncertainty in the calculated value of the wavelength.

Back to Table

Question		Answer		Additional guidance
10.	(a)	Pattern produced by interference. 1 Slits horizontal and vertical or at right angles	2	
	(b)	The spots are closer together. The green light has a shorter wavelength and since $d \sin \theta=m \lambda, \mathrm{~d}$ is fixed, $(\sin) \theta$ is smaller.	2	An argument quoting Young's slits is also acceptable. $\Delta x=\frac{\lambda D}{d}$ λ is less, D and d are fixed, so Δx is less

Back to Table

Question		Answer	Max	Additional guidance
(c)	(i)	$\begin{align*} & \Delta x=\frac{\lambda D}{d} \tag{1}\\ & 13 \cdot 0 \times 10^{-3}=\frac{\lambda \times 8 \cdot 11}{0.41 \times 10^{-3}} \tag{1}\\ & \lambda=6 \cdot 6 \times 10^{-7} \mathrm{~m} \tag{1} \end{align*}$ Accept: 7, 6.57, 6.572	3	
	(ii)	\% Uncertainty in fringe separation $\begin{aligned} & =\left(\frac{0 \cdot 5}{13 \cdot 0}\right) \times 100 \\ & =3 \cdot 85 \% \end{aligned}$ \% Uncertainty in slit separation $\begin{aligned} & =\left(\frac{0 \cdot 01}{0 \cdot 41}\right) \times 100 \\ & =2 \cdot 44 \% \end{aligned}$ \% Uncertainty in slit-screen separation $\begin{aligned} & =\left(\frac{0 \cdot 01}{8 \cdot 11}\right) \times 100 \\ & =0 \cdot 123 \% \\ & \text { (can be ignored) } \end{aligned}$ \% uncertainty in wavelength $\begin{aligned} & =\sqrt{\left(\frac{0 \cdot 5}{13 \cdot 0}\right)^{2}+\left(\frac{0 \cdot 01}{0 \cdot 41}\right)^{2}} \times 100 \% 1 \\ & =4 \cdot 56 \% \\ & \Delta \lambda=\frac{4 \cdot 56}{100} \times 6 \cdot 6 \times 10^{-7} \\ & \Delta \lambda=0 \cdot 3 \times 10^{-7} \mathrm{~m} \end{aligned}$	5	
	(iii)	Increasing the slit-screen distance spreads out the fringes, reducing the (percentage) uncertainty in the fringe separation (which is the dominant uncertainty).	1	

11. (a) State what is meant by the term electric field strength.
(b) A, B, C and D are the vertices of a square of side 0.12 m .

Two $+4 \cdot 0 \mathrm{nC}$ point charges are placed at positions B and D as shown in Figure 11A.

Figure 11A
(i) Show that the magnitude of the electric field strength at position A is $3.5 \times 10^{3} \mathrm{NC}^{-1}$.
11. (b) (continued)
(ii) $\mathrm{A}+1 \cdot 9 \mathrm{nC}$ point charge is placed at position A .

Calculate the magnitude of the force acting on this charge.
Space for working and answer
(iii) State the direction of the force acting on this charge.
(iv) A fourth point charge is now placed at position C so that the resultant force on the charge at position A is zero.

Determine the magnitude of the charge placed at position C .
Space for working and answer

Space for worle

Back to Table

Question			Answer		Additional guidance
11	(a)		Force acting per unit positive charge (in an electric field)	1	
	(b)	(i)	$\begin{aligned} & E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \\ & E=\frac{4 \cdot 0 \times 10^{-9}}{4 \pi \times 8 \cdot 85 \times 10^{-12} \times 0 \cdot 12^{2}} \\ & E_{\text {total }}=\sqrt{2 \times\left[\frac{4 \cdot 0 \times 10^{-9}}{4 \pi \times 8 \cdot 85 \times 10^{-12} \times 0 \cdot 12^{2}}\right]^{2}} 1 \\ & E_{\text {total }}=3 \cdot 5 \times 10^{3} \mathrm{NC}^{-1} \end{aligned}$	3	If value for ε_{0} not substituted, $\max 1$ mark. third line can be done by trigonometry rather than Pythagoras. $\begin{aligned} E_{\text {toald }}=2 & {\left[\frac{4.0 \times 10^{-9}}{4 \pi \times 8.85 \times 10^{-12} \times 0.12^{2}}\right] } \\ & \times \sin 45 \end{aligned}$ If the final line is not shown then maximum 2 marks can be awarded.
		(ii)	$\begin{array}{ll} F=Q E & 1 \\ F=1 \cdot 9 \times 10^{-9} \times 3.5 \times 10^{3} & 1 \\ F=6 \cdot 7 \times 10^{-6} \mathrm{~N} & 1 \end{array}$ Accept: 7, 6.65, 6.650	3	$\begin{aligned} & F_{1}=\frac{Q_{1} Q_{2}}{\left.4 \pi \varepsilon_{0}\right)^{2}} \text { and } F=\sqrt{F_{1}^{2}+F_{2}^{2}} \\ & F=\sqrt{2 \times\left(\frac{4 \times 10^{-9} \times 1 \cdot 9 \times 10^{-9}}{4 \pi-85 \times 10^{-12} \times 0.12^{2}}\right)^{2}} \\ & F=6.7 \times 10^{-6} \mathrm{~N} \\ & \text { Accept: } 7,6.71,6.711 \\ & \text { Accept: } 6.718 \text { for } 9 \times 10^{9} \end{aligned}$
		(iii)	Towards top of page	1	
		(iv)	$\begin{aligned} & r=\sqrt{\left(0 \cdot 12^{2}+0 \cdot 12^{2}\right)} \\ & F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} r^{2}} \\ & 6.7 \times 10^{-6}=\frac{1.9 \times 10^{-9} \times Q_{2}}{4 \pi \times 8 \cdot 85 \times 10^{-12} \times \sqrt{\left(0 \cdot 12^{2}+0 \cdot 12^{2}\right)^{2}}} \\ & Q_{2}=1 \cdot 1 \times 10^{-8} \mathrm{C} \end{aligned}$ Accept: 1, 1•13, 1-129	4	Or consistent with (b)(ii).

12. A velocity selector is used as the initial part of a larger apparatus that is designed to measure properties of ions of different elements.

The velocity selector has a region in which there is a uniform electric field and a uniform magnetic field. These fields are perpendicular to each other and also perpendicular to the initial velocity v of the ions.
This is shown in Figure 12A.

Figure 12A
A beam of chlorine ions consists of a number of isotopes including ${ }^{35} \mathrm{Cl}^{+}$.
The magnitude of the charge on a ${ }^{35} \mathrm{Cl}^{+}$ion is $1.60 \times 10^{-19} \mathrm{C}$.
The magnitude of electric force on a ${ }^{35} \mathrm{Cl}^{+}$chlorine ion is $4.00 \times 10^{-15} \mathrm{~N}$.
The ions enter the apparatus with a range of speeds.
The magnetic induction is 115 mT .
(a) State the direction of the magnetic force on $\mathrm{a}^{35} \mathrm{Cl}^{+}$ion.
(b) By considering the electric and magnetic forces acting on a ${ }^{35} \mathrm{Cl}^{+}$ion, determine the speed of the ${ }^{35} \mathrm{Cl}^{+}$ions that will pass through the apparatus without being deflected.

Space for working and answer
12. (continued)
(c) ${ }^{35} \mathrm{Cl}^{+}$ions that are travelling at a velocity less than that determined in (b) are observed to follow the path shown in Figure 12B.

Figure 12B
Explain, in terms of their velocity, why these ions follow this path.
(d) ${ }^{37} \mathrm{Cl}^{2+}$ ions are also present in the beam. ${ }^{37} \mathrm{Cl}^{2+}$ ions have a greater mass and a greater charge than ${ }^{35} \mathrm{Cl}^{+}$ions. Some ${ }^{37} \mathrm{Cl}^{2+}$ ions also pass through the apparatus without being deflected.
State the speed of these ions.
You must justify your answer.

Back to Table

Question		Answer	Max	Additional guidance
12	(a)	Towards the top of the page.	1	
	(b)	$\begin{array}{lr} F=q v B & 1 \\ 4 \cdot 00 \times 10^{-15}=1 \cdot 60 \times 10^{-19} \times v \times 115 \times 10^{-3} 1 \\ v=2 \cdot 17 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1} \end{array}$ Accept: 2•2, 2•174, 2-1739	3	Starting with $v=\frac{E}{B} \text { and } E=\frac{F}{Q}$ is acceptable
	(c)	(Since $F=B q v$) At lower speeds the magnetic force is reduced. Therefore unbalanced force (or acceleration) down Or The magnetic force is less than the electric force	2	Second mark dependant on the first.
	(d)	(All undeflected ions travel at) $2.17 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$ relative size of forces is independent of mass and of charge.	2	Or consistent with (b) Must justify $v=\frac{E}{B}$ as $E \& B$ remain constant v must also remain constant.

13. A student purchases a capacitor with capacitance $1 \cdot 0 \mathrm{~F}$. The capacitor, which has negligible resistance, is used to supply short bursts of energy to the audio system in a car when there is high energy demand on the car battery.

The instructions state that the capacitor must be fully charged from the 12 V d.c. car battery through a $1.0 \mathrm{k} \Omega$ series resistor.
(a) Show that the time constant for this charging circuit is $1.0 \times 10^{3} \mathrm{~s}$.

Back to Table

13. (continued)
(b) The student carries out an experiment to monitor the voltage across the capacitor while it is being charged.
(i) Draw a diagram of the circuit which would enable the student to carry out this experiment.
(ii) The student draws the graph shown in Figure 13A.

Figure 13A
(A) Use information from the graph to show that the capacitor is 63\% charged after 1 time constant.
Space for working and answer
(B) Use information from the graph to determine how many time constants are required for this capacitor to be considered fully charged
13. (continued)
(c) The car audio system is rated at $12 \mathrm{~V}, 20 \mathrm{~W}$.

Use your knowledge of physics to comment on the suitability of the capacitor as the only energy source for the audio system.

Back to Table

Question			Answer		Additional guidance
13.	(a)		$\begin{array}{ll} t=R C & 1 \\ t=1.0 \times 10^{3} \times 1.0 & 1 \\ t=1.0 \times 10^{3} \mathrm{~s} & \end{array}$	2	
	(b)	(i)	circuit diagram showing (12V) d.c. supply, resistor and capacitor all in series. Values not required. Voltmeter or CRO connected across the capacitor.	1	
		(ii) (A)	(After 1 time constant or 1000 s) $\mathrm{V}=7.6(\mathrm{~V}) \quad 1$ $\begin{aligned} & \frac{V_{c}}{V_{s}}=\frac{7 \cdot 6}{12} \\ & \frac{V_{c}}{V_{s}}=63 \% \end{aligned}$	2	
		(ii) (B)	4.5-5	1	

14. A student designs a loudspeaker circuit.

A capacitor and an inductor are used in the circuit so that high frequency signals are passed to a small "tweeter" loudspeaker and low frequency signals are passed to a large "woofer" loudspeaker.
Each loudspeaker has a resistance of 8.0Ω.
The circuit diagram is shown in Figure 14A.

Figure 14A

The circuit is designed to have a "crossover" frequency of 3.0 kHz : at frequencies above 3.0 kHz there is a greater current in the tweeter and at frequencies below 3.0 kHz there is a greater current in the woofer.
(a) Explain how the use of a capacitor and an inductor allows:
(i) high frequency signals to be passed to the tweeter;
(ii) low frequency signals to be passed to the woofer.
14. (continued)
(b) At the crossover frequency, both the reactance of the capacitor and the reactance of the inductor are equal to the resistance of each loudspeaker.
Calculate the inductance required to provide an inductive reactance of 8.0Ω when the frequency of the signal is 3.0 kHz .
Space for working and answer
14. (continued)
(c) In a box of components, the student finds an inductor and decides to determine its inductance. The student constructs the circuit shown in Figure 14B.

Figure 14B

The student obtains data from the experiment and presents the data on the graph shown in Figure 14C.

Figure 14C

Back to Table

14. (c) (continued)
(i) Determine the inductance of the inductor.

Space for working and answer
(ii) The student was advised to include a diode in the circuit to prevent damage to the laptop when the switch is opened.

Explain why this is necessary.

Back to Table

Question			Answer		Additional Guidance
14.	(a)	(i)	Capacitor has low reactance/impedance for high frequencies (therefore more current (and power) will be delivered to the tweeter at high frequencies).	1	
		(ii)	Inductor has low reactance/impedance for low frequencies (therefore more current (and power) will be delivered to the woofer at low frequencies).	1	
	(b)		$\begin{array}{ll} \mathrm{X}_{L}=2 \pi f L & 1 \\ 8 \cdot 0=2 \times \pi \times 3 \cdot 0 \times 10^{3} \times L & 1 \\ L=4 \cdot 2 \times 10^{-4} \mathrm{H} & 1 \\ \text { Accept: } 4,4 \cdot 24,4 \cdot 244 & \end{array}$	3	
	(c)	(i)	$\begin{array}{ll} \frac{d I}{d t}=20 \cdot 0 & 1 \\ \mathrm{E}=-L \frac{d I}{d t} & 1 \\ -9 \cdot 0=-L \times 20 \cdot 0 & 1 \\ L=0.45 \mathrm{H} & 1 \end{array}$ Accept: 0.5, 0.450, 0.4500	4	
		(ii)	large (back) EMF.	1	(explanation of rapidly collapsing magnetic field) inducing high voltage Explanation in terms of energy released from inductor is acceptable.

[END OF MARKING INSTRUCTIONS]

\square

TUESDAY, 8 MAY
9:00 AM - 11:30 AM

Fill in these boxes and read what is printed below.

Full name of centre

Town
\square

Forename(s)

Surname

Number of seat

Date of birth
Day

	Month	Year	Scottish candidate number			
:---	:---					

Total marks - 140
Attempt ALL questions.
Reference may be made to the Physics Relationships Sheet X757/77/11 and the Data Sheet on page 02.
Write your answers clearly in the spaces provided in this booklet. Additional space for answers and rough work is provided at the end of this booklet. If you use this space you must clearly identify the question number you are attempting. Any rough work must be written in this booklet. You should score through your rough work when you have written your final copy.
Care should be taken to give an appropriate number of significant figures in the final answers to calculations.
Use blue or black ink.
Before leaving the examination room you must give this booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

COMMON PHYSICAL QUANTITIES

Quantity	Symbol	Value	Quantity	Symbol	Value
Gravitational acceleration on Earth Radius of Earth Mass of Earth Mass of Moon Radius of Moon Mean Radius of Moon Orbit Solar radius Mass of Sun 1 AU Stefan-Boltzmann constant Universal constant of gravitation	$\begin{aligned} & g \\ & R_{\mathrm{E}} \\ & M_{\mathrm{E}} \\ & M_{\mathrm{M}} \\ & R_{\mathrm{M}} \end{aligned}$ σ	$\begin{aligned} & 9.8 \mathrm{~ms}^{-2} \\ & 6.4 \times 10^{6} \mathrm{~m} \\ & 6.0 \times 10^{24} \mathrm{~kg} \\ & 7 \cdot 3 \times 10^{22} \mathrm{~kg} \\ & 1.7 \times 10^{6} \mathrm{~m} \end{aligned}$ $\begin{aligned} & 3.84 \times 10^{8} \mathrm{~m} \\ & 6.955 \times 10^{8} \mathrm{~m} \\ & 2.0 \times 10^{30} \mathrm{~kg} \\ & 1.5 \times 10^{11} \mathrm{~m} \end{aligned}$ $\begin{aligned} & 5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4} \\ & 6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2} \end{aligned}$	Mass of electron Charge on electron Mass of neutron Mass of proton Mass of alpha particle Charge on alpha particle Planck's constant Permittivity of free space Permeability of free space Speed of light in vacuum Speed of sound in air	$\begin{aligned} & m_{\mathrm{e}} \\ & e \\ & m_{\mathrm{n}} \\ & m_{\mathrm{p}} \\ & m_{\alpha} \end{aligned}$ h ε_{0} μ_{0} c	$\begin{aligned} & 9.11 \times 10^{-31} \mathrm{~kg} \\ & -1.60 \times 10^{-19} \mathrm{C} \\ & 1.675 \times 10^{-27} \mathrm{~kg} \\ & 1.673 \times 10^{-27} \mathrm{~kg} \\ & 6.645 \times 10^{-27} \mathrm{~kg} \\ & 3.20 \times 10^{-19} \mathrm{C} \\ & 6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\ & 8.85 \times 10^{-12} \mathrm{Fm}^{-1} \\ & 4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \\ & 3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\ & 3.4 \times 10^{2} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$

REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K .

Substance	Refractive index	Substance	Refractive index
Diamond	$2 \cdot 42$	Glycerol	$1 \cdot 47$
Glass	1.51	Water	$1 \cdot 33$
Ice	1.31	Air	$1 \cdot 00$
Perspex	1.49	Magnesium Fluoride	$1 \cdot 38$

SPECTRAL LINES

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	$\begin{aligned} & \hline 656 \\ & 486 \\ & 434 \\ & 410 \\ & 397 \\ & 389 \end{aligned}$	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	$\begin{aligned} & 644 \\ & 509 \\ & 480 \\ & \hline \end{aligned}$	Red Green Blue
			Lasers		
			Element	Wavelength/nm	Colour
			Carbon dioxide	$9550\}$	Infrared
Sodium	589	Yellow	Helium-neon	كـ	Red

PROPERTIES OF SELECTED MATERIALS

Substance	Density/ $\mathrm{kg} \mathrm{m}^{-3}$	Melting Point/ K	Boiling Point/ K	Specific Heat Capacity/ $\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$	Specific Latent Heat of Fusion/ Jkg^{-1}	Specific Latent Heat of Vaporisation/ Jkg^{-1}
Aluminium	2.70×10^{3}	933	2623	9.02×10^{2}	3.95×10^{5}	
Copper	8.96×10^{3}	1357	2853	3.86×10^{2}	2.05×10^{5}	
Glass	2.60×10^{3}	1400	. . .	6.70×10^{2}		
Ice	9.20×10^{2}	273		$2 \cdot 10 \times 10^{3}$	3.34×10^{5}	
Glycerol	1.26×10^{3}	291	563	2.43×10^{3}	1.81×10^{5}	8.30×10^{5}
Methanol	7.91×10^{2}	175	338	2.52×10^{3}	9.9×10^{4}	1.12×10^{6}
Sea Water	1.02×10^{3}	264	377	3.93×10^{3}		
Water	1.00×10^{3}	273	373	4.18×10^{3}	$3 \cdot 34 \times 10^{5}$	$2 \cdot 26 \times 10^{6}$
Air	$1 \cdot 29$			
Hydrogen	9.0×10^{-2}	14	20	1.43×10^{4}		4.50×10^{5}
Nitrogen	1.25	63	77	1.04×10^{3}		2.00×10^{5}
Oxygen	1.43	55	90	9.18×10^{2}		2.40×10^{4}

The gas densities refer to a temperature of 273 K and a pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.

1. Energy is stored in a clockwork toy car by winding-up an internal spring using a key. The car is shown in Figure 1A.

Figure 1A
The car is released on a horizontal surface and moves forward in a straight line. It eventually comes to rest.

The velocity v of the car, at time t after its release, is given by the relationship

$$
v=0.0071 t-0.00025 t^{2}
$$

where v is measured in $\mathrm{m} \mathrm{s}^{-1}$ and t is measured in s .
Using calculus methods:
(a) determine the acceleration of the car 20.0 s after its release;

Space for working and answer
(b) determine the distance travelled by the car 20.0 s after its release. Space for working and answer

Back to Table

Detailed marking instructions for each question

Question		Answer	Max mark	Additional guidance
1.	(a)	$\begin{align*} & v=0.0071 t-0.00025 t^{2} \\ & a\left(=\frac{d v}{d t}\right)=0.0071-0.0005 t \tag{1}\\ & a=0.0071-(0.0005 \times 20.0) \tag{1}\\ & a=-0.0029 \mathrm{~ms}^{-2} \tag{1} \end{align*}$	3	Accept -0.003
	(b)	$\begin{align*} & v=0.0071 t-0.00025 t^{2} \\ & s\left(=\int_{0}^{20.0} v . d t\right)=\left[\frac{0.0071}{2} t^{2}-\frac{0.00025}{3} t^{3}\right]_{0}^{20.0} \tag{1}\\ & s=\left(\frac{0.0071}{2} \times 20.0^{2}\right)-\left(\frac{0.00025}{3} \times 20.0^{3}\right)-0 \tag{1}\\ & s=0.75 \mathrm{~m} \tag{1} \end{align*}$	3	Accept 0.8, 0.753, 0.7533 Constant of integration method acceptable

2. (a) A student places a radio-controlled car on a horizontal circular track, as shown in Figure 2A.

Figure 2A

The car travels around the track with a constant speed of $3.5 \mathrm{~m} \mathrm{~s}^{-1}$. The track has a radius of 1.8 m .
(i) Explain why the car is accelerating, even though it is travelling at a constant speed.
(ii) Calculate the radial acceleration of the car.

Space for working and answer
2. (a) (continued)
(iii) The car has a mass of 0.431 kg .

The student now increases the speed of the car to $5 \cdot 5 \mathrm{~m} \mathrm{~s}^{-1}$.
The total radial friction between the car and the track has a maximum value of 6.4 N .

Show by calculation that the car cannot continue to travel in a circular path.
Space for working and answer
2. (continued)
(b) The car is now placed on a track, which includes a raised section. This is shown in Figure 2B.

Figure $2 B$
The raised section of the track can be considered as the arc of a circle, which has radius r of 0.65 m .
(i) The car will lose contact with the raised section of track if its speed is greater than $v_{\max }$.
Show that $v_{\text {max }}$ is given by the relationship

$$
v_{\max }=\sqrt{g r}
$$

(ii) Calculate the maximum speed $v_{\max }$ at which the car can cross the raised section without losing contact with the track.
Space for working and answer
2. (b) (continued)
(iii) A second car, with a smaller mass than the first car, approaches the raised section at the same speed as calculated in (b)(ii).
State whether the second car will lose contact with the track as it crosses the raised section.
Justify your answer in terms of forces acting on the car.

Back to Table

Question			Answer	Max mark	Additional guidance
2.	(a)	(i)	The car's direction/velocity is changing. OR Unbalanced/centripetal/central force acting on the car	1	
		(ii)	$\begin{align*} & a_{(r)}=\frac{v^{2}}{r} \tag{1}\\ & a_{(r)}=\frac{3.5^{2}}{1.8} \tag{1}\\ & a_{(r)}=6.8 \mathrm{~m} \mathrm{~s}^{-2} \tag{1} \end{align*}$	3	Accept: 7, 6.81, 6.806 $\begin{align*} & a_{r}=r \omega^{2} \tag{1}\\ & a_{r}=1.8 \times\left(\frac{3.5}{1.8}\right)^{2} \tag{1}\\ & a_{r}=6.8 \mathrm{~m} \mathrm{~s}^{-2} \tag{1} \end{align*}$
		(iii)	$\begin{align*} & F=\frac{m v^{2}}{r} \\ & F=\frac{0.431 \times 5 \cdot 5^{2}}{1 \cdot 8} \tag{1}\\ & F=7 \cdot 2(\mathrm{~N}) \tag{1} \end{align*}$ Since $7 \cdot 2(\mathrm{~N})>6 \cdot 4(\mathrm{~N})$ OR There is insufficient friction and the car does not stay on the track.	3	NOT A STANDARD 'SHOW’ QUESTION Approach calculating minimum radius is acceptable.

Back to Table

Question			Answer	Max mark	Additional guidance
2.	(b)	(i)	$\begin{align*} & \left(F_{(\text {centripetal })}=\frac{m v_{(\text {max })}^{2}}{r}, W=m g\right) \tag{1}\\ & \frac{m v_{(\text {max })}^{2}}{r}=m g \tag{1}\\ & \frac{v_{\text {(max) }}^{2}}{r}=g \\ & v_{(\text {max })}^{2}=\sqrt{g r} \end{align*}$	2	SHOW question both relationships equating forces
		(ii)	$\begin{align*} & v_{(\max)}=\sqrt{g r} \\ & v_{(\max)}=\sqrt{9.8 \times 0.65} \tag{1}\\ & v_{(\text {max }}=2.5 \mathrm{~ms}^{-1} \tag{1} \end{align*}$	2	Accept: 3, 2.52, 2.524
		(iii)	The second car will not lose contact with the track. A smaller centripetal force is supplied by a smaller weight.	2	

3. Wheels on road vehicles can vibrate if the wheel is not 'balanced'. Garages can check that each wheel is balanced using a wheel balancing machine, as shown in Figure 3A.

Figure 3 A
The wheel is rotated about its axis by the wheel balancing machine.
The angular velocity of the wheel increases uniformly from rest with an angular acceleration of $6.7 \mathrm{rad} \mathrm{s}^{-2}$.
(a) The wheel reaches its maximum angular velocity after 3.9 s .

Show that its maximum angular velocity is $26 \mathrm{rad} \mathrm{s}^{-1}$.
Space for working and answer
3. (continued)
(b) After 3.9 s , the rotational kinetic energy of the wheel is 430 J .

Calculate the moment of inertia of the wheel.
Space for working and answer
(c) A brake is applied which brings the wheel uniformly to rest from its maximum velocity.

The wheel completes 14 revolutions during the braking process.
(i) Calculate the angular acceleration of the wheel during the braking process.
Space for working and answer
(ii) Calculate the braking torque applied by the wheel balancing machine.
Space for working and answer
iswer

Back to Table

Question			Answer		Max mark	Additional guidance
3.	(a)		$\begin{aligned} & \omega=\omega_{o}+\alpha t \\ & \omega=0+(6 \cdot 7 \times 3 \cdot 9) \\ & \omega=26 \mathrm{rads}^{-1} \end{aligned}$	(1) (1)	2	SHOW question If final answer not shown 1 mark max
	(b)		$\begin{aligned} & E_{(k)}=\frac{1}{2} I \omega^{2} \\ & 430=\frac{1}{2} \times I \times 26^{2} \\ & I=1.3 \mathrm{~kg} \mathrm{~m}^{2} \end{aligned}$	(1) (1) (1)	3	Accept: 1, 1-27, 1-272
	(c)	(i)	$\begin{aligned} & \theta=14 \times 2 \pi \\ & \omega^{2}=\omega_{o}^{2}+2 \alpha \theta \\ & 0^{2}=26^{2}+(2 \times \alpha \times 14 \times 2 \pi) \\ & \alpha=-3.8 \mathrm{rad} \mathrm{~s}^{-2} \end{aligned}$	(1) (1) (1) (1)	4	Accept: -4, -3•84, -3•842 Alternative method: $\begin{align*} & \theta=14 \times 2 \pi \tag{1}\\ & \omega=\omega_{o}+\alpha t \text { AND } \theta=\omega_{o} t+\frac{1}{2} \alpha t^{2} \tag{1} \end{align*}$ all substitutions correct $\begin{equation*} \alpha=-3.8 \mathrm{rad} \mathrm{~s}^{-2} \tag{1} \end{equation*}$
		(ii)	$\begin{aligned} & T=I \alpha \\ & T=1 \cdot 3 \times(-) 3 \cdot 8 \\ & T=(-) 4 \cdot 9 \mathrm{Nm} \end{aligned}$	(1) (1) (1)	3	Accept: 5, 4.94, 4.940 OR consistent with (b), (c)(i)

4. Astronomers have discovered another solar system in our galaxy. The main sequence star, HD 69830, lies at the centre of this solar system. This solar system also includes three exoplanets, b, c, and d and an asteroid belt.

This solar system is shown in Figure 4A.

Figure 4A
(a) The orbit of exoplanet d can be considered circular.

To a reasonable approximation the centripetal force on exoplanet d is provided by the gravitational attraction of star HD 69830.
(i) Show that, for a circular orbit of radius r, the period T of a planet about a parent star of mass M, is given by

$$
T^{2}=\frac{4 \pi^{2}}{G M} r^{3}
$$

Back to Table

4. (a) (continued)
(ii) Some information about this solar system is shown in the table below.

Exoplanet	Type of orbit	Mass in Earth masses	Mean orbital radius in Astronomical Units (AU)	Orbital period In Earth days
b	Elliptical	10.2	-	8.67
c	Elliptical	11.8	0.186	-
d	Circular	18.1	0.63	197

Determine the mass, in kg, of star HD 69830.
Space for working and answer
(b) Two asteroids collide at a distance of $1.58 \times 10^{11} \mathrm{~m}$ from the centre of the star HD 69830. As a result of this collision, one of the asteroids escapes from this solar system.
Calculate the minimum speed which this asteroid must have immediately after the collision, in order to escape from this solar system.
Space for working and answer

Back to Table

Question			Answer	Max mark 3	Additional guidance
4.	(a)	(i)	$\begin{align*} & \left(F_{\text {centripetal }}=F_{\text {graviational }}\right) \tag{1}\\ & m r \omega^{2}=\frac{G M m}{r^{2}} \tag{1}\\ & \omega=\frac{2 \pi}{T} \quad \text { or } \quad \omega^{2}=\left(\frac{2 \pi}{T}\right)^{2} \tag{1}\\ & \frac{4 \pi^{2}}{T^{2}}=\frac{G M}{r^{3}} \\ & T^{2}=\frac{4 \pi^{2}}{G M} r^{3} \tag{1} \end{align*}$		SHOW question both relationships equating Alternative method acceptable $\begin{align*} & \left(F_{\text {centripetal }}=F_{\text {graviatational }}\right) \\ & \frac{m v^{2}}{r}=\frac{G M m}{r^{2}} \\ & v=\frac{2 \pi r}{T} \quad \text { or } \quad v^{2}=\left(\frac{2 \pi r}{T}\right)^{2} \tag{1}\\ & \frac{4 \pi^{2}}{T^{2}}=\frac{G M}{r^{3}} \\ & T^{2}=\frac{4 \pi^{2}}{G M} r^{3} \end{align*}$
		(ii)	$\begin{align*} & T^{2}=\frac{4 \pi^{2}}{G M} r^{3} \\ & \left\langle(197 \times 24 \times 60 \times 60)^{2}=\right. \\ & \left.\frac{4 \pi^{2} \times\left(0.63 \times 1.5 \times 10^{11}\right)^{3}}{6.67 \times 10^{-11} \times M}\right\rangle \tag{1}\\ & M=1.7 \times 10^{30}(\mathrm{~kg}) \tag{1} \end{align*}$	3	Accept: 2, 1•72,1•724 mark for converting AU to m independent. complete substitution final answer
	(b)		$\begin{align*} & v=\sqrt{\frac{2 G M}{r}} \tag{1}\\ & v=\sqrt{\frac{2 \times 6.67 \times 10^{-11} \times 1.7 \times 10^{30}}{1.58 \times 10^{11}}} \tag{1}\\ & v=3.8 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	3	OR consistent with (a)(ii) Accept 4, 3•79, 3.789

5. (a) Explain what is meant by the term Schwarzschild radius.
(b) (i) Calculate the Schwarzschild radius of the Sun.

Space for working and answer
(ii) Explain, with reference to its radius, why the Sun is not a black hole.
(c) The point of closest approach of a planet to the Sun is called the perihelion of the planet. The perihelion of Mercury rotates slowly around the Sun, as shown in Figure 5A.

Figure 5A

Back to Table

5. (c) (continued)

This rotation of the perihelion is referred to as the precession of Mercury, and is due to the curvature of spacetime. This causes an angular change in the perihelion of Mercury.
The angular change per orbit is calculated using the relationship

$$
\phi=3 \pi \frac{r_{s}}{a\left(1-e^{2}\right)}
$$

where:
ϕ is the angular change per orbit, in radians;
r_{s} is the Schwarzschild radius of the Sun, in metres;
a is the semi-major axis of the orbit, for Mercury $a=5.805 \times 10^{10} \mathrm{~m}$;
e is the eccentricity of the orbit, for Mercury $e=0.206$.
Mercury completes four orbits of the Sun in one Earth year.
Determine the angular change in the perihelion of Mercury after one Earth year.
Space for working and answer

Back to Table

Question			Answer	Max mark	Additional guidance
5.	(a)		The Schwarzschild radius is the distance from the centre of a mass such that, the escape velocity at that distance would equal the speed of light. OR The Schwarzschild radius is the distance from the centre of a mass to the event horizon.	1	Responses in terms of black hole acceptable
	(b)	(i)	$\begin{align*} & r_{\text {(Schwarcchild) }}=\frac{2 G M}{c^{2}} \tag{1}\\ & r_{\text {Sschwarcchild) }}=\frac{2 \times 6.67 \times 10^{-11} \times 2.0 \times 10^{30}}{\left(3.00 \times 10^{8}\right)^{2}} \tag{1}\\ & r_{\text {Schwarchild) }}=3.0 \times 10^{3} \mathrm{~m} \tag{1} \end{align*}$	3	$\begin{aligned} & \text { Accept: } 3 \times 10^{3}, 2.96 \times 10^{3}, \\ & 2.964 \times 10^{3} \end{aligned}$
		(ii)	(Radius of Sun is $6.955 \times 10^{8} \mathrm{~m}$) This is greater than the Schwarzschild radius (the Sun is not a black hole.)	1	There MUST be a comparison of solar radius with the Sun's Schwarzschild radius.
	(c)		$\begin{align*} & \phi=3 \pi \frac{r_{s}}{a\left(1-e^{2}\right)} \\ & \phi=3 \pi \frac{3000}{5 \cdot 805 \times 10^{10} \times\left(1-0 \cdot 206^{2}\right)} \tag{1} \end{align*}$ Angular change after one year $=4 \times \phi$ Angular change $=2.0 \times 10^{-6} \mathrm{rad}$	3	OR consistent with (b)(i) Second mark independent Accept 2, 2.03, 2.035 If 3.14 used, accept 2.034

6. Bellatrix and Acrab are two stars which are similar in size. However, the apparent brightness of each is different.
Use your knowledge of stellar physics to comment on why there is a difference in the apparent brightness of the two stars.
7. In a crystal lattice, atoms are arranged in planes with a small gap between each plane.
Neutron diffraction is a process which allows investigation of the structure of crystal lattices.
In this process there are three stages:
neutrons are accelerated;
the neutrons pass through the crystal lattice; an interference pattern is produced.
(a) (i) In this process, neutrons exhibit wave-particle duality. Identify the stage of the process which provides evidence for particle-like behaviour of neutrons.
(ii) Neutrons, each with a measured momentum of $1.29 \times 10^{-23} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ produce an observable interference pattern from one type of crystal lattice.

Calculate the wavelength of a neutron travelling with this momentum.

Space for working and answer
(iii) Explain the implication of the Heisenberg uncertainty principle for the precision of these experimental measurements.
7. (a) (continued)
(iv) The momentum of a neutron is measured to be $1 \cdot 29 \times 10^{-23} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ with a precision of $\pm 3.0 \%$.
Determine the minimum absolute uncertainty in the position $\Delta x_{\text {min }}$ of this neutron.

Space for working and answer
(b) Some of the neutrons used to investigate the structure of crystal lattices will not produce an observed interference pattern. This may be due to a large uncertainty in their momentum.
Explain why a large uncertainty in their momentum would result in these neutrons being unsuitable for this diffraction process.

Back to Table

Question			Answer	Max	Additional guidance
7.	(a)	(i)	Neutrons are accelerated.	1	
		(ii)	$\begin{align*} & \lambda=\frac{h}{p} \tag{1}\\ & \lambda=\frac{6 \cdot 63 \times 10^{-34}}{1 \cdot 29 \times 10^{-23}} \tag{1}\\ & \lambda=5 \cdot 14 \times 10^{-11} \mathrm{~m} \tag{1} \end{align*}$	3	Accept 5•1, 5•140, 5•1395
		(iii)	The precise/exact position of a particle and its momentum cannot both be known at the same instant. OR If the (minimum) uncertainty in the position of a particle is reduced, the uncertainty in the momentum of the particle will increase (or vice-versa).	1	
		(iv)	$\begin{align*} & \Delta p_{x}=p \times \frac{\% p}{100} \\ & \Delta p_{x}=1 \cdot 29 \times 10^{-23} \times \frac{3}{100} \tag{1}\\ & \Delta x_{\min } \Delta p_{x}=\frac{h}{4 \pi} \text { or } \Delta x \Delta p_{x} \geq \frac{h}{4 \pi} \tag{1}\\ & \Delta x_{(\min)}=\frac{6.63 \times 10^{-34}}{4 \pi \times 1.29 \times 10^{-23} \times 0.03} \tag{1}\\ & \Delta x_{\text {(min) }}=1.36 \times 10^{-10} \mathrm{~m} \tag{1} \end{align*}$	4	Accept 1•4, 1•363, 1•3633 $\Delta x_{\min } \geq 1 \cdot 36 \times 10^{-10} \mathrm{~m}$ do not award final mark
	(b)		The uncertainty in position will be (too) small. Neutrons can be considered a particle/cannot be considered a wave, even on the length scale of the lattice spacing.	2	Accept a de Broglie wavelength argument. A large uncertainty in p may result in a large uncertainty in the de Broglie wavelength. This de Broglie wavelength may not be close to the lattice spacing. Uncertainty in position less than gap between layers acceptable for both marks.

8. (a) Inside the core of stars like the Sun, hydrogen nuclei fuse together to form heavier nuclei.
(i) State the region of the Hertzsprung-Russell diagram in which stars like the Sun are located.
(ii) One type of fusion reaction is known as the proton-proton chain and is described below.

$$
6{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{X}+2{ }_{1}^{0} \mathrm{Z}+2{ }_{0}^{0} v+2{ }_{1}^{1} \mathrm{H}+2{ }_{0}^{0} \gamma
$$

Identify the particles indicated by the letters X and Z .
(b) High energy charged particles are ejected from the Sun.

State the name given to the constant stream of charged particles which the Sun ejects.

8. (continued)

(c) The stream of particles being ejected from the Sun produces an outward pressure. This outward pressure depends on the number of particles being ejected from the Sun and the speed of these particles.
The pressure at a distance of one astronomical unit (AU) from the Sun is given by the relationship

$$
p=1.6726 \times 10^{-6} \times n \times v^{2}
$$

where:
p is the pressure in nanopascals;
n is the number of particles per cubic centimetre;
v is the speed of particles in kilometres per second.
(i) On one occasion, a pressure of $9.56 \times 10^{-10} \mathrm{~Pa}$ was recorded when the particle speed was measured to be $6.02 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$.
Calculate the number of particles per cubic centimetre.
Space for working and answer
(ii) The pressure decreases as the particles stream further from the Sun.

This is because the number of particles per cubic centimetre decreases and the kinetic energy of the particles decreases.
(A) Explain why the number of particles per cubic centimetre decreases as the particles stream further from the Sun.
(B) Explain why the kinetic energy of the particles decreases as the particles stream further from the Sun.
8. (continued)
(d) When the charged particles approach the Earth, the magnetic field of the Earth causes them to follow a helical path, as shown in Figure 8A.

Figure 8A

Explain why the charged particles follow a helical path.

Back to Table

Question			Answer	Max mark	Additional guidance
8.	(a)	(i)	Main sequence	1	
		(ii)	X : helium (nucleus) Z: positron	2	Accept alpha particle Accept anti-electron Accept $\mathrm{He}, \mathrm{e}^{+}, \mathrm{B}^{+}$ Do not accept 'Helium atom'
	(b)		Solar wind	1	Do not accept cosmic rays.
	(c)	(i)	$\begin{align*} & p=1.6726 \times 10^{-6} \times n \times v^{2} \\ & 0.956=1.6726 \times 10^{-6} \times n \times 602^{2} \tag{1}\\ & n=1.58\left(\text { particles per } \mathrm{cm}^{3}\right) \tag{1} \end{align*}$	2	Correct unit conversions must be made. Accept 1.6, 1.577, 1.5771
		(ii) (A)	(As the particles are ejected in all directions they will) spread out (as they get further from the Sun).	1	Accept density decreases with radius/Sun acts as a point source/constant number of particles over a larger area.
		(ii) (B)	(The particles lose kinetic energy and) gain (gravitational) potential (energy) (as they move further from the Sun.) OR Work is done against the Sun's gravitational field (for the particles to move away).	1	Accept reduction in velocity due to gravitational force and statement of $E_{K}=\frac{1}{2} m v^{2}$ Lose speed on its own not sufficient
	(d)		The charged particles have a component (of velocity) parallel to the (magnetic) field which moves them forwards in that direction. The component (of velocity) perpendicular: to the (magnetic) field causes a central force on the charged particle OR it moves in a circle.	2	Independent marks

9. A ball-bearing is released from height h on a smooth curved track, as shown in Figure 9A.

The ball-bearing oscillates on the track about position P .
The motion of the ball-bearing can be modelled as Simple Harmonic Motion (SHM).

Figure 9A
(a) The ball-bearing makes 1.5 oscillations in 2.5 s .
(i) Show that the angular frequency of the ball-bearing is $3 \cdot 8 \mathrm{rad} \mathrm{s}^{-1}$. Space for working and answer
(ii) The horizontal displacement x of the ball-bearing from position P at time t can be predicted using the relationship

$$
x=-0 \cdot 2 \cos (3 \cdot 8 t)
$$

Using calculus methods, show that this relationship is consistent with SHM.
9. (a) (continued)
(iii) Determine the maximum speed of the ball-bearing during its motion. Space for working and answer
(iv) Determine the height h from which the ball bearing was released.

Space for working and answer

9. (continued)

(b) In practice, the maximum horizontal displacement of the ball-bearing decreases with time.
A graph showing the variation in the horizontal displacement of the ball-bearing from position P with time is shown in Figure 9B.

Figure 9B
Sketch a graph showing how the vertical displacement of the ball-bearing from position P changes over the same time period.
Numerical values are not required on either axis.

Back to Table

Question			Answer	Max mark	Additional guidance
9.	(a)	(i)	$\begin{align*} & \omega=\frac{d \theta}{d t} \tag{1}\\ & \omega=\frac{2 \pi \times 1.5}{2 \cdot 5} \tag{1}\\ & \omega=3.8 \mathrm{rad} \mathrm{~s}^{-1} \end{align*}$	2	SHOW question Accept $\omega=\frac{\theta}{t}, \omega=2 \pi f$ or $\omega=\frac{2 \pi}{T}$ as a starting point. Final line must appear or max (1 mark).
		(ii)	$\begin{align*} & (x=-0 \cdot 2 \cos (3 \cdot 8 t)) \\ & \frac{\mathrm{d} x}{\mathrm{dt}}=-3 \cdot 8 \times(-0 \cdot 2 \sin (3 \cdot 8 t)) \\ & \frac{\mathrm{d}^{2} x}{\mathrm{dt}^{2}}=-3 \cdot 8^{2} \times(-0 \cdot 2 \cos (3 \cdot 8 t)) \tag{1}\\ & \frac{\mathrm{d}^{2} x}{\mathrm{dt}^{2}}=-3 \cdot 8^{2} x \tag{1} \end{align*}$ (Since the equation is in the form) $a=-\omega^{2} y$ or $a=-\omega^{2} x$ (, the horizontal displacement is consistent with SHM).	3	NOT A STANDARD SHOW QUESTION First mark for BOTH differentiations correct Second mark for correct substitution of x back into second differential (including correct treatment of negatives). Numerical constant may be evaluated without penalty (14.44). Statement regarding significance of equation required for third mark.
		(iii)	$\begin{align*} & v=(\pm) \omega \sqrt{\left(A^{2}-y^{2}\right)} \tag{1}\\ & v=(\pm) 3 \cdot 8 \times \sqrt{\left(0 \cdot 2^{2}-0^{2}\right)} \tag{1}\\ & v=(\pm) 0 \cdot 76 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	3	Accept $v_{(\text {max })}=(\pm) \omega A$ Accept $A=0.2 m$ or $A=-0.2 m$ Accept $\frac{\mathrm{d} x}{\mathrm{dt}}=-3 \cdot 8 \times(-0.2 \sin (3 \cdot 8 t))$ as a starting point. Accept 0.8, 0.760, 0.7600
		(iv)	$\begin{align*} & \frac{1}{2}(m) v^{2}=(m) g h \tag{1}\\ & h=\frac{0.5 \times 0.76^{2}}{9.8} \tag{1}\\ & h=2 \cdot 9 \times 10^{-2} \mathrm{~m} \tag{1} \end{align*}$	3	Allow $\frac{1}{2}(m) \omega^{2} A^{2}=(m) g h$ as starting point. $\frac{1}{2}(m) \omega^{2} y^{2}=(m) g h$ zero marks unless statement that $y=A$ Accept 3, 2.95, 2.947

Back to Table

Question		Answer	Max mark	Additional guidance	
9. (b)	The shape of the line should resemble a sinusoidal wave with values either all positive or all negative and the minimum vertical displacement consistent. (1) Peak height should show a steady decline with each oscillation / decreasing amplitude, as shown in the graph in the additional guidance notes.	2		(1)	

10. An electromagnetic wave is travelling along an optical fibre. Inside the fibre the electric field vectors oscillate, as shown in Figure 10A.

Figure 10A

The direction of travel of the wave is taken to be the x-direction.
The magnitude of the electric field vector E at any point x and time t is given by the relationship

$$
E=12 \times 10^{-6} \sin 2 \pi\left(1.31 \times 10^{14} t-\frac{x}{1.55 \times 10^{-6}}\right)
$$

(a) (i) Two points, A and B, along the wave are separated by a distance of $4.25 \times 10^{-7} \mathrm{~m}$ in the x-direction.
Calculate the phase difference between points A and B.
Space for working and answer
10. (a) (continued)
(ii) Another two points on the wave, P and Q , have a phase difference of π radians.

State how the direction of the electric field vector at point P compares to the direction of the electric field vector at point Q .
(b) (i) Show that the speed of the electromagnetic wave in this optical fibre is $2.03 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$.
Space for working and answer
(ii) The speed v_{m} of an electromagnetic wave in a medium is given by the relationship

$$
v_{m}=\frac{1}{\sqrt{\varepsilon_{m} \mu_{m}}}
$$

The permeability μ_{m} of the optical fibre material can be considered to be equal to the permeability of free space.
By considering the speed of the electromagnetic wave in this fibre, determine the permittivity ε_{m} of the optical fibre material.
Space for working and answer ther

Back to Table

Question			Answer	Max mark	Additional guidance
10.	(a)	(i)	$\begin{align*} & \phi=\frac{2 \pi x}{\lambda} \tag{1}\\ & \phi=\frac{2 \pi \times 4.25 \times 10^{-7}}{1.55 \times 10^{-6}} \tag{1}\\ & \phi=1.72 \mathrm{rad} \tag{1} \end{align*}$	3	Accept 1-7, 1.723, 1.7228
		(ii)	(The electric field vectors will be in) opposite (directions at positions P and Q).	1	
	(b)	(i)	$\begin{align*} & v=f \lambda \tag{1}\\ & v=1.31 \times 10^{14} \times 1.55 \times 10^{-6} \tag{1}\\ & v=2.03 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \end{align*}$	2	SHOW question Both equation and substitution must be shown. Final line must also be shown.
		(ii)	$\begin{align*} & v_{m}=\frac{1}{\sqrt{\varepsilon_{m} \mu_{m}}} \\ & 2.03 \times 10^{8}=\frac{1}{\sqrt{\varepsilon_{m} \times 4 \pi \times 10^{-7}}} \tag{1}\\ & \varepsilon_{m}=1.93 \times 10^{-11} \mathrm{Fm}^{-1} \tag{1} \end{align*}$	2	Accept 1.9, 1.931, 1.9311

11. A thin air wedge is formed between two glass plates of length 75 mm , which are in contact at one end and separated by a thin metal wire at the other end.
Figure 11A shows sodium light being reflected down onto the air wedge.
A travelling microscope is used to view the resulting interference pattern.

Figure 11A
A student observes the image shown in Figure 11B.

Figure 11B
The student aligns the cross-hairs to a bright fringe and then moves the travelling microscope until 20 further bright fringes have passed through the cross-hairs and notes that the travelling microscope has moved a distance of $9.8 \times 10^{-4} \mathrm{~m}$.

The student uses this data to determine the thickness of the thin metal wire between the glass plates.
11. (continued)
(a) State whether the interference pattern is produced by division of amplitude or by division of wavefront.
(b) Determine the diameter of the thin metal wire.

Space for working and answer
(c) By measuring multiple fringe separations rather than just one, the student states that they have more confidence in the value of diameter of the wire which was obtained.
Suggest one reason why the student's statement is correct.
(d) A current is now passed through the thin metal wire and its temperature increases.
The fringes are observed to get closer together.
Suggest a possible explanation for this observation.

Space for working

Sugest one reason why the students statement is correct.

Back to Table

Question		Answer	Max mark	Additional guidance
11.	(a)	(Division of) amplitude	1	
	(b)	$\begin{align*} & \Delta x=\frac{9 \cdot 8 \times 10^{-4}}{20} \tag{1}\\ & \Delta x=\frac{\lambda l}{2 d} \tag{1}\\ & d=\frac{589 \times 10^{-9} \times 75 \times 10^{-3} \times 20}{2 \times 9.8 \times 10^{-4}} \tag{1}\\ & d=4 \cdot 5 \times 10^{-4} \mathrm{~m} \tag{1} \end{align*}$	4	First mark independent Accept 5, 4.51, 4.508
	(c)	Reduces the uncertainty in the value of $\Delta \mathrm{x}$ or d obtained. OR Reduces the impact/significance of any uncertainty on the value obtained for Δx or d.	1	
	(d)	The wire expands/d increases $\Delta x=\frac{\lambda l}{2 d}$, (and since d increases) while l and λ remain constant, (Δx decreases). OR Since d increases and $\Delta x \propto 1 / d, \Delta x$ decreases.	2	

12. A student is observing the effect of passing light through polarising filters.

Two polarising filters, the polariser and the analyser, are placed between a lamp and the student as shown in Figure 12A.
The polariser is held in a fixed position, and the analyser can be rotated. Angle θ is the angle between the transmission axes of the two filters.

Figure 12A
When the transmission axes of the polariser and the analyser are parallel, θ is 0° and the student observes bright light from the lamp.
(a) (i) Describe, in terms of brightness, what the student observes as the analyser is slowly rotated from 0° to 180°.
(ii) The polariser is now removed.

Describe, in terms of brightness, what the student observes as the analyser is again slowly rotated from 0° to 180°

Back to Table

12. (continued)
(b) Sunlight reflected from a wet road can cause glare, which is hazardous for drivers. This is shown in Figure 12B

Figure 12B

Reflected sunlight is polarised when the light is incident on the wet road surface at the Brewster angle.
(i) Calculate the Brewster angle for light reflected from water.

Space for working and answer
(ii) A driver is wearing polarising sunglasses.

Explain how wearing polarising sunglasses rather than non-polarising sunglasses will reduce the glare experienced by the driver.

Back to Table

Question			Answer	Max mark	Additional guidance
12.	(a)	(i)	The brightness (starts at a maximum and) decreases to (a minimum at) 90°. The brightness then increases (from the minimum back to the maximum at 180°).	2	Response must indicate a gradual change as the analyser rotates.
		(ii)	The brightness remains constant (throughout).	1	
	(b)	(i)	$\begin{align*} & n=\tan i_{p} \tag{1}\\ & i_{p}=\tan ^{-1}(1 \cdot 33) \tag{1}\\ & i_{p}=53 \cdot 1^{\circ} \tag{1} \end{align*}$	3	Accept 53, 53.06, 53.061
		(ii)	The polarising sunglasses will act as an analyser/ absorb/block (some of) the glare.	1	

13. (a) State what is meant by electric field strength.
(b) Two identical spheres, each with a charge of +22 nC , are suspended from point P by two equal lengths of light insulating thread.

The spheres repel and come to rest in the positions shown in Figure 13A.

Figure 13A
(i) Each sphere has a weight of $9.80 \times 10^{-4} \mathrm{~N}$.

By considering the forces acting on one of the spheres, show that the electric force between the charges is $5.66 \times 10^{-4} \mathrm{~N}$.
Space for working and answer
13. (b) (continued)
(ii) By considering the electric force between the charges, calculate the distance between the centres of the spheres.
Space for working and answer
(iii) Calculate the electrical potential at point P due to both charged spheres.
Space for working and answer

Back to Table

Question			Answer	Max mark	Additional guidance
13.	(a)		Force per unit positive charge (at a point in an electric field)	1	
	(b)	(i)	$\begin{align*} & F_{e}=W \tan \theta \tag{1}\\ & F_{e}=9.80 \times 10^{-4} \times \tan 30 \tag{1}\\ & F_{e}=5.66 \times 10^{-4} \mathrm{~N} \end{align*}$	2	NOT A STANDARD SHOW QUESTION $\tan \theta=\frac{\text { opposite }}{\text { adjacent }}$ is an acceptable starting point
		(ii)	$\begin{align*} & F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} r^{2}} \tag{1}\\ & 5.66 \times 10^{-4}=\frac{\left(22 \times 10^{-9}\right)^{2}}{4 \pi \times 8.85 \times 10^{-12} r^{2}} \tag{1}\\ & r=0.088 \mathrm{~m} \tag{1} \end{align*}$	3	Accept 0.09, 0.0877, 0.08769 Accept 0.08773 if 9×10^{9} used.
		(iii)	$\begin{align*} & V=\frac{Q}{4 \pi \varepsilon_{o} r} \tag{1}\\ & r=0.088(\mathrm{~m}) \tag{1}\\ & V=\frac{22 \times 10^{-9}}{4 \times \pi \times 8.85 \times 10^{-12} \times 0.088} \tag{1}\\ & V_{\text {total }}=2 \times \frac{22 \times 10^{-9}}{4 \times \pi \times 8.85 \times 10^{-12} \times 0.088} \tag{1}\\ & V_{\text {total }}=4.5 \times 10^{3} \mathrm{~V} \tag{1} \end{align*}$	5	Or consistent with (b)(ii) Accept : 4000, 4496

14. A student carries out an experiment to determine the charge to mass ratio of the electron.
The apparatus is set up as shown in Figure 14A.

Figure 14A

An electron beam is produced using an electron gun connected to a $5 \cdot 0 \mathrm{kV}$ supply. A current I in the Helmholtz coils produces a uniform magnetic field.
The electron beam enters the magnetic field.
The path of the electron beam between points O and P can be considered to be an arc of a circle of constant radius r. This is shown in Figure 14B.

Figure 14B
The student records the following measurements:

Electron gun supply voltage, V	$5 \cdot 0 \mathrm{kV}(\pm 10 \%)$
Current in the Helmholtz coils, I	$0.22 \mathrm{~A}(\pm 5 \%)$
Radius of curvature of the path of the electron beam between O and P, r	$0.28 \mathrm{~m}(\pm 6 \%)$

Back to Table

14. (continued)
(a) The manufacturer's instruction sheet states that the magnetic field strength B at the centre of the apparatus is given by

$$
B=4 \cdot 20 \times 10^{-3} \times I
$$

Calculate the magnitude of the magnetic field strength in the centre of the apparatus.
Space for working and answer
(b) The charge to mass ratio of the electron is calculated using the following

$$
\frac{q}{m}=\frac{2 V}{B^{2} r^{2}}
$$

(i) Using the measurements recorded by the student, calculate the charge to mass ratio of the electron.

Space for working and answer
(ii) Determine the absolute uncertainty in the charge to mass ratio of the electron.
Space for working and answer

relationship

14. (continued)
(c) A second student uses the same equipment to find the charge to mass ratio of the electron and analyses their measurements differently.
The current in the Helmholtz coils is varied to give a range of values for magnetic field strength. This produces a corresponding range of measurements of the radius of curvature.
The student then draws a graph and uses the gradient of the line of best fit to determine the charge to mass ratio of the electron.
Suggest which quantities the student chose for the axes of the graph.
15. (continued)
(d) The graphical method of analysis used by the second student should give a more reliable value for the charge to mass ratio of the electron than the value obtained by the first student.
Use your knowledge of experimental physics to explain why this is the case.

Back to Table

Question			Answer	Max mark	Additional guidance
14.	(a)		$\begin{align*} & B=4.2 \times 10^{-3} \times 0.22 \\ & =9.2 \times 10^{-4} \mathrm{~T} \tag{1} \end{align*}$	1	Accept 9, 9.24, 9.240
	(b)	(i)	$\begin{align*} & \frac{q}{m}=\frac{2 V}{B^{2} r^{2}} \\ & \frac{q}{m}=\frac{2 \times 5.0 \times 10^{3}}{\left(9.2 \times 10^{-4}\right)^{2} \times 0.28^{2}} \tag{1}\\ & \frac{q}{m}=1.5 \times 10^{11} \mathrm{Ckg}^{-1} \tag{1} \end{align*}$	2	Accept 2, 1.51, 1.507 OR consistent with (a)
		(ii)	\%Uncertainty in B \& r is doubled $\begin{align*} & \% \Delta(w)=\sqrt{\left(\% \Delta x^{2}+\% \Delta y^{2}+\% \Delta z^{2}\right)} \tag{1}\\ & \% \Delta\left(\frac{q}{m}\right)=\sqrt{\left(10^{2}+10^{2}+12^{2}\right)} \tag{1}\\ & \Delta\left(\frac{q}{m}\right)=0 \cdot 3 \times 10^{11} \mathrm{Ckg}^{-1} \tag{1} \end{align*}$	4	Suspend sig fig rule
	(c)		B^{2} and $1 / r^{2}\left(r^{2}\right.$ and $\left.1 / B^{2}\right)$ OR B and $1 / r(r$ and $1 / B)$ OR I and $1 / r(r$ and $1 / I)$ OR I^{2} and $1 / r^{2} \quad\left(r^{2}\right.$ and $\left.1 / I^{2}\right)$	1	Also accept constants correctly included on the axes

15. A defibrillator is a device that gives an electric shock to a person whose heart has stopped beating normally.

This is shown in Figure 15A.

Figure 15A

Two paddles are initially placed in contact with the patient's chest.
A simplified defibrillator circuit is shown in Figure 15B.

Figure 15B

When the switch is in position A, the capacitor is charged until there is a large potential difference across the capacitor.
15. (continued)
(a) The capacitor can be considered to be fully charged after 5 time constants.

The time taken for the capacitor to be considered to be fully charged is 10.0 s .

Determine the resistance of resistor R.
Space for working and answer
(b) During a test, an $80 \cdot 0 \Omega$ resistor is used in place of the patient.

The switch is moved to position B, and the capacitor discharges through the $80 \cdot 0 \Omega$ resistor.

The initial discharge current is 60 A .
The current in the resistor will fall to half of its initial value after 0.7 time constants.

Show that the current falls to 30 A in 1.8 ms .
Space for working and answer
15. (continued)
(c) In practice a current greater than 30 A is required for a minimum of 5.0 ms to force the heart of a patient to beat normally.

An inductor, of negligible resistance, is included in the circuit to increase the discharge time of the capacitor to a minimum of 5.0 ms .
This is shown in Figure 15C.

Figure 15C
(i) The inductor has an inductance of 50.3 mH .

The capacitor is again fully charged. The switch is then moved to position B.
Calculate the rate of change of current at the instant the switch is moved to position B.

Space for working and answer
15. (c) (continued)
(ii) It would be possible to increase the discharge time of the capacitor with an additional resistor connected in the circuit in place of the inductor. However, the use of an additional resistor would mean that maximum energy was not delivered to the patient.

Explain why it is more effective to use an inductor, rather than an additional resistor, to ensure that maximum energy is delivered to the patient.

Back to Table

Question			Answer	Max mark	Additional guidance
15.	(a)		$\begin{align*} & t=R C \tag{1}\\ & \frac{10.0}{5}=R \times 32 \times 10^{-6} \tag{1}\\ & R=6 \cdot 3 \times 10^{4} \Omega \tag{1} \end{align*}$	3	Accept 6, 6-25, 6-250
	(b)		$\begin{align*} & t=R C \tag{1}\\ & t_{\left(\frac{1}{2}\right)}=0.7 \times 80.0 \times 32 \times 10^{-6} \tag{1}\\ & t_{\left(\frac{1}{2}\right)}=1.8 \times 10^{-3} \mathrm{~s} \end{align*}$	2	SHOW question
	(c)	(i)	$\begin{align*} & \varepsilon=-L \frac{\mathrm{~d} I}{\mathrm{dt}} \tag{1}\\ & -4.80 \times 10^{3}=-50.3 \times 10^{-3} \times \frac{\mathrm{d} I}{\mathrm{dt}} \tag{1}\\ & \frac{\mathrm{~d} I}{\mathrm{dt}}=9.54 \times 10^{4} \mathrm{As}^{-1} \tag{1} \end{align*}$	3	Accept 9.5, 9.543, 9.5427
		(ii)	(Additional) resistor will dissipate energy. Inductor will store energy (and then deliver it to the patient).	2	No energy loss/dissipation in inductor acceptable for second mark.

[END OF MARKING INSTRUCTIONS]

Back to Table

Total marks - 140
Attempt ALL questions

1. A spacecraft accelerates from rest at time $t=0$.

The velocity v of the spacecraft at time t is given by the relationship

$$
v=4 \cdot 2 t^{2}+1 \cdot 6 t
$$

where v is measured in $\mathrm{m} \mathrm{s}^{-1}$ and t is measured in s .
Using calculus methods
(a) determine the time at which the acceleration of the spacecraft is $24 \mathrm{~m} \mathrm{~s}^{-2}$

Space for working and answer
(b) determine the distance travelled by the spacecraft in this time.

Space for working and answer

Back to Table
Marking instructions for each question

Question		Expected response		Max mark	Additional guidance
1.	(a)	$\begin{aligned} & v=4 \cdot 2 t^{2}+1 \cdot 6 t \\ & a\left(=\frac{d v}{d t}\right)=8 \cdot 4 t+1 \cdot 6 \\ & 24=8 \cdot 4 t+1 \cdot 6 \\ & t=2 \cdot 7 \mathrm{~s} \end{aligned}$	(1) (1) (1)	3	Accept: 3, 2•67, 2•667
	(b)	$\begin{aligned} & s=\int\left(4 \cdot 2 t^{2}+1 \cdot 6 t\right) \cdot d t \\ & s=\frac{4 \cdot 2 t^{3}}{3}+\frac{1 \cdot 6 t^{2}}{2}(+c) \\ & (s=0 \text { when } t=0, \text { so } c=0) \\ & s=\frac{4 \cdot 2 \times 2 \cdot 7^{3}}{3}+\frac{1 \cdot 6 \times 2 \cdot 7^{2}}{2} \\ & s=33 \mathrm{~m} \end{aligned}$	(1) (1) (1)	3	Or consistent with (a) Accept: 30,33•4, 33•39 Solution with limits also acceptable $\begin{align*} & s=\int_{0}^{2.7}\left(4 \cdot 2 t^{2}+1 \cdot 6 t\right) \cdot d t \\ & s=\left[\frac{4 \cdot 2 \times t^{3}}{3}+\frac{1 \cdot 6 \times t^{2}}{2}\right]_{0}^{2.7} \tag{1}\\ & s=\left(\frac{4 \cdot 2 \times 2 \cdot 7^{3}}{3}+\frac{1 \cdot 6 \times 2 \cdot 7^{2}}{2}\right)(-0) \tag{1}\\ & s=33 \mathrm{~m} \tag{1} \end{align*}$

2. Riders on a theme park attraction sit in pods, which are suspended by wires. This is shown in Figure 2A.

Figure 2A
(a) (i) During the ride, a pod travels at a constant speed of $8.8 \mathrm{~m} \mathrm{~s}^{-1}$ in a horizontal circle.

The radius of the circle is 7.6 m .
When occupied, the pod has a mass of 380 kg .
Calculate the centripetal force acting on the pod.
Space for working and answer
(ii) State the direction of the centripetal force.
2. (continued)
(b) (i) Figure 2B shows a simplified model of a pod following a horizontal circular path. The pod is suspended from a fixed point by a cord.
On Figure 2B, show the forces acting on the pod as it travels at a constant speed in a horizontal circle.
You must name these forces and show their directions.

Figure 2B
(ii) The speed of the pod decreases.

State the effect this has on the angle θ.
You must justify your answer in terms of the forces acting on the pod.

Back to Table

Question			Expected response	Max mark	Additional guidance
2.	(a)	(i)	$\begin{align*} & F=\frac{m v^{2}}{r} \tag{1}\\ & F=\frac{380 \times 8 \cdot 8^{2}}{7 \cdot 6} \tag{1}\\ & F=3900 \mathrm{~N} \tag{1} \end{align*}$	3	Accept: 4000, 3870, 3872 $\begin{align*} & F=m r \omega^{2} \text { and } \omega=\frac{v}{r} \tag{1}\\ & F=380 \times 7 \cdot 6 \times\left(\frac{8 \cdot 8}{7 \cdot 6}\right)^{2} \tag{1}\\ & F=3900 \mathrm{~N} \tag{1} \end{align*}$
	(a)	(ii)	Towards the centre of the (horizontal) circle	1	Along the radius Along the radius towards the centre
	(b)	(i)		2	
	(b)	(ii)	(θ) decreases (Horizontal component of) tension decreases and weight unchanged	2	MUST JUSTIFY Accept: centripetal force decreases.

3. A gymnast, in a straight position, rotates around a high bar.

This is shown in Figure 3A.

Figure 3A

The mass of the gymnast is 63 kg .
With arms extended, the total length of the gymnast is $2 \cdot 1 \mathrm{~m}$.
The gymnast is rotating with an angular velocity of $7.9 \mathrm{rad} \mathrm{s}^{-1}$.
(a) With arms extended, the gymnast can be approximated as a uniform rod.

Using this approximation, show that the moment of inertia of the gymnast around the bar is $93 \mathrm{~kg} \mathrm{~m}^{2}$.

Space for working and answer
3. (continued)
(b) The gymnast now makes a pike position, by bending at the waist. This is shown in Figure 3B.

Figure 3B
This change of position causes the moment of inertia of the gymnast to decrease to $62 \mathrm{~kg} \mathrm{~m}^{2}$.
(i) Explain why making a pike position results in a decrease in the moment of inertia of the gymnast.
(ii) By considering the conservation of angular momentum, determine the angular velocity of the gymnast in the pike position.
Space for working and answer

Back to Table

Question			Expected response	Max mark	Additional guidance
3.	(a)		$\begin{align*} & I=\frac{1}{3} m l^{2} \tag{1}\\ & I=\frac{1}{3} \times 63 \times 2 \cdot 1^{2} \tag{1}\\ & I=93 \mathrm{kgm}^{2} \end{align*}$	2	SHOW QUESTION Final answer must be shown otherwise (1 max)
	(b)	(i)	Mass (is now distributed) closer to the axis of rotation	1	There must be some implication that the mass distribution/ gymnast/legs is closer to the axis.
		(ii)	$\begin{align*} & I_{1} \omega_{1}=I_{2} \omega_{2} \tag{1}\\ & 93 \times 7 \cdot 9=62 \times \omega_{2} \tag{1}\\ & \omega_{2}=12 \mathrm{rads}^{-1} \tag{1} \end{align*}$	3	Accept 10, 11•9,11•85

4. Passengers are sitting on a bus as it goes around a tight bend at speed.

The following conversation is overheard between two of the passengers after the journey.

Passenger one: 'Did you feel that centrifugal force? It nearly tipped the bus over!'

Passenger two: 'There is no such thing as centrifugal force. It's centripetal force that gets the bus around the bend.'

Passenger one: 'There is centrifugal force, it depends on your frame of reference.’

Passenger two: 'No, centrifugal force is just imaginary.'
Use your knowledge of physics to comment on the overheard conversation.
5. Juno is a spacecraft with a mission to survey Jupiter.

Juno is in an elliptical orbit around Jupiter.
This is shown in Figure 5A.

Figure 5A
(a) The gravitational potential at point A in the orbit of Juno is $-1.70 \times 10^{9} \mathrm{Jkg}^{-1}$. State what is meant by a gravitational potential of $-1.70 \times 10^{9} \mathrm{~J} \mathrm{~kg}^{-1}$.
(b) At point B, Juno is $1.69 \times 10^{8} \mathrm{~m}$ from the centre of Jupiter.

Calculate the gravitational potential at point B.
5. (continued)
(c) The mass of Juno is $1.6 \times 10^{3} \mathrm{~kg}$.

Determine the change in gravitational potential energy of Juno when it has moved from point A to point B.
Space for working and answer

Back to Table

Question		Expected response	Max mark	Additional guidance
5.	(a)	(-) $1 \cdot 70 \times 10^{9}$ joules (of energy) transferred in moving unit mass (or 1 kg) from infinity to that point	1	
	(b)	$\begin{align*} & V=-\frac{G M}{r} \tag{1}\\ & V=-\frac{6 \cdot 67 \times 10^{-11} \times 1 \cdot 90 \times 10^{27}}{1 \cdot 69 \times 10^{8}} \tag{1}\\ & V=-7 \cdot 50 \times 10^{8} \mathrm{Jkg}^{-1} \tag{1} \end{align*}$	3	Accept: 7-5, 7•499, 7-4988
	(c)	$\begin{align*} \Delta V & =-7 \cdot 50 \times 10^{8}-\left(-1 \cdot 70 \times 10^{9}\right) \tag{1}\\ \text { (4) } E_{p} & =(\Delta) V m \tag{1}\\ \text { (4) } E_{p} & =\left(-7.50 \times 10^{8}-\left(-1 \cdot 70 \times 10^{9}\right)\right) \tag{1}\\ & \times 1 \cdot 6 \times 10^{3} \tag{1}\\ \text { (4) } E_{p} & =1.5 \times 10^{12} \mathrm{~J} \tag{1} \end{align*}$	4	Or consistent with (b) Accept: 2, 1.52, 1.520 Alternative method: $\left.\begin{array}{rl} E_{p} & =V m \\ E_{p(B)} & =-7.50 \times 10^{8} \times 1.6 \times 10^{3} \\ E_{p(A)} & =-1.70 \times 10^{9} \times 1.6 \times 10^{3} \end{array}\right\}$

6. In 1915, Albert Einstein presented his general theory of relativity. The equivalence principle is a key part of this theory.
(a) State what is meant by the equivalence principle.
(b) Spacetime diagrams are used to show the world line of objects.

A spacetime diagram representing the world lines of two objects, P and Q , is shown in Figure 6A.

Figure 6A
(i) State which of these objects is accelerating.
(ii) On Figure 6A, draw a world line that would represent a stationary object.
6. (continued)
(c) General relativity explains the spacetime curvature caused by a black hole. This curvature causes a ray of light to appear to be deflected. This is known as gravitational lensing.
The angle of deflection θ, in radians, is given by the relationship

Abstract

$$
\theta=\frac{4 G M}{r c^{2}}
$$ where G is the universal constant of gravitation M is the mass of the black hole r is the distance between the black hole and the ray of light c is the speed of light in a vacuum. (i) Imaging of the region around a black hole shows an angle of deflection of 0.0487 radians when a ray of light is $1.54 \times 10^{6} \mathrm{~m}$ from the black hole. Determine the mass of the black hole. Space for working and answer

6. (c) (continued)
(ii) Gravitational lensing causes the deflection of light rays from background stars that appear close to the edge of the Sun. This phenomenon can be observed during a total solar eclipse.

It can be shown that the angle of deflection θ, in radians, of a ray of light by a star of mass M is related to the Schwarzschild radius of the star and the distance r between the ray of light and the centre of the star.

$$
\theta=\frac{2 r_{\text {schwarzschild }}}{r}
$$

The Schwarzschild radius of the Sun is equal to $3.0 \times 10^{3} \mathrm{~m}$.
(A) Calculate the angle of deflection in radians of a ray of light that grazes the edge of the Sun.
Space for working and answer
(B) On the axes below, sketch a graph showing the observed variation of the angle of deflection of a ray of light with its distance from the centre of the Sun.

Numerical values are not required on either axis.

(An additional diagram, if required, can be found on page 46.)

Back to Table

Question			Expected response	Max mark	Additional guidance
6.	(a)		It is not possible to distinguish between the effects (on a body) of (uniform) acceleration and a (uniform) gravitational field	1	Effects must be implied.
	(b)	(i)	P	1	
		(ii)	vertical straight line	1	
	(c)	(i)	$\begin{align*} & \theta=\frac{4 G M}{r c^{2}} \\ & 0.0487=\frac{4 \times 6.67 \times 10^{-11} \times M}{1.54 \times 10^{6} \times\left(3.00 \times 10^{8}\right)^{2}} \tag{1} \end{align*}$ $\begin{equation*} M=2.53 \times 10^{31} \mathrm{~kg} \tag{1} \end{equation*}$	2	Accept: 2-5, 2•530, 2-5299
		(ii) (A)	$\begin{align*} & \theta=\frac{2 r_{\text {schwarzschild }}}{r} \\ & \theta=\frac{2 \times 3.0 \times 10^{3}}{6 \cdot 955 \times 10^{8}} \tag{1}\\ & \theta=8.6 \times 10^{-6}(\mathrm{rad}) \tag{1} \end{align*}$	2	Accept: 9, 8.63, 8.627
		(ii) (B)		2	Shape of line as an inverse curve asymptotic to x-axis An inverse curve starting from and continuing to the right of the vertical dotted line.

7. A Hertzsprung-Russell (H-R) diagram is shown in Figure 7A.

Figure 7A
(a) Stars are classified depending on their position on the $\mathrm{H}-\mathrm{R}$ diagram.
(i) Four stars are labelled on the H-R diagram.

State which of these stars is a red giant.
(ii) At present the Sun is a main sequence star. It is predicted that the Sun will eventually become a red giant.
(A) State the change that will occur in the fusion reactions within the core of the Sun at the point when it leaves the main sequence.
(B) Explain, in terms of gravitational force and thermal pressure, why the diameter of the Sun will increase as it becomes a red giant.

7. (continued)

(b) Betelgeuse is a red supergiant star in the constellation Orion.

It is $6.1 \times 10^{18} \mathrm{~m}$ from Earth and has an apparent brightness of $1.6 \times 10^{-7} \mathrm{~W} \mathrm{~m}^{-2}$.
(i) Calculate the luminosity of Betelgeuse.

Space for working and answer
(ii) The radius of Betelgeuse is $8.3 \times 10^{11} \mathrm{~m}$.

Calculate the surface temperature of Betelgeuse.
Space for working and answer
(c) Ultimately, every main sequence star will become either a white dwarf, a neutron star or a black hole.
State the property of a star that determines which of these it will eventually become.

Back to Table

Question			Expected response	Max mark	Additional guidance
7.	(a)	(i)	(Star) D	1	
		$\begin{aligned} & \text { (ii) } \\ & \hline \end{aligned}$	Fusion (of hydrogen) (in core) stops	1	
		$\begin{aligned} & \text { (ii) } \\ & \text { B } \end{aligned}$	(Outward forces caused by) thermal pressure exceed gravitational forces.	1	Must compare thermal pressure and gravitational forces.
	(b)	(i)	$\begin{align*} & b=\frac{L}{4 \pi r^{2}} \tag{1}\\ & 1.6 \times 10^{-7}=\frac{L}{4 \pi \times\left(6 \cdot 1 \times 10^{18}\right)^{2}} \tag{1}\\ & L=7.5 \times 10^{31} \mathrm{~W} \tag{1} \end{align*}$	3	Accept: 7, 7-48, 7-482
		(ii)	$\begin{align*} & L=4 \pi r^{2} \sigma T^{4} \tag{1}\\ & 7 \cdot 5 \times 10^{31}=4 \pi\left(8 \cdot 3 \times 10^{11}\right)^{2} \times 5 \cdot 67 \times 10^{-8} \times T^{4} \tag{1}\\ & T=3500 \mathrm{~K} \tag{1} \end{align*}$	3	Accept:4000, 3520, 3516 OR Consistent with (b)(i)
	(c)		Mass	1	

8. Muons are created when cosmic rays enter the atmosphere of the Earth. This is shown in Figure 8A.

Figure 8A

To an observer on Earth the muons appear to have a lifetime of $8 \cdot 5 \mu \mathrm{~s}$.
Instruments on Earth can detect muons and measure muon energy E.
The precision of the muon energy measurement is limited by the lifetime Δt of the muon.
(a) By considering the Heisenberg uncertainty principle, calculate the minimum uncertainty in muon energy $\Delta E_{\text {min }}$.

Space for working and answer

8. (continued)

(b) Some muons, detected at sea level, have an average energy of $4.1 \times 10^{9} \mathrm{eV}$.

An instrument detects 10000 such muons in one minute.
Determine the average total energy, in joules, measured per second.
Space for working and answer
(c) At sea level, these muons have an average momentum of $4.87 \times 10^{-19} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$. By calculating the de Broglie wavelength of a muon with this momentum, explain why muons at sea level can be regarded as particles.

Space for workinand

Back to Table

Question		Expected response	Max mark	Additional guidance
8.	(a)	$\begin{align*} & \Delta E \Delta t \geq \frac{h}{4 \pi} \text { or } \Delta E_{\text {min }} \Delta t=\frac{h}{4 \pi} \tag{1}\\ & \Delta E \times 8 \cdot 5 \times 10^{-6} \geq \frac{6 \cdot 63 \times 10^{-34}}{4 \pi} \tag{1}\\ & \left(\Delta E \geq 6 \cdot 2 \times 10^{-30} \mathrm{~J}\right) \\ & \Delta E_{\text {(min) }}=(\pm) 6 \cdot 2 \times 10^{-30} \mathrm{~J} \tag{1} \end{align*}$	3	Accept: 6, 6•21, 6-207 $\Delta E_{\text {min }} \Delta \mathrm{t} \geq \frac{h}{4 \pi}$ not acceptable for first line
	(b)	particle energy $(\mathrm{J})=4.1 \times 10^{9} \times 1 \cdot 6 \times 10^{-19}$ $\begin{align*} & \text { energy }=\left(4 \cdot 1 \times 10^{9} \times 1 \cdot 6 \times 10^{-19}\right) \times \frac{10000}{60} \tag{1}\\ & \text { energy }=1 \cdot 1 \times 10^{-7}(\mathrm{~J}) \tag{1} \end{align*}$	3	Accept: 1, 1.09, 1.093 Independent mark for $10000 \div 60$
	(c)	$\begin{align*} & \lambda=\frac{h}{p} \tag{1}\\ & \lambda=\frac{6 \cdot 63 \times 10^{-34}}{4 \cdot 87 \times 10^{-19}} \tag{1}\\ & \lambda=1 \cdot 36 \times 10^{-15} \mathrm{~m} \tag{1} \end{align*}$ λ is too small for interference/diffraction to be observed	4	Accept: $1 \cdot 4,1 \cdot 361,1 \cdot 3614$

9. An excerpt from a student's notes on fusion reactions is quoted below.

Electrostatic repulsion must be overcome before fusion can occur.
Two protons repel one another because of the electrostatic force between them.

If two protons can be brought close enough together, however, the electrostatic repulsion can be overcome by the quantum effect in which protons can tunnel through electrostatic forces.

The Heisenberg uncertainty principle suggests that protons can 'borrow' energy in order to overcome their electrostatic repulsion. This allows fusion to occur at lower temperatures than would otherwise be required.

Use your knowledge of physics to comment on this excerpt.
10. (a) Alpha particles are accelerated to a speed of $5 \cdot 0 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$.

The alpha particles are then injected into a magnetic field. The path of the alpha particles is perpendicular to the magnetic field lines.
The magnetic induction is 1.7 T .
The alpha particles follow the circular path shown in Figure 10A.

Figure 10A
(i) (A) Calculate the magnitude of the magnetic force acting on an alpha particle.
Space for working and answer

Back to Table

10. (a) (i) (continued)
(B) This magnetic force provides the centripetal force that causes the alpha particles to follow the circular path.

Calculate the radius of the circular path.
Space for working and answer
(ii) The alpha particles are now replaced by protons.

The protons also travel at $5.0 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$, and are injected into the magnetic field at the same point and in the same direction as the alpha particles.
On Figure 10A, sketch the path followed by the protons after they enter the magnetic field.
(An additional diagram, if required, can be found on page 46)
10. (continued)
(b) Cosmic rays travel through space towards Earth.

Approximately 9% of cosmic rays are alpha particles.
Alpha particles entering the magnetic field of the Earth follow a helical, rather than a circular path.
Explain why alpha particles travelling through the magnetic field of the Earth follow a helical path.
10. (continued)
(c) The Pierre Auger Observatory is a large cosmic ray observatory in Argentina. The location of this observatory is shown in Figure 10B.

Figure 10B
The observatory is at an altitude of 1400 m .
Explain why this choice of location for the observatory was preferred to locations at lower altitude and to locations closer to the equator.

Back to Table

Question			Expected response	Max mark	Additional guidance
10.	(a)	$\begin{align*} & \text { (i) } \tag{1}\\ & \mathrm{A} \end{align*}$	$\begin{align*} & F=q v B \\ & F=3 \cdot 20 \times 10^{-19} \times 5 \cdot 0 \times 10^{6} \times 1 \cdot 7 \tag{1}\\ & F=2 \cdot 7 \times 10^{-12} \mathrm{~N} \tag{1} \end{align*}$	3	Accept: 3, 2•72, 2-720
		$\begin{array}{\|l} \text { (i) } \\ \text { B } \tag{1} \end{array}$	$\begin{align*} & F=\frac{m v^{2}}{r} \\ & 2 \cdot 7 \times 10^{-12}=\frac{6 \cdot 645 \times 10^{-27} \times\left(5 \cdot 0 \times 10^{6}\right)^{2}}{r} \tag{1}\\ & r=6 \cdot 2 \times 10^{-2} \mathrm{~m} \tag{1} \end{align*}$	3	Or consistent with 10(a)(i)A Accept: 6,6•15,6•153 If $m=6.645 \times 10^{-27}$ not used then (max 1) Alternative method: $\begin{align*} & q v B=\frac{m v^{2}}{r} \tag{1}\\ & 3.20 \times 10^{-19} \times 5 \cdot 0 \times 10^{6} \times 1.7 \\ & =\frac{6.645 \times 10^{-27} \times\left(5.0 \times 10^{6}\right)^{2}}{r} \tag{1}\\ & r=6.1 \times 10^{-2} \mathrm{~m} \tag{1} \end{align*}$ Accept: 6,6•11,6•108
		(ii)	Cles)	3	Independent marks smaller circle direction of arrow position of circle

Back to Table

Question		Expected response	Max mark	Additional guidance
10.	(b)	(Component of) velocity perpendicular to the (magnetic) field produces circular motion/central force. (Component of) velocity parallel to the (magnetic) field is constant/results in no (unbalanced) force/is unaffected by the magnetic field.	2	Independent marks 'Horizontal component', 'vertical component' not acceptable
	(c)	(The observatory is at a high altitude,) bringing it closer to (the path of) the cosmic rays/reduces interaction of rays with the atmosphere. (The location is closer to the South Pole,) where the Earth's magnetic field is stronger/field lines are closer together/ higher particle density	2	Independent marks

11. A home improvement shop has a machine that can produce paint of any colour. Small amounts of pigment are added to paint in a tin. The tin is then shaken to produce a uniform colour of paint.

The machine is shown in Figure 11A.

Figure 11A

The tin is placed in the machine and clamped securely. During shaking, the oscillation of the tin in the vertical plane can be modelled as simple harmonic motion.

The tin of paint has a mass of 3.67 kg .
The tin is shaken at a rate of 580 oscillations per minute.
The amplitude of its motion is 0.013 m .
(a) (i) Show that the angular frequency ω of the tin is $61 \mathrm{rad} \mathrm{s}^{-1}$.

Space for working and answer
(ii) Calculate the maximum kinetic energy of the tin.

Back to Table

11. (a) (continued)
(iii) On the axes below, sketch a graph showing the variation of the kinetic energy E_{k} of the tin with the vertical displacement y from its equilibrium position.

Numerical values are required on both axes.

(An additional graph, if required, can be found on page 47.)
(b) A coin falls onto the lid of the tin of paint as it is being clamped into position. The coin loses contact with the lid during the first oscillation.
(i) State the magnitude and direction of the acceleration of the tin when the coin just loses contact with the lid.
(ii) Determine the magnitude of the displacement of the tin from its equilibrium position when the coin just loses contact with the lid.
Space for working and answer

Back to Table

Question			Expected response	Max mark	Additional guidance
11.	(a)	(i)	$\begin{align*} & \omega=2 \pi f \tag{1}\\ & \omega=2 \pi \times \frac{580}{60} \tag{1}\\ & \omega=61 \mathrm{rad} \mathrm{~s}^{-1} \end{align*}$	2	SHOW QUESTION Accept: $\omega=\frac{\theta}{t}$ or $\omega=\frac{d \theta}{d t}$ or $\omega=\frac{2 \pi}{T}$ as a starting point
		(ii)	$\begin{equation*} E_{k}=\frac{1}{2} m \omega^{2}\left(A^{2}-y^{2}\right) \tag{1} \end{equation*}$ maximum E_{k} at $y=0$ $\begin{align*} & E_{k}=\frac{1}{2} \times 3.67 \times 61^{2} \times\left(0.013^{2}-0^{2}\right) \tag{1}\\ & E_{k}=1 \cdot 2 \mathrm{~J} \tag{1} \end{align*}$	3	$E_{k_{(\text {max })}}=\frac{1}{2} m \omega^{2} A^{2}$ acceptable Accept: $1,1 \cdot 15,1 \cdot 154$
		(iii)		3	independent marks shape (inverted curve) Line reaches, but does not exceed ± 0.013 on horizontal axis Line reaches, but does not exceed $1 \cdot 2$ on vertical axis OR consistent with (a)(ii)
	(b)	(i)	$9.8 \mathrm{~ms}^{-2}$ DOWNWARDS	1	magnitude AND direction required
		(ii)	$\begin{align*} & a=-\omega^{2} y \tag{1}\\ & (-) 9 \cdot 8=(-) 61^{2} \times y \tag{1}\\ & y=(-) 2 \cdot 6 \times 10^{-3} \mathrm{~m} \tag{1} \end{align*}$	3	OR consistent with (b)(i) Accept: 3, 2•63, 2•634

12. A student is performing an experiment to determine the speed of sound in air.

The student uses the apparatus shown in Figure 12A.

Figure 12A

The microphone is in a fixed position.
The signal generator is switched on.
A stationary wave is formed within the tube.
(a) (i) Explain how the stationary wave is formed.
(ii) At one frequency the microphone detects a loud sound. The frequency produced by the signal generator is now increased gradually.

Describe what happens to the loudness of the sound detected by the microphone as the frequency is being increased to twice its original value.
12. (continued)
(b) At specific frequencies the air in the tube will resonate.

Frequencies that cause resonance can be determined by the relationship

$$
f=\frac{n v}{4 L}
$$

where
v is the speed of sound in air
L is the length of the tube
n is the number of half-wavelengths of sound waves in the tube.
The student measures the length of the tube to be $(2.00 \pm 0.02) \mathrm{m}$.
The student notes that the resonant frequency is $(510 \pm 10) \mathrm{Hz}$ when there are eleven half-wavelengths of sound waves in the tube.
(i) Use the data obtained by the student to calculate a value for the speed of sound in air.
Space for working and answer.
(ii) Determine the absolute uncertainty in this value.

Space for working and answer.
12. (continued)
(c) The student now uses a graphical method to determine the speed of sound in air. Using a software graphing package, the student produces the graph shown in Figure 12B.

Figure 12B
12. (c) (continued)
(i) Using information from the graph, determine the speed of sound in air.

Space for working and answer.
(ii) Using the graphing package, the student estimates a 2% uncertainty in the value of the speed of sound in air obtained.
(A) State how the precision of the value obtained by the graphical method compares with the precision of the value obtained in (b).
(B) State how the accuracy of the value obtained by the graphical method compares with the accuracy of the value obtained in (b).
(iii) The line of best fit on the graph does not pass through the origin as theory predicts. This may be due to a systematic uncertainty.
Suggest a possible source of a systematic uncertainty in the experiment.

Back to Table

Question			Expected response	Max mark	Additional guidance
12.	(a)	(i)	(The incident wave reflects from the closed end) The incident/transmitted and reflected waves interfere/superimposed	1	
		(ii)	The sound will get quieter The sound will then get louder again (when the frequency has doubled).	2	$2^{\text {nd }}$ mark dependant on $1^{\text {st }}$ mark
	(b)	(i)	$\begin{align*} & f=\frac{n v}{4 L} \tag{1}\\ & 510=\frac{11 \times v}{4 \times 2 \cdot 00} \tag{1}\\ & v=370 \mathrm{~ms}^{-1} \tag{1} \end{align*}$	2	Accept: 400, 371, 370.9
		(ii)	$\begin{align*} & \frac{\Delta W}{W}=\sqrt{\left(\frac{\Delta X}{X}\right)^{2}+\left(\frac{\Delta Y}{Y}\right)^{2}+\left(\frac{\Delta Z}{Z}\right)^{2}} \tag{1}\\ & \frac{\Delta L}{L}=\frac{0 \cdot 02}{2 \cdot 00} \\ & \frac{\Delta f}{f}=\frac{10}{510} \\ & \frac{\Delta v}{370}=\sqrt{\left(\frac{0 \cdot 02}{2 \cdot 00}\right)^{2}+\left(\frac{10}{510}\right)^{2}} \tag{1}\\ & \Delta v=(\pm) 8 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$ (1 for both)	4	Speed used should be consistent with (b)(i) Use of percentage rather than fractional uncertainty is acceptable.

Back to Table

Question			Expected response	Max mark	Additional guidance
12.	(a)	(i)	(The incident wave reflects from the closed end) The incident/transmitted and reflected waves interfere/superimposed	1	
		(ii)	The sound will get quieter The sound will then get louder again (when the frequency has doubled).	2	$2^{\text {nd }}$ mark dependant on $1^{\text {st }}$ mark
	(b)	(i)	$\begin{align*} & f=\frac{n v}{4 L} \tag{1}\\ & 510=\frac{11 \times v}{4 \times 2 \cdot 00} \tag{1}\\ & v=370 \mathrm{~ms}^{-1} \tag{1} \end{align*}$	2	Accept: 400, 371, 370.9
		(ii)	$\begin{align*} & \frac{\Delta W}{W}=\sqrt{\left(\frac{\Delta X}{X}\right)^{2}+\left(\frac{\Delta Y}{Y}\right)^{2}+\left(\frac{\Delta Z}{Z}\right)^{2}} \tag{1}\\ & \frac{\Delta L}{L}=\frac{0 \cdot 02}{2 \cdot 00} \\ & \frac{\Delta f}{f}=\frac{10}{510} \\ & \frac{\Delta v}{370}=\sqrt{\left(\frac{0 \cdot 02}{2 \cdot 00}\right)^{2}+\left(\frac{10}{510}\right)^{2}} \tag{1}\\ & \Delta v=(\pm) 8 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$ (1 for both)	4	Speed used should be consistent with (b)(i) Use of percentage rather than fractional uncertainty is acceptable.

13. A student uses a double slit to produce an interference pattern with green light from an LED. This is shown in Figure 13A.

Figure 13A
The LED emits light of wavelength 550 nm .
The student makes the following measurements.

14 fringe separations	43.4 mm
Distance from slits to screen	2.95 m

(a) (i) Determine the distance between the slits.

Space for working and answer
(ii) Explain why the student measured 14 fringe separations rather than measuring the separation of two adjacent fringes.
13. (continued)
(b) The student replaces the green LED with an LED that emits red light.

Apart from colour, state how the fringe pattern now observed by the student differs from the pattern produced by the green LED. You must justify your answer.
[Turn over
13. (continued)
(c) A second student uses a different arrangement to produce an interference pattern.
Monochromatic light of wavelength 550 nm is shone onto a soap film at nearly normal incidence. The light is reflected from the soap film and an interference pattern is visible on the film.
This arrangement is shown in Figure 13B.

Figure 13B

An expanded side view of the soap film and light rays is shown in Figure 13C.

Figure 13C

Back to Table

13. (c) (continued)
(i) At Y the thickness of the film is $3.39 \times 10^{-6} \mathrm{~m}$.

The refractive index of the film is 1.46 .
Determine the optical path difference between reflected ray 1 and reflected ray 2.
Space for working and answer
(ii) There is an area of destructive interference at Y .

The next area of destructive interference occurs at X, where the film is slightly thinner.
Determine the optical path difference between the reflected rays at X.

Space for working and answer

Back to Table

Question			Expected response	Max mark	Additional guidance
13.	(a)	(i)	$\begin{align*} & \Delta x=\frac{43 \cdot 4 \times 10^{-3}}{14} \tag{1}\\ & \Delta x=\frac{\lambda D}{d} \tag{1}\\ & \frac{43 \cdot 4 \times 10^{-3}}{14}=\frac{550 \times 10^{-9} \times 2.95}{d} \tag{1}\\ & d=5 \cdot 2 \times 10^{-4} \mathrm{~m} \tag{1} \end{align*}$	4	The mark for substitution to determine $\Delta \mathrm{x}$ is independent Accept: 5, 5•23, 5•234
		(ii)	Measuring over multiple fringe separations reduces the uncertainty in Δx. OR Measuring over multiple fringe separations reduces the uncertainty in d.	1	Reducing absolute scale reading uncertainty in Δx (0 marks)
	(b)		The fringe separation will increase λ has increased and d and D are unchanged	2	MUST JUSTIFY Accept: λ has increased and $\Delta x \propto \lambda$ for second mark.
	(c)	(i)	optical path difference $=$ $n \times$ geometrical path difference optical path difference $=$ $1 \cdot 46 \times\left(2 \times 3 \cdot 39 \times 10^{-6}\right)$ optical path difference $=$ $9.90 \times 10^{-6} \mathrm{~m}$	3	Accept: 9•9, 9.899, 9.8988
		(ii)	optical path difference $=$ $9.90 \times 10^{-6}-550 \times 10^{-9}$ optical path difference $=$ $9.35 \times 10^{-6} \mathrm{~m}$	1	OR consistent with (c)(i)

14. (a) (i) A point charge of $+1 \cdot 3 \times 10^{-14} \mathrm{C}$ is placed 48 mm from point P. Show that the electrical potential at P due to this charge is $2.4 \times 10^{-3} \mathrm{~V}$.

Space for working and answer.
(ii) A second point charge, of $-1.3 \times 10^{-14} \mathrm{C}$, is now placed 52 mm from P.

This is shown in Figure 14A.

Figure 14A
Determine the electrical potential at P due to both charges.
Space for working and answer.
14. (continued)
(b) Some virtual reality headsets detect changes in electrical potential caused by movement of charge within the human eye.
The human eye can be modelled as two point charges.
In this model there is a positive charge near the front of the eye (iris), and a negative charge near the back of the eye (retina).
This is shown in Figure 14B.

Figure 14B

When the eye looks from side to side, the positive charge moves while the negative charge remains in a fixed position.

An electrode in contact with the head can measure the electrical potential at that point due to these charges.

State what happens to the electrical potential at the electrode as the iris moves towards the electrode.
You must justify your answer.

Back to Table

Question			Expected response	Max mark	Additional guidance
14.	(a)	(i)	$\begin{align*} & V=\frac{Q}{4 \pi \varepsilon_{0} r} \tag{1}\\ & V=\frac{1 \cdot 3 \times 10^{-14}}{4 \pi \times 8 \cdot 85 \times 10^{-12} \times 48 \times 10^{-3}} \tag{1}\\ & V=2.4 \times 10^{-3} \mathrm{~V} \end{align*}$	2	SHOW QUESTION $\begin{align*} & V=k \frac{Q}{r} \\ & V=9 \times 10^{9} \times \frac{1.3 \times 10^{-14}}{48 \times 10^{-3}} \tag{1}\\ & V=2.4 \times 10^{-3} \mathrm{~V} \end{align*}$ Final answer must be shown or max (1 mark).
		(ii)	$\begin{align*} & \left(\begin{array}{l} \left.V=\frac{Q}{4 \pi \varepsilon_{0} r}\right) \\ V_{(-)}=\frac{-1 \cdot 3 \times 10^{-14}}{4 \pi \times 8 \cdot 85 \times 10^{-12} \times 52 \times 10^{-3}} \\ \left(V_{(P)}=V_{(+)}+V_{(-)}\right) \\ V_{(P)}=2 \cdot 4 \times 10^{-3}+\frac{-1 \cdot 3 \times 10^{-14}}{4 \pi \times 8 \cdot 85 \times 10^{-12} \times 52 \times 10^{-3}} \\ V_{(P)}=1 \cdot 5 \times 10^{-4} \mathrm{~V} \end{array}\right. \end{align*}$	3	Method using k as above acceptable. Accept: 2, 1.52, 1.520 (ϵ_{0}) Accept: 2, 1.50, 1.500 (k)
	(b)		The electrical potential (at the electrode) will increase. As the electrical potential due to the positive charge will increase while the electrical potential due to the negative charge remains constant. OR As the distance from the positive charge to the electrode will decrease while the distance from the negative charge to the electrode remains constant.	2	MUST JUSTIFY.

15. A small, thin, rectangular, metal plate is connected to a d.c. power supply as shown in Figure 15A.
d.c. power supply

Figure 15A
Electrons move through the plate from left to right.
A uniform magnetic field is now applied at right angles to the plate.
This is shown in Figure 15B.

Figure 15B

As the electrons enter the metal plate they experience a force due to the magnetic field. This causes the electrons to initially follow a curved path downwards and gather at the bottom of the metal plate.
(a) Determine whether the direction of the magnetic field is into the page or out of the page.
15. (continued)
(b) After a short time, the bottom of the plate becomes negatively charged relative to the top of the plate, as shown in Figure 15C.

Figure 15C

This causes a uniform electric field between the top and bottom of the metal plate.

Electrons moving at a fixed speed v_{d}, called the drift velocity, will now travel horizontally across the plate. These electrons do not move vertically as the electric and magnetic forces acting on them are balanced.
(i) Show that the drift velocity is given by the relationship

$$
v_{d}=\frac{V}{B d}
$$

where
V is the potential difference between the top and bottom of the metal plate
B is the magnetic induction
d is the height of the metal plate.
15. (b) (continued)
(ii) The metal plate has a height of $3.25 \times 10^{-2} \mathrm{~m}$.

The magnetic induction is 1.25 T .
The potential difference between the top of the plate and the bottom of the plate is $3.47 \times 10^{-6} \mathrm{~V}$.
Calculate the drift velocity of the electrons moving across the plate.
Space for working and answer
(iii) The magnetic induction is now increased. The drift velocity of the electrons moving through the metal plate remains the same.
Explain why the drift velocity does not change.

Back to Table

Question			Expected response	Max mark	Additional guidance
15.	(a)		Into the page.	1	
	(b)	(i)	$\begin{align*} & \left(F_{(E)}=Q E, F_{(B)}=q v B\right) \\ & E Q=q v B \tag{1}\\ & E=v B \\ & V=E d \tag{1}\\ & v=\frac{V}{B d} \end{align*}$	3	SHOW QUESTION (1 mark) for both relationships, (1 mark) for equality of forces or fields Final line must appear or max (2 marks)
		(ii)	$\begin{align*} & v_{d}=\frac{V}{B d} \\ & v_{d}=\frac{3 \cdot 47 \times 10^{-6}}{1 \cdot 25 \times 3 \cdot 25 \times 10^{-2}} \tag{1}\\ & v_{d}=8 \cdot 54 \times 10^{-5} \mathrm{~ms}^{-1} \tag{1} \end{align*}$	2	Accept: $8 \cdot 5,8 \cdot 542,8 \cdot 5415$
		(iii)	Because more charges have been separated (vertically) across the plate. OR More electrons gather on the bottom of the plate. (The increased magnetic force) increases the electric force/potential difference/electric field strength (across the plate).	2	Marks are independent.

16. A technician finds an unlabelled capacitor and carries out an experiment to determine its capacitance.
The technician builds a circuit using a battery, a $2.2 \mathrm{k} \Omega$ resistor, a voltmeter and the unlabelled capacitor. The technician constructs the circuit so that the potential difference across the capacitor is measured as it charges.
(a) (i) Draw a diagram of a circuit that would enable the technician to carry out this experiment.
(ii) The data obtained from the experiment are used to draw the graph of potential difference V against time t shown in Figure 16A.

Figure 16A

Use the graph to determine the time constant of this circuit.

Back to Table

16. (a) (continued)
(iii) Calculate the capacitance of the unlabelled capacitor.

Space for working and answer.
(b) The technician also finds an unlabelled inductor and wishes to determine its inductance.
(i) The technician connects the inductor to a data logger, a switch and a 9.0 V d.c. supply. When the circuit is switched on, the initial rate of change of current is determined to be $95 \cdot 8 \mathrm{~A} \mathrm{~s}^{-1}$.

Calculate the inductance of the inductor.
Space for working and answer.
(ii) The technician connects the inductor and a d.c. ammeter to a 9.0 V d.c. power supply. The technician records the maximum ammeter reading.

The technician then connects the inductor and an a.c. ammeter to a 9.0 V r.m.s. a.c. power supply. The technician again records the maximum ammeter reading.
The technician notices that the values of current recorded are different.

State which ammeter displays the greater current reading.
You must justify your answer.

Back to Table

Question			Expected response	Max mark	Additional guidance
16.	(a)	(i)	A series circuit containing a battery or cell, a resistor and capacitor in series. Voltmeter connection should be in parallel with the capacitor.	1	
		(ii)	$\begin{equation*} 63 \% \text { of } 6.0(\mathrm{~V})(=3.8 \mathrm{~V})) \tag{1} \end{equation*}$ (From graph, $t=0.55 \mathrm{~s}$ when $V=3.8 \mathrm{~V}$) $\begin{equation*} t=0.55 \mathrm{~s} \tag{1} \end{equation*}$	2	(Considered) fully charged after 3-4s $\begin{equation*} t=0.6 \rightarrow 0.8 \tag{1} \end{equation*}$
		(iii)	$\begin{align*} & t=R C \tag{1}\\ & 0 \cdot 55=2 \cdot 2 \times 10^{3} \times C \tag{1}\\ & \mathrm{C}=2 \cdot 5 \times 10^{-4} \mathrm{~F} \tag{1} \end{align*}$	3	Or consistent with (a)(ii) Accept: 3, 2•50, 2•500
	(b)	(i)	$\begin{align*} & \varepsilon=-L \frac{d I}{d t} \tag{1}\\ & -9 \cdot 0=-L \times 95.8 \tag{1}\\ & L=9.4 \times 10^{-2} \mathrm{H} \tag{1} \end{align*}$	3	Accept: 9, 9•39, 9.395
		(ii)	The d.c. ammeter will display the greater current. Since the a.c. current will generate reactance or impedance in the inductor	2	MUST JUSTIFY

[END OF MARKING INSTRUCTIONS]

\square

Fill in these boxes and read what is printed below.

Full name of centre

Town

Surname

Number of seat

Date of birth

Scottish candidate number

Total marks - 155
Attempt ALL questions.
Reference may be made to the Physics Relationships Sheet X857/77/11 and the Data Sheet on page 02.
Write your answers clearly in the spaces provided in this booklet. Additional space for answers and rough work is provided at the end of this booklet. If you use this space you must clearly identify the question number you are attempting. Any rough work must be written in this booklet. You should score through your rough work when you have written your final copy.
Care should be taken to give an appropriate number of significant figures in the final answers to calculations.
Use blue or black ink.
Before leaving the examination room you must give this booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

COMMON PHYSICAL QUANTITIES

Quantity	Symbol	Value	Quantity	Symbol	Value
Gravitational acceleration on Earth Radius of Earth Mass of Earth Mass of Jupiter Radius of Jupiter Mean Radius of Jupiter Orbit Solar radius Mass of Sun 1 AU Stefan-Boltzmann constant Universal constant of gravitation	$\begin{aligned} & g \\ & R_{\mathrm{E}} \\ & M_{\mathrm{E}} \\ & M_{\mathrm{J}} \\ & R_{\mathrm{J}} \end{aligned}$ σ	$\begin{aligned} & 9.8 \mathrm{~m} \mathrm{~s}^{-2} \\ & 6.4 \times 10^{6} \mathrm{~m} \\ & 6.0 \times 10^{24} \mathrm{~kg} \\ & 1.90 \times 10^{27} \mathrm{~kg} \\ & 7.15 \times 10^{7} \mathrm{~m} \\ & 7.79 \times 10^{11} \mathrm{~m} \\ & 6.955 \times 10^{8} \mathrm{~m} \\ & 2.0 \times 10^{30} \mathrm{~kg} \\ & 1.5 \times 10^{11} \mathrm{~m} \\ & 5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4} \\ & 6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2} \end{aligned}$	Mass of electron Charge on electron Mass of neutron Mass of proton Mass of alpha particle Charge on alpha particle Charge on copper nucleus Planck's constant Permittivity of free space Permeability of free space Speed of light in vacuum Speed of sound in air	$\begin{aligned} & m_{\mathrm{e}} \\ & e \\ & m_{\mathrm{n}} \\ & m_{\mathrm{p}} \\ & m_{a} \end{aligned}$ h ε_{0} μ_{0} c v	$\begin{aligned} & 9.11 \times 10^{-31} \mathrm{~kg} \\ & -1.60 \times 10^{-19} \mathrm{C} \\ & 1.675 \times 10^{-27} \mathrm{~kg} \\ & 1.673 \times 10^{-27} \mathrm{~kg} \\ & 6.645 \times 10^{-27} \mathrm{~kg} \\ & 3.20 \times 10^{-19} \mathrm{C} \\ & 4.64 \times 10^{-18} \mathrm{C} \\ & 6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\ & 8.85 \times 10^{-12} \mathrm{Fm}^{-1} \\ & 4 \pi \times 10^{-7} \mathrm{Hm}^{-1} \\ & 3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\ & 3.4 \times 10^{2} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$

REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K .

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Glycerol	1.47
Glass	1.51	Water	1.33
Ice	1.31	Air	1.00
Perspex	1.49	Magnesium Fluoride	1.38

SPECTRAL LINES

Element	Wavelength (nm)	Colour	Element	Wavelength (nm)	Colour
Hydrogen	$\begin{aligned} & \hline 656 \\ & 486 \\ & 434 \\ & 410 \\ & 397 \\ & 389 \\ & 589 \end{aligned}$	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	$\begin{aligned} & 644 \\ & 509 \\ & 480 \end{aligned}$	Red Green Blue
				Lasers	
			Element	Wavelength (nm)	Colour
Sodium		Yellow	Carbon dioxide Helium-neon	$\left.\begin{array}{r} 9550 \\ 10590 \\ 633 \end{array}\right\}$	Infrared Red

PROPERTIES OF SELECTED MATERIALS

Substance	Density ($\mathrm{kg} \mathrm{m}^{-3}$)	Melting Point (K)	Boiling Point (K)	Specific Heat Capacity ($\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$)	Specific Latent Heat of Fusion (Jkg^{-1})	Specific Latent Heat of Vaporisation (Jkg^{-1})
Aluminium	2.70×10^{3}	933	2623	9.02×10^{2}	3.95×10^{5}	
Copper	8.96×10^{3}	1357	2853	3.86×10^{2}	2.05×10^{5}	
Glass	2.60×10^{3}	1400	. . .	6.70×10^{2}		
Ice	9.20×10^{2}	273	. . .	$2 \cdot 10 \times 10^{3}$	3.34×10^{5}	
Glycerol	1.26×10^{3}	291	563	2.43×10^{3}	1.81×10^{5}	8.30×10^{5}
Methanol	7.91×10^{2}	175	338	2.52×10^{3}	9.9×10^{4}	$1 \cdot 12 \times 10^{6}$
Sea Water	1.02×10^{3}	264	377	3.93×10^{3}		
Water	1.00×10^{3}	273	373	4.18×10^{3}	$3 \cdot 34 \times 10^{5}$	2.26×10^{6}
Air	$1 \cdot 29$		
Hydrogen	9.0×10^{-2}	14	20	1.43×10^{4}		4.50×10^{5}
Nitrogen	1.25	63	77	1.04×10^{3}	. . .	2.00×10^{5}
Oxygen	1.43	55	90	9.18×10^{2}		$2 \cdot 40 \times 10^{4}$

The gas densities refer to a temperature of 273 K and a pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.

1. During a rollercoaster ride, a train is moving along a track as shown in Figure 1A.

Figure 1A

At time $t=0$, the train reaches a straight section of track. It takes 4.0 seconds to move over this section of track.
The horizontal velocity v_{h} of the train, over this section of track, is given by the relationship

$$
v_{h}=8+4 t^{2}-\frac{2}{3} t^{3}
$$

where v_{h} is in $\mathrm{m} \mathrm{s}^{-1}$ and t is in s .
Using calculus methods
(a) determine the horizontal acceleration of the train at $t=4.0 \mathrm{~s}$

Space for working and answer
(b) determine the horizontal displacement of the train at $t=4.0 \mathrm{~s}$.

Space for working and answer

Back to Table

Marking instructions for each question

Question		Expected response	Max mark	Additional guidance
1.	(a)	$\begin{align*} & a\left(=\frac{d v}{d t}\right)=8 t-2 t^{2} \tag{1}\\ & a=8 \times 4 \cdot 0-2 \times 4 \cdot 0^{2} \tag{1}\\ & a=0 \cdot 0 \mathrm{~m} \mathrm{~s}^{-2} \tag{1} \end{align*}$	3	Accept: $0 \mathrm{~ms}^{-2}$ Unit of acceleration required or max 2 .
	(b)	$\begin{align*} & s\left(=\int v \cdot d t\right)=8 t+\frac{4}{3} t^{3}-\frac{2}{3 \times 4} t^{4}(+c) \tag{1}\\ & s=8 \times 4 \cdot 0+\frac{4}{3} \times 4 \cdot 0^{3}-\frac{2}{3 \times 4} \times 4 \cdot 0^{4} \tag{1}\\ & s=75 \mathrm{~m} \tag{1} \end{align*}$	3	Ignore poor form with integration constant/limits. Solution with limits also acceptable. $\begin{align*} & \left(s=\left(\int_{0}^{40} v \cdot d t\right)=\int_{0}^{4 \cdot 0}\left(8+4 t^{2}-\frac{2}{3} t^{3}\right) \cdot d t\right) \\ & s=\left[8 t-\frac{4}{3} t^{3}-\frac{2}{3 \times 4} t^{4}\right]_{0}^{40} \tag{1}\\ & s=\left(8 \times 4 \cdot 0+\frac{4}{3} \times 4 \cdot 0^{3}-\frac{2}{3 \times 4} \times 4 \cdot 0^{4}\right)-0 \tag{1}\\ & s=75 \mathrm{~m} \tag{1} \end{align*}$ Accept: 70, 74•7, 74.67

(1)
2. A cyclist is using an exercise bicycle.

A large flywheel forms part of the exercise bicycle, as shown in Figure 2A.

Figure 2A
The rotational motion of the flywheel is monitored by sensors at its outer edge.
Data from the sensors is used to calculate equivalent linear speeds, which are displayed on the screen.
(a) The cyclist is pedalling steadily. A constant linear speed of $6.7 \mathrm{~m} \mathrm{~s}^{-1}$ is displayed on the screen.
(i) The flywheel has a radius of 0.35 m .

Calculate the angular velocity of the flywheel.
Space for working and answer
2. (a) (continued)
(ii) The cyclist now stops pedalling for $5 \cdot 5$ seconds and the flywheel slows down due to a constant frictional torque.
The flywheel has a constant angular acceleration of $-2 \cdot 4 \mathrm{rad} \mathrm{s}^{-2}$.
Determine the number of revolutions made by the flywheel in this time.
Space for working and answer
(iii) The cyclist reduces the frictional torque acting on the flywheel.

The cyclist resumes pedalling until the screen again displays a linear speed of $6.7 \mathrm{~m} \mathrm{~s}^{-1}$.
The cyclist then stops pedalling for another $5 \cdot 5$ seconds.
State how the number of revolutions made by the flywheel in this $5 \cdot 5$ seconds compares with your answer to (a) (ii).
Justify your answer.
2. (continued)
(b) The frictional torque is produced by a brake pad in contact with the flywheel.
Figure $2 B$ shows four possible positions A, B, C, and D at which the brake pad could come into contact with the flywheel.

Figure 2B

The brake pad would apply the same force in each of these positions.
State which of these positions would allow the brake pad to produce the greatest frictional torque on the flywheel.
Justify your answer.

Back to Table

Question			Expected response	Max mark	Additional guidance
2.	(a)	(i)	$\begin{align*} & v=r \omega \\ & 6 \cdot 7=0 \cdot 35 \times \omega \tag{1}\\ & \omega=19 \mathrm{rads}^{-1} \tag{1} \end{align*}$	3	Accept: 20, 19.1, 19.14.
		(ii)	$\begin{align*} & \theta=\omega_{o} t+\frac{1}{2} \alpha t^{2} \tag{1}\\ & \theta=19 \times 5 \cdot 5+\frac{1}{2} \times-2 \cdot 4 \times 5 \cdot 5^{2} \tag{1}\\ & \text { no. revolutions }=\frac{19 \times 5 \cdot 5+\frac{1}{2} \times-2 \cdot 4 \times 5 \cdot 5^{2}}{2 \pi} \tag{1} \end{align*}$	4	Or consistent with (a)(i) Independent 1 mark for dividing a value of θ by 2π For alternative methods: 1 mark for all relationships 1 mark for all substitutions 1 mark for dividing by 2π 1 mark for final answer Use of $\omega=0$ is incorrect substitution. Accept: 10, 10.9, 10.85
		(iii)	Greater (number of revolutions) Smaller angular acceleration (during this 5.5 seconds means the wheel has a greater angular displacement).	2	JUSTIFY For justification, do not accept reduced friction/frictional torque only. Angular acceleration must be specified for the second mark.
	(b)		D. Applying the force at a greater distance from the axis of rotation (will generate a greater torque on the flywheel as $\tau=F r$)	2	JUSTIFY For justification, do not accept greater distance from the centre/middle of the flywheel

3. The apparatus shown in Figure 3A is used to investigate conservation of angular momentum.

Figure 3A

A sensor in the smart pulley is used to determine the angular velocity and angular acceleration of the rotating disc.
(a) During one experiment, the torque applied to the rotating disc is $6.30 \times 10^{-3} \mathrm{~N} \mathrm{~m}$. This torque produces an angular acceleration of $0.618 \mathrm{rad} \mathrm{s}^{-2}$.

Show that the moment of inertia of the rotating disc is $1.02 \times 10^{-2} \mathrm{~kg} \mathrm{~m}^{2}$.
Space for working and answer
(b) (i) State the principle of conservation of angular momentum.
3. (b) (continued)
(ii) In another experiment, the rotating disc has a constant angular velocity of $7.75 \mathrm{rad} \mathrm{s}^{-1}$.

A small cube is dropped onto the rotating disc close to the axis of rotation. The cube remains at a constant distance from the axis of rotation.

The angular velocity of the rotating disc decreases to $5 \cdot 74 \mathrm{rad} \mathrm{s}^{-1}$.
Determine the moment of inertia of the cube at this position.
Space for working and answer
(iii) The small cube is removed and the disc is again set to rotate at a constant angular velocity of $7.75 \mathrm{rad} \mathrm{s}^{-1}$.
A small cube of greater mass is now dropped onto the rotating disc. This cube remains at the same distance from the axis of rotation as the cube in (b) (ii).
State whether the resulting angular velocity of the rotating disc is more than, equal to or less than $5 \cdot 74 \mathrm{rad} \mathrm{s}^{-1}$.

You must justify your answer.

Back to Table

Question			Expected response	Max mark	Additional guidance
3.	(a)		$\begin{align*} & \tau=I \alpha \tag{1}\\ & 6.30 \times 10^{-3}=I \times 0.618 \tag{1}\\ & I=1.02 \times 10^{-2} \mathrm{~kg} \mathrm{~m}^{2} \end{align*}$	2	SHOW Final answer must be shown or $\max 1$.
	(b)	(i)	The total angular momentum before (an interaction) is equal to the total angular momentum after (an interaction) in the absence of external torque.	1	Conservation relationship on its own is insufficient. 'Angular momentum is conserved' award 0 .
		(ii)	$\begin{align*} & I_{1} \omega_{1}=I_{2} \omega_{2} \tag{1}\\ & 1 \cdot 02 \times 10^{-2} \times 7.75=\left(1.02 \times 10^{-2}+I_{\text {cube }}\right) \times 5.74 \tag{1}\\ & I_{\text {cube }}=3.57 \times 10^{-3} \mathrm{kgm}^{2} \tag{1} \end{align*}$	3	Accept alternative subscripts in the conservation relationship. Accept: 3.6, 3.572. 3.5718
		(iii)	(The angular velocity will be) less (than $5 \cdot 74$) since the moment of inertia (of the system) will be greater.	2	MUST JUSTIFY Justification must make reference to moment of inertia. Increased mass alone is insufficient for justification mark.

4. A space probe is travelling through the region of space known as the Kuiper Belt. The Kuiper Belt lies beyond the orbit of Neptune and contains a large number of small asteroids.
As the probe passes through the Kuiper Belt, it travels close to two asteroids. Both asteroids can be approximated as spherical masses.
This is shown in Figure 4A.
not to scale

Figure 4A
(a) (i) State what is meant by the term gravitational field strength.
(ii) On Figure 4B, sketch the gravitational field lines in the region between the asteroids. Gravitational effects from other objects can be ignored.

Figure 4B
(An additional diagram, if required, can be found on page 51.)
4. (a) (continued)
(iii) The probe must reach point P. Two possible paths to this point are shown on Figure 4C.

Figure 4C
State whether the energy required to move the probe to point P via path A will be more than, equal to or less than the energy required to move the probe to point P via path B.
Justify your answer.

4. (continued)

(b) As the probe travels further from Earth, its on-board clock becomes increasingly desynchronised from clocks on Earth.
State whether the clock on board the probe runs faster or slower than clocks on Earth.
You must justify your answer.
(c) Another asteroid in the Kuiper Belt is at a distance of 49.8 AU from the

Calculate the minimum velocity for this asteroid to escape the gravitational field of the Sun.
Space for working and answer

Space for working and answer

Back to Table

Question			Expected response	Max mark	Additional guidance
4.	(a)	(i)	The gravitational force acting on a unit mass.	1	'force due to gravity' acceptable alternative to 'gravitational force' 'acting on a mass of 1 kg ' acceptable alternative to 'acting on a unit mass'
		(ii)	1 mark for shape of field and direction of lines. 1 mark for skew (null point closer to smaller asteroid).	2	Independent marks Field lines should be (approximately) normal to the surface of the asteroids. Field lines should not cross. Field lines should not meet at the same point on the surface of the asteroids.
		(iii)	Equal to Since the energy required to move mass between two points in a gravitational field is independent of the path taken.	2	JUSTIFY Accept justification in terms of 'conservative field'.
	(b)		(The clock on the probe runs) faster. As it is in a weaker gravitational field.	2	MUST JUSTIFY Correct converse statement acceptable. Statement and justification must be in terms of GR, since GR dominates SR effects in this situation.
	(c)		$\begin{align*} & v=\sqrt{\frac{2 G M}{r}} \tag{1}\\ & r=49 \cdot 8 \times 1 \cdot 5 \times 10^{11} \tag{1}\\ & v=\sqrt{\frac{2 \times 6 \cdot 67 \times 10^{-11} \times 2 \cdot 0 \times 10^{30}}{49 \cdot 8 \times 1 \cdot 5 \times 10^{11}}} \tag{1}\\ & v=6 \cdot 0 \times 10^{3} \mathrm{~ms}^{-1} \tag{1} \end{align*}$	4	Independent mark for unit conversion. Accept: 6, 5.98, 5.976

5. A 'coin vortex donation box' used for charitable donations is shown in Figure 5A.

Figure 5A
The donation box has a curved cone. Coins will roll round the curved cone in a spiral path before falling into the centre.
A physics teacher watching a coin roll as it falls into the centre, makes the following observation.
'This is an excellent model for visualising how a small object follows the curvature of spacetime around a larger object.

However, the model isn't perfect.'
Using your knowledge of physics, comment on this observation.
6. The star HD 209458, in the constellation Pegasus, has similar properties to the Sun.
(a) State the name given to the series of fusion reactions that converts hydrogen to helium inside the core of stars such as HD 209458.
(b) The surface temperature of HD 209458 is 6070 K and its radius is $8.35 \times 10^{8} \mathrm{~m}$.
(i) Calculate the luminosity of HD 209458.

Space for working and answer
(ii) HD 209458 is 159 light-years from Earth.

Determine the apparent brightness of HD 209458 when viewed from Earth.
Space for working and answer
6. (continued)
(c) Observations made of HD 209458 from Earth found that its apparent brightness varies periodically.
These variations are shown in Figure 6A.

Figure 6A
An explanation for this variation is that a planet is in a circular orbit around HD 209458 and periodically passes between the star and Earth.
6. (c) (continued)
(i) Using data from the graph, determine the angular velocity, in $\mathrm{rad} \mathrm{s}^{-1}$, of this planet.

Space for working and answer
(ii) The mass of HD 209458 is estimated to be $2.5 \times 10^{30} \mathrm{~kg}$.

By considering the gravitational force acting on the planet orbiting HD 209458, calculate the distance between the star and this planet.
Space for working and answer

Back to Table

Question			Expected response	Max mark	Additional guidance
6.	(a)		The proton-proton chain.	1	Accept 'p-p chain'
	(b)	(i)	$\begin{align*} & L=4 \pi r^{2} \sigma T^{4} \tag{1}\\ & L=4 \pi \times\left(8.35 \times 10^{8}\right)^{2} \times 5.67 \times 10^{-8} \times(6070)^{4} \tag{1}\\ & L=6 \cdot 74 \times 10^{26} \mathrm{~W} \tag{1} \end{align*}$	3	Accept: 6.7, 6.744, 6.7440
		(ii)	$\begin{align*} & d=159 \times 365 \cdot 25 \times 24 \times 60 \times 60 \times 3 \cdot 00 \times 10^{8} \tag{1}\\ & b=\frac{L}{4 \pi d^{2}} \tag{1}\\ & b=\frac{6.74 \times 10^{26}}{4 \pi \times\left(159 \times 365 \cdot 25 \times 24 \times 60 \times 60 \times 3.00 \times 10^{8}\right)^{2}} \tag{1}\\ & b=2 \cdot 37 \times 10^{-11} \mathrm{Wm}^{-2} \tag{1} \end{align*}$	4	Or consistent with (b)(i) Independent mark for unit conversion. Accept use of 365 days. Accept: 2.4, 2.370, 2.3703 (using 365) $2 \cdot 4,2 \cdot 367$, $2 \cdot 3670$ (using $365 \cdot 25$)
	(c)	(i)	$\begin{align*} & T=3 \cdot 5 \text { (days) } \tag{1}\\ & \omega=\frac{2 \pi}{T} \tag{1}\\ & \omega=\frac{2 \pi}{3 \cdot 5 \times 24 \times 60 \times 60} \tag{1}\\ & \omega=2 \cdot 1 \times 10^{-5}\left(\mathrm{rads}^{-1}\right) \tag{1} \end{align*}$	4	Mark for period from graph independent. Accept T in the range 3.4-3.6 days Accept: 2, 2.08, 2.078
		(ii)	$\begin{align*} & \frac{G M m}{r^{2}}=m r \omega^{2} \tag{1}\\ & \frac{6.67 \times 10^{-11} \times 2.5 \times 10^{30} \times m}{r^{2}}=m \times r \times\left(2.1 \times 10^{-5}\right)^{2} \tag{1}\\ & r=7.2 \times 10^{9} \mathrm{~m} \tag{1} \end{align*}$	3	Or consistent with (c)(i) Not a SHOW question, therefore accept if mass cancelled correctly. Accept $\frac{2 \pi}{T}$ as an alternative to ω. Accept: 7, 7.23, 7.231.

7. (a) The existence of line spectra is evidence for the wave-like behaviour of particles.
State one piece of experimental evidence for the particle-like behaviour of waves.
(b) In the Bohr model of the hydrogen atom, an electron is considered to orbit a proton in one of a number of discrete orbits.

The orbits are identified by a principal quantum number n.
This model is shown in Figure 7A.

Figure 7A
These discrete orbits can be explained in terms of the quantisation of angular momentum of the electron.
7. (b) (continued)
(i) The radius of the second orbit, where $n=2$, is $2 \cdot 12 \times 10^{-10} \mathrm{~m}$. Show that the speed of an electron in this orbit is $1.09 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$.
Space for working and answer
(ii) By calculating the de Broglie wavelength of an electron in the second orbit, explain why the electron can be considered as a wave.
Space for working and answer

7. (continued)

(c) The visible spectral lines of hydrogen are shown in Figure 7B.

Figure 7B
Spectral lines are produced by electron transitions.
The transitions that produce each visible line in the hydrogen spectrum are represented in Figure 7C.

Figure 7C
The wavelengths of these spectral lines can be calculated using the relationship

$$
\frac{1}{\lambda}=R Z^{2}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)
$$

where R is the Rydberg constant
Z is the atomic number of hydrogen
n_{i} is the principal quantum number of the initial orbit
n_{f} is the principal quantum number of the final orbit.
Electrons making the transition from $n=6$ to $n=2$ produce the violet line in the hydrogen spectrum.
Determine the Rydberg constant.
Space for working and answer

Back to Table

Question			Expected response	Max mark	Additional guidance
7.	(a)		Compton scattering or Photoelectric effect	1	
	(b)	(i)	$\begin{align*} & m v r=\frac{n h}{2 \pi} \tag{1}\\ & 9.11 \times 10^{-31} \times v \times 2 \cdot 12 \times 10^{-10}=\frac{2 \times 6.63 \times 10^{-34}}{2 \pi} \tag{1}\\ & v=1.09 \times 10^{6} \mathrm{~ms}^{-1} \end{align*}$	2	SHOW Final answer must be shown or max 1 .
		(ii)	$\begin{align*} & \lambda=\frac{h}{p} \tag{1}\\ & \lambda=\frac{6 \cdot 63 \times 10^{-34}}{9 \cdot 11 \times 10^{-31} \times 1 \cdot 09 \times 10^{6}} \tag{1}\\ & \lambda=6 \cdot 68 \times 10^{-10} \mathrm{~m} \end{align*}$ Wavelength (comparable to atomic radius so) suitable for demonstrating interference or Wavelength (comparable to atomic radius so) suitable for demonstrating diffraction	4	Accept: $6 \cdot 7,6 \cdot 677,6 \cdot 6768$ Alternative acceptable approach for calculation $\begin{align*} & \lambda=\frac{2 \pi r}{n} \tag{1}\\ & \lambda=\frac{2 \pi \times 2 \cdot 12 \times 10^{-10}}{2} \tag{1}\\ & \lambda=6.66 \times 10^{-10} \mathrm{~m} \end{align*}$ Accept: 6•7, 6•660, 6•6602
	(c)		$\begin{align*} & \frac{1}{\lambda}=R Z^{2}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right) \\ & \frac{1}{410 \times 10^{-9}}=R \times 1^{2}\left(\frac{1}{2^{2}}-\frac{1}{6^{2}}\right) \tag{1}\\ & R=1 \cdot 1 \times 10^{7} \mathrm{~m}^{-1} \end{align*}$	2	Accept:1, 1-10, 1-098

8. Polonium-212 (Po-212) undergoes nuclear decay by emitting alpha particles.
(a) Alpha particle emission from Po-212 can be explained using the concept of quantum tunnelling.
State what is meant by quantum tunnelling.
(b) The diameter of the nucleus of Po-212 is taken to be 54 femtometres.

When a Po-212 nucleus emits an alpha particle there is a minimum uncertainty in the position of the alpha particle equal to the diameter of the nucleus.

Calculate the minimum uncertainty $\Delta p_{x_{\min }}$ in the momentum of the alpha particle as it is emitted from the nucleus.
Space for working and answer

8. (continued)

(c) Alpha particles with a specific speed are used to probe the nuclei of copper atoms in a target.
A sample of Po-212 emits alpha particles with a range of speeds.
A velocity selector is a device that will allow only alpha particles with a specific speed to pass straight through to the target.
This is shown in Figure 8A.

Figure 8A
(i) The velocity selector has a region in which there is a uniform electric field and a uniform magnetic field. These fields are perpendicular to each other and also perpendicular to the initial velocity v of the alpha particles, as shown in Figure 8B.

Figure 8B
(A) Calculate the speed of an alpha particle with kinetic energy 8.8 MeV .

Space for working and answer
8. (c) (i) (continued)
(B) By considering the forces acting on an alpha particle in the velocity selector, show that the speed v of the particle travelling straight through is given by

$$
v=\frac{E}{B}
$$

Space for working and answer
(C) The potential difference between the parallel plates is 27 kV . The plate separation is 15 mm .
Determine the magnetic induction that allows alpha particles with kinetic energy 8.8 MeV to pass straight through the velocity selector.
Space for working and answer
8. (c) (continued)
(ii) An alpha particle with kinetic energy 8.8 MeV approaches a copper nucleus head-on as shown in Figure 8C.

Figure 8C

The distance of closest approach r of the alpha particle to the copper nucleus is given by

$$
r=\frac{q Q}{2 \pi \varepsilon_{0} m v^{2}}
$$

where q is the charge on the alpha particle
Q is the charge on the copper nucleus
m is the mass of the alpha particle
v is the speed of the alpha particle.
Calculate the distance of closest approach of the alpha particle to the copper nucleus.
Space for working and answer

8. (continued)

(d) A second alpha particle with kinetic energy greater than 8.8 MeV enters the velocity selector.
On Figure 8D, draw the path taken by this alpha particle in the velocity selector.

Figure 8D
(An additional diagram, if required, can be found on page 51.)

Back to Table

Question			Expected response	Max mark	Additional guidance
8.	(a)		A quantum particle can exist in a position that, according to classical physics, it has insufficient energy to occupy	1	Accept responses in terms of a quantum particle/waveform able to pass through a potential barrier.
	(b)		$\begin{align*} & \Delta x \Delta p_{x} \geq \frac{h}{4 \pi} \text { or } \Delta x \Delta p_{x_{\min }}=\frac{h}{4 \pi} \tag{1}\\ & 54 \times 10^{-15} \times \Delta p_{x} \geq \frac{6 \cdot 63 \times 10^{-34}}{4 \pi} \tag{1}\\ & \Delta p_{x_{\min }}=(\pm) 9.8 \times 10^{-22} \mathrm{kgms}^{-1} \tag{1} \end{align*}$	3	Do not accept $\Delta x \Delta p_{x_{\text {min }}} \geq \frac{h}{4 \pi}$ Accept: 10, 9.77, 9.770 Do not accept $\Delta p_{x_{\min }} \geq 9.8 \times 10^{-22} \mathrm{kgms}^{-1}$ or $\Delta p_{x} \geq 9.8 \times 10^{-22} \mathrm{kgms}^{-1}$ or $\Delta p_{x}=9.8 \times 10^{-22} \mathrm{kgms}^{-1}$ for the third mark.
	(c)	(i) (A)	$\begin{align*} & E_{k}=\frac{1}{2} m v^{2} \tag{1}\\ & 8 \cdot 8 \times 10^{6} \times 1 \cdot 60 \times 10^{-19} \\ & =0.5 \times 6 \cdot 645 \times 10^{-27} \times v^{2} \tag{1,1}\\ & v=2 \cdot 1 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	4	Independent mark for energy conversion from MeV to J . Accept: 2, 2•06, 2•059
		(B)	$\begin{align*} & (F=Q E \text { and } F=q v B) \\ & Q E=q v B \tag{1}\\ & v=\frac{E}{B} \end{align*}$	2	SHOW 1 for both relationships 1 for equating Accept: $q E$ Final relationship must be shown or $\max 1$.
		(C)	$\begin{align*} & E=\frac{V}{d} \tag{1}\\ & v=\frac{E}{B} \\ & 2 \cdot 1 \times 10^{7}=\frac{\left(\frac{27 \times 10^{3}}{15 \times 10^{-3}}\right)}{B} \tag{1}\\ & B=8 \cdot 6 \times 10^{-2} \mathrm{~T} \tag{1} \end{align*}$	3	Or consistent with (c)(i)(A) Accept $9,8 \cdot 57,8.571$
	(c)	(ii)	$\begin{align*} & \mathrm{r}=\frac{q Q}{2 \pi \varepsilon_{0} m \nu^{2}} \\ & r=\frac{\left(3.20 \times 10^{-19}\right) \times\left(4.64 \times 10^{-18}\right)}{2 \pi \times 8.85 \times 10^{-12} \times 6.645 \times 10^{-27} \times\left(2.1 \times 10^{7}\right)^{2}} \tag{1}\\ & r=9 \cdot 1 \times 10^{-15} \mathrm{~m} \tag{1} \end{align*}$	2	Or consistent with (c)(i)(A) Accept $\left(2 \times 1 \cdot 60 \times 10^{-19}\right)$ and $\left(29 \times 1 \cdot 60 \times 10^{-19}\right)$ as substitutions for q and Q Accept 9, $9 \cdot 11,9 \cdot 112$

Back to Table

Question		Expected response	Max mark	Additional guidance
8.	(d)	Path drawn as an upward curve in B field (1)	1	Ignore any path drawn to the right of the parallel plates.

9. Bungee jumping involves a person jumping from a high structure while attached to an elastic cord. A bungee jumper is shown in Figure 9A.

Figure 9A

The subsequent motion of the bungee jumper can be modelled as simple harmonic motion (SHM).
(a) State what is meant by the term simple harmonic motion.
(b) The displacement of a mass undergoing SHM is represented by the relationship

$$
y=A \sin \omega t
$$

Show that this relationship is a solution to the equation

$$
F=-m \omega^{2} y
$$

where the symbols have their usual meaning.

9. (continued)

(c) (i) The spring constant k for the elastic cord is $1.5 \times 10^{2} \mathrm{Nm}^{-1}$. The bungee jumper has a mass of 77 kg .
Show that the angular frequency of the bungee jumper is $1.4 \mathrm{rad} \mathrm{s}^{-1}$.
Space for working and answer
(ii) The maximum speed of the bungee jumper during SHM is $18 \mathrm{~m} \mathrm{~s}^{-1}$.

Calculate the amplitude of the motion of the bungee jumper during SHM.

Space for working and answer
(iii) Calculate the maximum potential energy stored in the elastic cord.

Back to Table

9. (continued)
(d) The motion of the bungee jumper is better modelled as underdamped SHM.
On Figure 9B, sketch a graph showing the variation of displacement of the bungee jumper from the equilibrium position with time.
Your sketch should show two oscillations from the moment that the bungee jumper first passes through the equilibrium position at $t=0$.
Numerical values are not required on either axis.

Figure 9B
(An additional graph, if required, can be found on page 52.)
(e) The bungee jumper now performs a second jump using a shorter elastic cord, which has the same spring constant as the original cord.
State how the angular frequency of the motion of the bungee jumper during the second jump compares to the value given in (c) (i).
Justify your answer.

Back to Table

| Question | | Expected response | Max
 mark | Additional guidance |
| :--- | :--- | :--- | :---: | :--- | :--- |$|$| 9. (a) | |
| :--- | :--- |
| | Unbalanced force/acceleration is
 proportional to, and in the opposite
 direction to, the displacement (from
 the rest position) |

Back to Table

Question		Expected response			Max mark	Additional guidance
9.	(d)			(1) (1)	2	Displacement must be zero at $t=0$. Displacement for first half cycle may be positive. Minimum of two cycles must be shown otherwise 0 marks.
	(e)	ω is same $\begin{equation*} k y=m \omega^{2} y \tag{1} \end{equation*}$ k is the same and m is same (y has no effect).			2	JUSTIFY Accept ' ω depends on mass and spring constant only, and these haven't changed'.

10. Zinc oxide is increasingly being used as an anti-reflection coating on optoelectronic devices. This coating is shown in Figure 10A.

Figure 10A
The refractive index of zinc oxide n_{z} is greater than both the refractive index of the glass and the refractive index of air.
This coating is non-reflecting for a specific wavelength of light to maximise the transmission of light into the optoelectronic device.
(a) Explain briefly why a particular thickness of zinc oxide coating is non-reflecting for a specific wavelength of light.
(b) (i) State the phase change experienced by a light wave travelling in air when it is reflected from an interface with zinc oxide.
(ii) State the phase change experienced by a light wave travelling in zinc oxide when it is reflected from an interface with glass.
[Turn over

Back to Table

10. (continued)
(c) The minimum film thickness d for maximum transmission of light into the optoelectronic device is given by

$$
d=\frac{\lambda}{2 n_{z}}
$$

where λ is the specific wavelength of the light for which the coating is non-reflecting.
(i) The refractive index of zinc oxide is dependent upon the wavelength of the incident light. The relationship between wavelength of light λ in air and refractive index n_{z} of zinc oxide is shown in Figure 10B.

Figure 10B
Determine the minimum film thickness required to make the coating non-reflecting for light of wavelength 660.0 nm .

Space for working and answer
10. (c) (continued)
(ii) When viewed under white light this zinc oxide coating appears blue-green in colour.
Explain this observation.
(d) The wave equation for light that has passed through the film into the glass is given by

$$
y=1.60 \times 10^{3} \sin 2 \pi\left(4.55 \times 10^{14} t-\frac{x}{4.37 \times 10^{-7}}\right)
$$

where y is the electric field strength of the light wave in Vm^{-1}.
(i) Using data from the wave equation, determine the speed of this light in the glass.

Space for working and answer
(ii) The light wave loses energy as it travels through the glass. At one point in the glass the energy of the light wave would reduce to 90% of its original value.

Determine the amplitude of the electric field strength of the light wave at this point.
Space for working and answer

Back to Table

Question			Expected response	Max mark	Additional guidance
10.	(a)		(Particular thickness will produce) destructive interference of reflected rays (for the specific wavelength of light).	1	Accept '(Particular thickness will) maximise the energy transmitted into the glass (for the specific wavelength of light)'.
	(b)	(i)	(Phase change of) π (radians).	1	Accept (Phase change of) 180°.
		(ii)	No phase change.	1	Accept 0 (radians)/ $0^{(0)}$
	(c)	(i)	$\begin{align*} & d=\frac{\lambda}{2 n_{z}} \\ & d=\frac{660 \cdot 0 \times 10^{-9}}{2 \times 1 \cdot 982} \tag{1}\\ & d=1.665 \times 10^{-7} \mathrm{~m} \tag{1} \end{align*}$	2	Allow a range for n_{z} of 1.9815 to 1.9825 Accept: 1•66, 1.6650, 1.66498
		(ii)	The coating is anti-reflecting for red light/red light is transmitted. (Some of the) blue and green light/the remainder of the light is reflected, (hence the blue-green appearance).	2	
	(d)	(i)	$\begin{align*} & v=f \lambda \tag{1}\\ & v=4.55 \times 10^{14} \times 4.37 \times 10^{-7} \tag{1}\\ & v=1.99 \times 10^{8} \mathrm{~ms}^{-1} \tag{1} \end{align*}$	3	Accept: 2-0, 1-988, 1-9884
		(ii)	$\begin{equation*} E=k A^{2} \tag{1} \end{equation*}$ $\begin{align*} & A_{2}^{2}=\frac{90 \times\left(1.60 \times 10^{3}\right)^{2}}{100} \tag{1}\\ & A_{2}=1520 \mathrm{Vm}^{-1} \tag{1} \end{align*}$	3	Accept: 1500, 1518, 1517.9

11. A teacher sets up an experiment to determine Brewster's angle for Perspex.

The experimental set-up is shown in Figure 11A.

Figure 11A
The lamp produces unpolarised light.
Light from the lamp is reflected from the surface of the Perspex and is viewed through the analyser.

The position of the analyser is set so that angle θ is equal to Brewster's angle i_{p}.
The transmission axis of the analyser is at right angles to the plane of polarisation of light reflected from the surface of the Perspex at Brewster's angle.
(a) State what is meant by plane polarised light.
(b) (i) Complete Figure 11B to show the path of the ray of light that is refracted into the Perspex.

Figure 11B
(An additional diagram, if required, can be found on page 52.)

Back to Table

11. (b) (continued)
(ii) Calculate Brewster's angle for Perspex.

Space for working and answer
(c) Using the same apparatus, the analyser is gradually moved as shown in Figure 11C.

Figure 11C
Describe how the brightness of the reflected light, viewed through the analyser, changes when the analyser is gradually moved from position A, through Brewster's angle, to position B .

Back to Table

| Question | | Expected response | Max
 mark | Additional guidance |
| :--- | :--- | :--- | :--- | :---: | :--- |$|$| 11. | (a) |
| :--- | :--- |
| | (b) |

12. A student makes the following evaluative statements about an experiment.

- The experiment could be made more accurate by repeating the measurements more times.
- More accuracy could be obtained by using a better meter with more decimal places.
- Some of the meters were old and so they had probably lost precision over the years.
- The random uncertainty was very high so more repeated measurements would help.

Using your knowledge of experimental physics, comment on these evaluative statements.
13. Q_{1} is a point charge. The distance r between Q_{1} and position Y is 0.400 m . This is shown in Figure 13A.

Figure 13A
(a) The electric field strength at position Y is $+144 \mathrm{NC}^{-1}$.

Calculate the charge Q_{1}.
Space for working and answer
(b) Calculate the electrical potential at position Y. Space for working and answer
13. (continued)
(c) Position X is further away from Q_{1} than position Y , as shown in Figure 13B.

Figure 13B
The electrical potential at position X is $+19 \cdot 2 \mathrm{~V}$.
Determine the work done in moving a point charge of $+2.00 \times 10^{-12} \mathrm{C}$ from position X to position Y . Space for working and answer

Back to Table

Question			Expected response	Max mark	Additional guidance
13	(a)		$\begin{align*} & E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \tag{1}\\ & (+) 144=\frac{Q}{4 \pi \times 8 \cdot 85 \times 10^{-12} \times 0 \cdot 400^{2}} \tag{1}\\ & Q=(+) 2 \cdot 56 \times 10^{-9} \mathrm{C} \tag{1} \end{align*}$	3	Accept use of ' k ' value $\left(9 \times 10^{9}\right.$ or 8.99×10^{9}) Accept: $\begin{aligned} & 2 \cdot 6,2 \cdot 562,2 \cdot 5623\left(1 / 4 \pi \varepsilon_{0}\right) \\ & 2 \cdot 6,2 \cdot 560,2 \cdot 5600\left(9 \times 10^{9}\right) \\ & 2 \cdot 6,2 \cdot 563,2 \cdot 5628\left(8 \cdot 99 \times 10^{9}\right) \end{aligned}$
	(b)		$\begin{align*} & V=\frac{Q}{4 \pi \varepsilon_{0} r} \tag{1}\\ & V=\frac{2.56 \times 10^{-9}}{4 \pi \times 8.85 \times 10^{-12} \times 0.400} \tag{1}\\ & V=57.5 \mathrm{~V} \tag{1} \end{align*}$	3	Or consistent with (a) Accept $\begin{aligned} & V=E r \\ & V=144 \times 0.400 \\ & V=57.6 \mathrm{~V} \end{aligned}$ Accept: $\begin{aligned} & 58,57 \cdot 55,57 \cdot 540(1 / 4 \pi \varepsilon 0) \\ & 58,57 \cdot 6,57 \cdot 560,57 \cdot 5600 \\ & \left(9 \times 10^{9}\right) \\ & 58,57 \cdot 54,57 \cdot 536\left(8 \cdot 99 \times 10^{9}\right) \end{aligned}$
	(c)		$\begin{align*} & V=(57 \cdot 5-19 \cdot 2) \tag{1}\\ & W=Q V \tag{1}\\ & W=2 \cdot 00 \times 10^{-12} \times(57 \cdot 5-19 \cdot 2) \tag{1}\\ & W=7 \cdot 66 \times 10^{-11} \mathrm{~J} \tag{1} \end{align*}$	4	Or consistent with (b) Alternative method: $W=Q V$ $\begin{aligned} & W_{Y}=2 \cdot 00 \times 10^{-12} \times 57.5 \\ & W_{X}=2 \cdot 00 \times 10^{-12} \times 19 \cdot 2 \\ & W=\left(2.00 \times 10^{-12} \times 57.5\right)-\left(2.00 \times 10^{-12} \times 19 \cdot 2\right) \\ & W=7 \cdot 66 \times 10^{-11} \mathrm{~J} \end{aligned}$ 1 mark for relationship 1 mark for both substitutions 1 mark for subtraction 1 mark for final answer Accept: 7•7, 7•660, 7.6600

14. Proton beam therapy is a medical treatment. Protons are accelerated to specific velocities using a cyclotron.

A cyclotron is a particle accelerator that consists of two D-shaped hollow structures, called Dees, placed in a vacuum. The Dees are separated by a gap.
This is shown in Figure 14A.

Figure 14A

During testing, protons are introduced to the cyclotron at point X.
The protons are accelerated from rest across the gap by an electric field.
Inside the Dees there is a uniform magnetic field B.
This field acts on the protons causing them to move in semi-circular paths within the Dees.
(a) Determine the direction of the magnetic field B.
14. (continued)
(b) (i) By considering the force acting on a proton as it moves in a semi-circular path, show that its speed at point Y is

$$
v=\frac{q B r}{m}
$$

where the symbols have their usual meaning.

Space for working and answer
(c) Explain why an AC supply must be used to provide the electric field.

Back to Table

Question			Expected response	Max	Additional guidance
14.	(a)		Into the page.	1	Do not accept 'down'.
	(b)	(i)	$\begin{align*} & (F=q v B) \\ & \left(F=\frac{m v^{2}}{r}\right) \\ & \frac{m v^{2}}{r}=q v B \tag{1}\\ & v=\frac{q B r}{m} \end{align*}$	2	SHOW 1 for both relationships 1 for equating Alternative method $(F=q v B)$ $\left(F=m r \omega^{2}\right)$ $(\nu=r \omega)$ $\begin{aligned} & m r\left(\frac{v}{r}\right)^{2}=q v B \\ & v=\frac{q B r}{m} \end{aligned}$ 1 mark for all relationships 1 mark for substitution for ω and equating Final relationship must be shown or max 1 .
		(ii)	$\begin{align*} & v=\frac{q B r}{m} \\ & v=\frac{1.60 \times 10^{-19} \times 0.714 \times 0.105}{1.673 \times 10^{-27}} \tag{1}\\ & v=7.17 \times 10^{6} \mathrm{~ms}^{-1} \tag{1} \end{align*}$	2	Accept: 7•2, 7•170, 7•1700
	(c)		The direction of (electrical) force acting on the proton must change (every time the proton crosses the gap).	1	Accept The proton travels in opposite directions (every time the proton crosses the gap).

Back to Table

15. A student sets up the circuit shown in Figure 15A.

Figure 15A

The resistance of both the battery and inductor can be considered negligible.
The switch is closed and the laptop records data.
The student uses the data to produce a graph of current I against time t.
This is shown in Figure 15B.
The dashed line is the tangent to the curve at the origin.

Figure 15B
15. (continued)
(a) (i) There is a delay in the current reaching a steady value due to a back EMF being produced across the inductor.
Explain how the back EMF is produced.
(ii) Using data from Figures 15A and 15B, determine the self-inductance of inductor L .
Space for working and answer
(iii) Determine the energy stored in the inductor when the potential difference across the resistor is 3.2 V .
Space for working and answer

Back to Table

15. (continued)
(b) The switch is now opened and inductor L is replaced by a second inductor.

The second inductor has smaller self-inductance and negligible resistance.
The switch is now closed.
Figure 15C shows how current in the first inductor varies with time.
On Figure 15C draw a line to show how current in the second inductor varies with time from $t=0.0 \mathrm{~s}$ to $t=2.0 \mathrm{~s}$.

Figure 15C
(An additional graph, if required, can be found on page 53.)

Back to Table

Question			Expected response	Max mark	Additional guidance
15.	(a)	(i)	Changing current produces a changing magnetic field, (which induces a back EMF across the inductor)	1	
		(ii)	$\begin{align*} & \frac{d I}{d t}=1.73 \tag{1}\\ & \varepsilon=-L \frac{d I}{d t} \tag{1}\\ & -4.0=-L \times 1.73 \tag{1}\\ & L=2.3 \mathrm{H} \tag{1} \end{align*}$	4	Accept use of gradient calculated for tangent (Acceptable range 1•70-1•75) Accept: 2, 2.31, 2.312
		(iii)	$\begin{align*} & (V=I R) \\ & 3 \cdot 2=I \times 8 \cdot 0 \tag{1}\\ & E=\frac{1}{2} L I^{2} \tag{1}\\ & E=\frac{1}{2} \times 2 \cdot 3 \times\left(\frac{3 \cdot 2}{8 \cdot 0}\right)^{2} \tag{1}\\ & E=0 \cdot 18 \mathrm{~J} \tag{1} \end{align*}$	4	Or consistent with (a)(ii) Accept: 0.2, 0.184, 0.1840
	(b)		current (A) 1 mark for curve showing shorter time to $I_{\text {max }}$ 1 mark for $I_{\max }=0.50 \mathrm{~A}$	2	 Do not penalise if the line extends beyond 2.0 s .

16. A student carries out an experiment using a simple pendulum to determine the gravitational field strength g.

A simplified diagram of the apparatus is shown in Figure 16A.

Figure 16A

The student measures the length of the pendulum string L using a metre stick.

The bob is released from point A and swings freely. The student measures the period T by timing how long it takes for the bob to swing from point A to point B and back again.

The student measures the period for a range of lengths.
The relationship between period and length is

$$
T^{2}=\frac{4 \pi^{2}}{g} L
$$

The student uses graphing software to produce the graph shown in Figure 16B.
16. (continued)

Figure 16B
(a) (i) Using data from the graph, determine the gravitational field strength.
Space for working and answer
(ii) Data from the graphing software is shown below.

gradient	3.53	y-intercept	0.64
uncertainty in gradient	0.69	uncertainty in y-intercept	0.59

Determine the absolute uncertainty in the value of the gravitational field strength obtained from the graph.
Space for working and answer
16. (a) (continued)
(iii) A second student suggests that the uncertainties in the measurement of length and period should have been combined with the uncertainty in the gradient of the line on the graph.
Explain why this is not an appropriate method to determine the absolute uncertainty in the value of the gravitational field strength.
(b) Suggest two possible changes to the experimental procedure that could improve the accuracy of the value obtained for gravitational field strength.
(c) Theory predicts that the line of best fit should pass through the origin.

The line of best fit in Figure 16B does not pass through the origin. This is due to a systematic uncertainty.
Suggest a possible source for this systematic uncertainty.

Back to Table

Question			Expected response	Max mark	Additional guidance
16.	(a)	(i)	$\begin{align*} & \left(T^{2}=\frac{4 \pi^{2}}{g} L\right. \\ & m=\frac{4 \pi^{2}}{g} \tag{1}\\ & 3 \cdot 53=\frac{4 \pi^{2}}{g} \tag{1}\\ & g=11 \cdot 2 \mathrm{Nkg}^{-1} \tag{1} \end{align*}$	3	Accept use of gradient calculated for the line of best fit. (Acceptable range $3 \cdot 40-3 \cdot 60$) Accept: 11, 11•18, 11•184
		(ii)	$\begin{align*} & \left(\frac{\Delta g}{g}=\frac{\Delta m}{m}\right) \\ & \frac{\Delta g}{11 \cdot 2}=\frac{0.69}{3 \cdot 53} \tag{1}\\ & \Delta g=2 \mathrm{Nkg}^{-1} \tag{1} \end{align*}$	2	Or consistent with (a)(i) Accept the use of percentage uncertainties Suspend significant figures rule. Accept $3 \mathrm{Nkg}^{-1}$
		(iii)	Uncertainty in gradient takes into account the uncertainties in length and period	1	Accept the suggestion that the uncertainty in the gradient incorporates/amalgamates/combines the uncertainties in length and period.
	(b)		Any two suggestions from: Measure length to centre of mass of bob Time over multiple swings (and find mean value of T) Increase range of lengths Increase number of lengths Reduce the angle of swing Automatic timing	2	Do not accept the suggestion of improving precision of instrumentation. Do not accept 'repeat measurements' alone
	(c)		T measurement (consistently too large) OR \underline{L} measurement (consistently too small)	1	

[END OF MARKING INSTRUCTIONS]
\square

Fill in these boxes and read what is printed below.

Full name of centre

Town
\square

Forename(s)

Surname

Number of seat

Date of birth

Scottish candidate number

Total marks - 155
Attempt ALL questions.
Reference may be made to the Physics relationships sheet X857/77/11 and the data sheet on page 02.
Write your answers clearly in the spaces provided in this booklet. Additional space for answers and rough work is provided at the end of this booklet. If you use this space you must clearly identify the question number you are attempting. Any rough work must be written in this booklet. You should score through your rough work when you have written your final copy.
Care should be taken to give an appropriate number of significant figures in the final answers to calculations.
Use blue or black ink.
Before leaving the examination room you must give this booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

COMMON PHYSICAL QUANTITIES

Quantity	Symbol	Value	Quantity	Symbol	Value
Gravitational acceleration on Earth Radius of Earth Mass of Earth Mass of Moon Radius of Moon Mean Radius of Moon Orbit Solar radius Mass of Sun 1 AU Stefan-Boltzmann constant Universal constant of gravitation	$\stackrel{l}{R}_{R_{E}}$ M_{E} M_{M} R_{M} σ G	$\begin{aligned} & 9.8 \mathrm{~m} \mathrm{~s}^{-2} \\ & 6.4 \times 10^{6} \mathrm{~m} \\ & 6.0 \times 10^{24} \mathrm{~kg} \\ & 7.3 \times 10^{22} \mathrm{~kg} \\ & 1.7 \times 10^{6} \mathrm{~m} \\ & 3.84 \times 10^{8} \mathrm{~m} \\ & 6.955 \times 10^{8} \mathrm{~m} \\ & 2.0 \times 10^{30} \mathrm{~kg} \\ & 1.5 \times 10^{11} \mathrm{~m} \\ & 5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4} \\ & 6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2} \end{aligned}$	Mass of electron Charge on electron Mass of neutron Mass of proton Mass of alpha particle Charge on alpha particle Charge on copper nucleus Planck's constant Permittivity of free space Permeability of free space Speed of light in vacuum Speed of sound in air	$\begin{aligned} & m_{\mathrm{e}} \\ & e \\ & m_{\mathrm{n}} \\ & m_{\mathrm{p}} \\ & m_{\alpha} \end{aligned}$	$\begin{aligned} & 9.11 \times 10^{-31} \mathrm{~kg} \\ & -1.60 \times 10^{-19} \mathrm{C} \\ & 1.675 \times 10^{-27} \mathrm{~kg} \\ & 1.673 \times 10^{-27} \mathrm{~kg} \\ & 6.645 \times 10^{-27} \mathrm{~kg} \\ & 3.20 \times 10^{-19} \mathrm{C} \\ & 4.64 \times 10^{-18} \mathrm{C} \\ & 6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\ & 8.85 \times 10^{-12} \mathrm{Fm}^{-1} \\ & 4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \\ & 3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\ & 3.4 \times 10^{2} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$

REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K .

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Glycerol	1.47
Glass	1.51	Water	1.33
Ice	1.31	Air	1.00
Perspex	1.49	Magnesium Fluoride	1.38

SPECTRAL LINES

Element	Wavelength (nm)	Colour	Element	Wavelength (nm)	Colour
Hydrogen	$\begin{aligned} & \hline 656 \\ & 486 \\ & 434 \\ & 410 \\ & 397 \\ & 389 \\ & \\ & \hline \end{aligned}$	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	$\begin{aligned} & 644 \\ & 509 \\ & 480 \\ & \hline \end{aligned}$	Red Green Blue
				Lasers	
			Element	Wavelength (nm)	Colour
Sodium		Ultraviolet Yellow	Carbon dioxide Helium-neon	$\left.\begin{array}{r} 9550 \\ 10590 \\ 633 \end{array}\right\}$	Infrared Red

PROPERTIES OF SELECTED MATERIALS

Substance	Density $\left(\mathrm{kg} \mathrm{m}^{-3}\right)$	Melting Point (K)	Boiling Point (K)	Specific Heat Capacity $\left(\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}\right)$	Specific Latent Heat of Fusion $\left(\mathrm{Jkg}^{-1}\right)$	Specific Latent Heat of Vaporisation $\left(\mathrm{Jkg}^{-1}\right)$
Aluminium	2.70×10^{3}	933	2623	9.02×10^{2}	3.95×10^{5}	$\ldots \ldots$
Copper	8.96×10^{3}	1357	2853	3.86×10^{2}	2.05×10^{5}	\ldots
Glass	2.60×10^{3}	1400	\ldots	6.70×10^{2}	\ldots	\ldots
Ice	9.20×10^{2}	273	\ldots.	2.10×10^{3}	3.34×10^{5}	\ldots
Glycerol	1.26×10^{3}	291	563	2.43×10^{3}	1.81×10^{5}	8.30×10^{5}
Methanol	7.91×10^{2}	175	338	2.52×10^{3}	9.9×10^{4}	1.12×10^{6}
Sea Water	1.02×10^{3}	264	377	3.93×10^{3}	\ldots	\ldots
Water	1.00×10^{3}	273	373	4.18×10^{3}	3.34×10^{5}	2.26×10^{6}
Air	1.29	\ldots.	\ldots.	\ldots	\ldots	\ldots
Hydrogen	9.0×10^{-2}	14	20	1.43×10^{4}	\ldots	4.50×10^{5}
Nitrogen	1.25	63	77	1.04×10^{3}	\ldots	2.00×10^{5}
Oxygen	1.43	55	90	9.18×10^{2}	\ldots	2.40×10^{4}

The gas densities refer to a temperature of 273 K and a pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.

1. During a short test run, a dragster accelerates from rest along a straight track. The test run starts at time $t=0 \mathrm{~s}$.

During the test run, the velocity v of the dragster at time t is given by the relationship

$$
v=6.6 t^{2}+2.2 t
$$

where v is measured in $\mathrm{m} \mathrm{s}^{-1}$ and t is measured in s .
(a) Using calculus methods:
(i) determine the acceleration of the dragster at $t=4.1 \mathrm{~s}$

Space for working and answer

1. (a) (continued)
(ii) determine the distance travelled by the dragster between $t=0 \mathrm{~s}$ and $t=4.1 \mathrm{~s}$.
Space for working and answer
(b) On the axes below, sketch a graph to show the variation of velocity of the dragster with time, between $t=0 \mathrm{~s}$ and $t=4.1 \mathrm{~s}$.
Numerical values are not required on the velocity axis.

(An additional graph, if required, can be found on page 54.)

Marking Instructions for each question

Question			Expected response	Max	Additional guidance
1.	(a)	(i)	$\begin{align*} & \left(v=6.6 t^{2}+2.2 t\right) \\ & a\left(=\frac{d v}{d t}\right)=13.2 t+2.2 \tag{1}\\ & a=(13.2 \times 4.1)+2.2 \tag{1}\\ & a=56 \mathrm{~ms}^{-2} \tag{1} \end{align*}$	3	Accept: 60, 56.3, 56.32
		(ii)	$\begin{align*} & \left(s=\int\left(6.6 t^{2}+2.2 t\right) . d t\right) \\ & s=\frac{6.6}{3} t^{3}+\frac{2.2}{2} t^{2}(+c) \tag{1}\\ & (s=0 \text { when } t=0, \text { so } c=0) \tag{1}\\ & s=\frac{6.6}{3} \times 4.1^{3}+\frac{2.2}{2} \times 4.1^{2} \tag{1}\\ & s=170 \mathrm{~m} \tag{1} \end{align*}$	3	Accept: 200, 170.1 Solution with limits also acceptable $\begin{align*} & \left(s=\int_{0}^{4.1}\left(6.6 t^{2}+2.2 t\right) \cdot d t\right) \\ & s=\left[\frac{6.6}{3} t^{3}+\frac{2.2}{2} t^{2}\right]_{0}^{4.1} \\ & s=\left(\frac{6.6}{3} \times 4.1^{3}+\frac{2.2}{2} \times 4.1^{2}\right) \quad(-0) \tag{1}\\ & s=170 \mathrm{~m} \tag{1} \end{align*}$
	(b)			1	Single smooth curve with increasing gradient. Must start at the origin and extend to 4.1 s . Ignore any lines beyond $\mathrm{t}=4.1 \mathrm{~s}$

2. A merry-go-round at a funfair rotates about an axis through its centre.

(a) The merry-go-round accelerates uniformly from rest. It takes 18 s to reach an angular velocity of $0.52 \mathrm{rads}^{-1}$.
(i) Calculate the angular acceleration of the merry-go-round in this time.

Space for working and answer
(ii) Calculate the angular displacement of the merry-go-round in this time.

Space for working and answer
2. (continued)
(b) Two students, X and Y , ride on the merry-go-round. The students are sitting on adjacent horses as shown in Figure 2A.

Figure 2A
(i) Explain why student Y has a greater tangential velocity than student X .
(ii) State whether the centripetal acceleration of student Y is greater than, equal to, or less than the centripetal acceleration of student X.
You must justify your answer.

Back to Table

Question			Expected response	Max mark	Additional guidance
2.	(a)	(i)	$\begin{align*} & \omega=\omega_{0}+\alpha t \tag{1}\\ & 0.52=0+\alpha \times 18 \tag{1}\\ & \alpha=0.029 \text { rads }^{-2} \tag{1} \end{align*}$	3	Accept 0.03, 0.0289, 0.02889
		(ii)	$\begin{align*} & \theta=\omega_{0} t+\frac{1}{2} \alpha t^{2} \tag{1}\\ & \theta=0 \times 18+0.5 \times 0.029 \times 18^{2} \tag{1}\\ & \theta=4.7 \mathrm{rad} \tag{1} \end{align*}$	3	Or consistent with (a)(i) Accept: 5, 4.70, 4.698 $\begin{align*} & \omega^{2}=\omega_{0}^{2}+2 \alpha \theta \tag{1}\\ & 0.52^{2}=0^{2}+2 \times 0.029 \times \theta \tag{1}\\ & \theta=4.7 \mathrm{rad} \tag{1} \end{align*}$ Accept: 5, 4.66, 4.662 $\begin{align*} & \theta=\left(\frac{\omega_{0}+\omega}{2}\right) t \tag{1}\\ & \theta=\left(\frac{0+0.52}{2}\right) \times 18 \tag{1}\\ & \theta=4.7 \mathrm{rad} \end{align*}$ Accept: 5, 4.68, 4.680
	(b)	(i)	$\nu=r \omega$ greater r same ω	2	$\begin{equation*} v=\frac{d}{t}(1) \tag{1} \end{equation*}$ greater d same t (1)
		(ii)	(Centripetal acceleration of Y is) greater Student Y is a greater distance from the axis of rotation $a_{r}=r \omega^{2}, \omega$ is the same for X and Y.	2	MUST JUSTIFY Accept as justification: $a_{r}=\frac{v^{2}}{r}$ both v and r increase but v is squared (so more significant) Could be answered by calculation $a_{t}=r \alpha \text { or } a=r \alpha$ is incorrect justification (0)

3. A golf trolley consists of a frame with two identical wheels, as shown in Figure 3A.

Figure 3A

Each wheel can be modelled as a hoop and five rods, as shown in Figure 3B.

Figure 3B

The mass of the hoop is 0.38 kg . The radius of the hoop is 0.14 m .
The mass of each rod is 0.07 kg .
(a) Show that the moment of inertia of the wheel is $9.7 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{2}$.

Space for working and answer

3. (continued)

(b) A golfer cleans the wheels on the trolley by using a jet of air.

A wheel is raised off the ground. The jet of air exerts a tangential force of 1.2 N on the rim of the wheel as shown in Figure 3C. This causes the wheel to rotate.

Figure 3C
(i) Calculate the torque acting on the wheel.

Space for working and answer
(ii) A frictional torque also acts on the wheel.

When the 1.2 N force is applied, the wheel has an angular acceleration of $16 \mathrm{rad} \mathrm{s}^{-2}$.
Determine the magnitude of the frictional torque.

Space for working and answer
3. (continued)
(c) The golfer now cleans the other wheel on the trolley. This wheel has a small stone stuck to the rim. The angular velocity of the wheel increases and the small stone 'flies off' the rim, as shown in Figure 3D.

Figure 3D

Explain, in terms of forces, why the stone 'flies off' the rim.

Back to Table

Question			Expected response	Max mark	Additional guidance
3.	(a)		$\begin{align*} & I_{(r o d)}=\frac{1}{3} m l^{2} \text { and } I_{(\text {hoop })}=m r^{2}(1),(1) \\ & I=\left(5 \times \frac{1}{3} \times 0.07 \times 0.14^{2}\right)+\left(0.38 \times 0.14^{2}\right) \tag{1} \end{align*}$ $I=9.7 \times 10^{-3} \mathrm{kgm}^{2}$	3	NON-STANDARD SHOW 1 for rod relationship 1 for hoop relationship $\begin{equation*} I_{(\text {wheel })}=\left(5 \times \frac{1}{3} m l^{2}\right)+m r^{2} \tag{1} \end{equation*}$ Final answer must be shown, otherwise max 2. May also be calculated separately but addition must be shown before the final answer.
	(b)	(i)	$\begin{align*} & \tau=F r \tag{1}\\ & \tau=1.2 \times 0.14 \tag{1}\\ & \tau=0.17 \mathrm{Nm} \tag{1} \end{align*}$	3	Accept: 0.2, 0.168, 0.1680
		(ii)	$\begin{align*} & \tau=I \alpha \tag{1}\\ & \tau=9.7 \times 10^{-3} \times 16 \tag{1}\\ & \left(\tau_{F}=\tau_{A}-\tau_{U}\right) \\ & \tau_{F}=0.17-\left(9.7 \times 10^{-3} \times 16\right) \tag{1}\\ & \tau_{F}=0.015 \mathrm{Nm} \tag{1} \end{align*}$	4	Or consistent with (b)(i) Accept: 0.01, 0.0148, 0.01480
	(c)		(The angular velocity increases so the required) centripetal force increases until the friction is insufficient (to hold the stone in place)	2	Accept: central force

4. A satellite of mass $2.30 \times 10^{3} \mathrm{~kg}$ is in a circular low Earth orbit.

The satellite orbits at an altitude of 312 km above the surface of the Earth, as shown in Figure 4A.

Figure 4A
(a) Show that the gravitational potential energy of the satellite in this orbit is $-1.4 \times 10^{11} \mathrm{~J}$.

Space for working and answer
(b) The satellite has an orbital period of 90.7 minutes.

Determine the speed of the satellite in this orbit.
Space for working and answer
4. (continued)
(c) Determine the total energy of the satellite in this orbit.

Space for working and answer
(d) Suggest why a satellite in a low-altitude orbit will lose energy at a greater rate than a similar satellite in a high-altitude orbit.
4. (continued)
(e) The gravitational fields of the Earth and the Moon create five Lagrangian points.
A Lagrangian point is a position near two large bodies in orbit around each other, where a smaller object, such as a satellite, will remain in a fixed position relative to both orbiting bodies.

The distance r from the centre of the Moon to one of the Lagrangian points can be calculated using the relationship

$$
r^{3}=R^{3}\left(\frac{M_{2}}{3 M_{1}}\right)
$$

where R is the mean radius of the Moon's orbit
M_{1} is the mass of the Earth
M_{2} is the mass of the Moon.
Calculate the distance r from the centre of the Moon to this Lagrangian point.

Back to Table

Question		Expected response	Max mark	Additional guidance
4.	(a)	$\begin{align*} & E_{P}=-\frac{G M m}{r} \tag{1}\\ & E_{P}=-\frac{6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times 2.30 \times 10^{3}}{\left(6.4 \times 10^{6}+3.12 \times 10^{5}\right)} \tag{1}\\ & E_{P}=-1.4 \times 10^{11} \mathrm{~J} \end{align*}$	2	SHOW Final answer must be shown otherwise MAX 1 $V=-\frac{G M}{r} \text { and } \quad E_{p}=V m$ both relationships required for $1^{\text {st }}$ mark all substitutions required for $2^{\text {nd }}$ mark.
	(b)	$\begin{align*} & d=\bar{v} t \tag{1}\\ & 2 \pi \times\left(6.4 \times 10^{6}+3.12 \times 10^{5}\right)=\bar{v} \times 90.7 \times 60 \end{align*}$ $\begin{equation*} \bar{v}=7750 \mathrm{~ms}^{-1} \tag{1} \end{equation*}$	3	Accept: 7700, 7749, 7749.5 $\begin{align*} & \omega=\frac{2 \pi}{T} \quad \text { and } \quad v=r \omega \tag{1}\\ & v=\left(6.4 \times 10^{6}+3.12 \times 10^{5}\right) \times \frac{2 \pi}{(90.7 \times 60)} \tag{1}\\ & v=7750 \mathrm{~ms}^{-1} \end{align*}$ OR $\begin{align*} & \frac{m v^{2}}{r}=\frac{G M m}{r^{2}} \tag{1}\\ & \frac{2.30 \times 10^{3} \times v^{2}}{3.12 \times 10^{5}+6.4 \times 10^{6}}=\frac{6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times 2.3 \times 10^{3}}{\left(3.12 \times 10^{5}+6.4 \times 10^{6}\right)^{2}} \tag{1}\\ & v=7720 \mathrm{~ms}^{-1} \tag{1} \end{align*}$ Accept: 7700, 7722, 7721.7
	(c)	$\begin{align*} & \left(E_{\text {total }}=E_{P}+E_{K}\right) \\ & E_{\text {total }}=E_{P}+\frac{1}{2} m v^{2} \tag{1}\\ & E_{\text {total }}=-1.4 \times 10^{11}+\left(0.5 \times 2.30 \times 10^{3} \times 7750^{2}\right) \tag{1}\\ & E_{\text {total }}=-7.1 \times 10^{10} \mathrm{~J} \tag{1} \end{align*}$	3	Or consistent with (b) Accept: 7, 7.09, 7.093 $\begin{align*} & E_{\text {total }}=-\frac{G M m}{2 r} \\ & E_{\text {total }}=-\frac{6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times 2.30 \times 10^{3}}{2 \times\left(6.4 \times 10^{6}+3.12 \times 10^{5}\right)} \tag{1}\\ & E_{\text {total }}=-6.9 \times 10^{10} \mathrm{~J} \tag{1} \end{align*}$ Accept: 7, 6.86, 6.857
	(d)	(low-altitude orbit satellites experience) greater drag/friction from the atmosphere (than highaltitude orbit satellites). or similar	1	Do not accept: drag or friction alone or arguments about gravitational field strength alone.

Back to Table

Question		Expected response	Max mark	Additional guidance
4.	(e)	$\begin{align*} & \left(r^{3}=R^{3}\left(\frac{M_{2}}{3 M_{1}}\right)\right) \\ & r^{3}=\left(3.84 \times 10^{8}\right)^{3} \times\left(\frac{7.3 \times 10^{22}}{3 \times 6.0 \times 10^{24}}\right) \tag{1} \end{align*}$ $\begin{equation*} r=6.1 \times 10^{7} \mathrm{~m} \tag{1} \end{equation*}$	2	Accept 6, 6.12, 6.124

5. Betelgeuse, Rigel, and Bellatrix are stars in the constellation Orion.

(a) Betelgeuse may ultimately become a black hole.

Betelgeuse has a mass of $2.19 \times 10^{31} \mathrm{~kg}$.
Calculate the Schwarzschild radius of Betelgeuse.
Space for working and answer
(b) Rigel is no longer a main sequence star.

State the change that occurred in the fusion reactions within the core of Rigel at the point when it left the main sequence.

5. (continued)

(c) Bellatrix is approximately 250 ly from Earth. It has a radius of $4.0 \times 10^{9} \mathrm{~m}$ and

Determine the surface temperature of Bellatrix.

an apparent brightness of $5.0 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2}$.

Space for working and answer

5. (continued)

(d) A group of students are discussing Rigel and Betelgeuse.

Student 1: 'Why does Rigel appear to have a blue-white colour, while Betelgeuse appears orange in colour?'
Student 2: 'Betelgeuse also looks brighter than Rigel, so it must be closer.'
Student 3: ‘Betelgeuse and Rigel must be roughly the same distance from Earth, because they're in the same constellation.'
Student 4: ‘I don’t think Betelgeuse and Rigel are even in the same galaxy.' Use your knowledge of physics to comment on the discussion.

Back to Table

Question		Expected response	Max mark	Additional guidance
5.	(a)	$\begin{align*} & r_{\text {schwarsschild }}=\frac{2 G M}{c^{2}} \tag{1}\\ & r_{\text {schwarzschild }}=\frac{2 \times 6.67 \times 10^{-11} \times 2.19 \times 10^{31}}{\left(3.00 \times 10^{8}\right)^{2}} \tag{1}\\ & r_{\text {schwarrschild }}=3.25 \times 10^{4} \mathrm{~m} \tag{1} \end{align*}$	3	Accept: 3.2, 3.246, 3.2461
	(b)	Hydrogen fusion stops/ceases.	1	
	(c)	$\begin{align*} & b=\frac{L}{4 \pi d^{2}} \tag{1}\\ & L=4 \pi r^{2} \sigma T^{4} \tag{1}\\ & 5.0 \times 10^{-8} \times 4 \pi\left(250 \times 365.25 \times 24 \times 60 \times 60 \times 3.00 \times 10^{8}\right)^{2} \\ & =4 \pi\left(4.0 \times 10^{9}\right)^{2} \times 5.67 \times 10^{-8} \times T^{4} \tag{1}\\ & T=2.4 \times 10^{4} \mathrm{~K} \tag{1} \end{align*}$	5	Accept 2, 2.36, 2.357 If 365 used Accept: 2, 2.36, 2.356 250 ly conversion mark independent

6. The Heisenberg uncertainty principle can be expressed as

$$
\Delta x \Delta p_{x} \geq \frac{h}{4 \pi}
$$

(a) State an implication of this relationship for a quantum particle.
(b) An alpha particle is emitted from a uranium-235 nucleus. According to classical physics, the alpha particle cannot overcome the strong nuclear force holding it in place in the nucleus.
Explain, in terms of the Heisenberg uncertainty principle, why alpha emission is possible from the uranium- 235 nucleus.

6. (continued)

(c) The mean lifetime of an alpha particle within the uranium- 235 nucleus is $0.70 \mu \mathrm{~s}$.
Determine the minimum uncertainty in the energy of this alpha particle.
Space for working and answer

Back to Table

Question		Expected response	Max mark	Additional guidance
6.	(a)	It is not possible to know the (precise) momentum and position of a quantum particle simultaneously.	1	It is not possible to know the (precise) lifetime and associated energy change of a quantum particle simultaneously.
	(b)	The momentum of the alpha particle is known precisely therefore its position is not known precisely there is a (small) probability that the particle could exist outside the nucleus (even although classically it does not have sufficient energy to escape).	2	Second mark is dependent on the first mark being awarded. The lifetime of the alpha particle is known precisely therefore its energy is not known precisely there is a (small) probability that the particle could escape from the nucleus (even although classically it does not have sufficient energy to escape).
	(c)	$\begin{align*} & \Delta E \Delta t \geq \frac{h}{4 \pi} \tag{1}\\ & \Delta E_{(\min)} \times 0.70 \times 10^{-6}=\frac{6.63 \times 10^{-34}}{4 \pi} \tag{1}\\ & \Delta E_{(\min)}=7.5 \times 10^{-29} \mathrm{~J} \tag{1} \end{align*}$	3	Accept: 8, 7.54, 7.537 Accept: $\Delta E_{\min } \Delta t=\frac{h}{4 \pi}$ Do not accept as starting point: $\begin{aligned} & \Delta E_{\min } \Delta t \geq \frac{h}{4 \pi} \\ & \Delta E \Delta t=\frac{h}{4 \pi} \end{aligned}$ Do not accept as final answer: $\begin{aligned} & \Delta E_{\min } \geq 7.5 \times 10^{-29} \mathrm{~J} \\ & \Delta E \geq 7.5 \times 10^{-29} \mathrm{~J} \end{aligned}$

7. A student finds the diagram shown in Figure 7A in a textbook. The diagram represents some of the possible electron orbits in the Bohr model of an atom.

Figure 7A

Using your knowledge of physics, comment on the suitability of the diagram as a representation of electron orbits in an atom.
8. To produce an image of an atom, some microscopes use particles such as electrons or neutrons.

The de Broglie wavelengths of the particles should be approximately the same magnitude as, or smaller than, the diameter of the atom being imaged.
(a) In one electron microscope, the electrons used have a velocity of $1.75 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$.
(i) Calculate the de Broglie wavelength of the electrons used.

Space for working and answer
(ii) The diameter of an atom can be measured in ångströms (\AA).
$1 \AA$ is equal to 0.1 nm .
The diameter of a gold atom is $2.6 \AA$.
(A) Explain whether electrons with velocity $1.75 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$ are suitable for imaging the gold atom.
8. (a) (ii) (continued)
(B) A neutron microscope uses neutrons with a velocity three orders of magnitude less than that of the electrons in the electron microscope.
Explain fully why the neutron microscope is suitable for imaging gold atoms.
(b) Optical microscopes use visible light. Individual atoms are too small to be viewed using an optical microscope.
Estimate the diameter of the smallest object that could be imaged using an optical microscope.

Back to Table

Question			Expected response	Max mark	Additional guidance
8.	(a)	(i)	$\begin{align*} & \lambda=\frac{h}{p} \tag{1}\\ & \lambda=\frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 1.75 \times 10^{7}} \tag{1}\\ & \lambda=4.16 \times 10^{-11} \mathrm{~m} \tag{1} \end{align*}$	3	Accept: 4.2, 4.159, 4.1587 Accept: $\begin{equation*} \lambda=\frac{h}{m v} \tag{1} \end{equation*}$
		(ii) (A)	Yes, as $4.16 \times 10^{-11}(\mathrm{~m})<2.6 \times 10^{-10}(\mathrm{~m})$ OR Yes, as the de Broglie wavelength is of the same magnitude as the diameter of the atom	1	Or consistent with (a)(i) Accept: Yes, as the de Broglie wavelength is smaller than the diameter of the atom
		(B)	mass three orders of magnitude greater (and velocity three orders of magnitude less) de Broglie wavelength is similar to diameter of gold atom.	2	Can show by calculation. $2^{\text {nd }}$ mark is dependent on the $1^{\text {st }}$ mark being awarded.
	(b)		A single value from 398-410 nm	1	

9. Charged particles originating from space approach the magnetic field of the Earth. Most of the particles are high-energy protons.

A high-energy proton with a velocity of $2.75 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$ enters the magnetic field of the Earth at a point where the magnetic induction is $23 \mu \mathrm{~T}$. The proton enters the field at an angle of 60.0° and follows a helical path as shown in Figure 9A.
not to scale

Figure 9A
(a) (i) Determine the component of the velocity of the proton parallel to the magnetic field.
Space for working and answer
(ii) Determine the component of the velocity of the proton perpendicular to the magnetic field.
Space for working and answer
9. (continued)
(b) (i) The component of the velocity of the proton perpendicular to the magnetic field causes it to experience a magnetic force.

Show that the magnetic force experienced by the proton in the magnetic field is $8.8 \times 10^{-17} \mathrm{~N}$.

Space for working and answer
(ii) (A) This magnetic force causes the proton to undergo circular motion. Calculate the radius of this circular motion.

Space for working and answer
(B) Determine the period of this circular motion.
9. (b) (continued)
(iii) The distance that the proton moves parallel to the magnetic field lines during one period of the circular motion is known as the pitch.

Calculate the pitch of the helical path.
Space for working and answer
(c) The magnetic induction increases closer to the poles, as shown in Figure 9B.

Figure 9B
The helical path of the proton follows a field line as it approaches the North Pole. The protons can be considered to be travelling at a constant speed.

Other than direction, state two changes to the helical path followed by the proton as it approaches the pole.

Back to Table

Question			Expected response	Max mark	Additional guidance
9.	(a)	(i)	$v_{(\text {parallel })}=1.38 \times 10^{7} \mathrm{~ms}^{-1}$	1	Accept: 1.4, 1.375, 1.3750
		(ii)	$v_{(\text {perpendicular })}=2.38 \times 10^{7} \mathrm{~ms}^{-1}$	1	Accept: 2.4, 2.382, 2.3816
	(b)	(i)	$\begin{align*} & F=q v B \tag{1}\\ & F=1.60 \times 10^{-19} \times 2.38 \times 10^{7} \times 23 \times 10^{-6} \tag{1}\\ & F=8.8 \times 10^{-17} \mathrm{~N} \end{align*}$	2	SHOW Accept: $\begin{aligned} & F=q v B \sin \theta \\ & F=1.60 \times 10^{-19} \times 2.75 \times 10^{7} \times 23 \times 10^{-6} \times \sin 60.0 \end{aligned}$ Must have final answer, otherwise $\max 1$.
		(ii) (A)	$\begin{align*} & F=\frac{m v^{2}}{r} \tag{1}\\ & 8.8 \times 10^{-17}=\frac{1.673 \times 10^{-27} \times\left(2.38 \times 10^{7}\right)^{2}}{r} \tag{1}\\ & r=1.1 \times 10^{4} \mathrm{~m} \tag{1} \end{align*}$	3	Or consistent with (a)(ii) Accept: 1, 1.08, 1.077 $r=\frac{m v}{q B}$ ok as starting point Accept: 1, 1.08, 1.082
		(ii) (B)	$\begin{align*} & v=r \omega \text { and } \omega=\frac{2 \pi}{T} \tag{1}\\ & \left(T=\frac{2 \pi r}{v}\right) \\ & T=\frac{2 \pi \times 1.1 \times 10^{4}}{2.38 \times 10^{7}} \tag{1}\\ & T=2.9 \times 10^{-3} \mathrm{~s} \tag{1} \end{align*}$	3	Or consistent with (a)(ii) and (b)(ii)(A) Accept:3, 2.90, 2.904 Accept: $d=\bar{v} t$ and $d=2 \pi r$ as starting point $\begin{aligned} & F=m r \omega^{2} \text { and } \omega=\frac{2 \pi}{T} \\ & 8.8 \times 10^{-17}=\frac{1.673 \times 10^{-27} \times 1.1 \times 10^{4} \times 4 \times \pi^{2}}{T^{2}} \end{aligned}$ $\begin{equation*} T=2.9 \times 10^{-3} \mathrm{~S} \tag{1} \end{equation*}$ Accept: 3, 2.87, 2.873
		(iii)	$\begin{align*} & d=v t \tag{1}\\ & d=1.38 \times 10^{7} \times 2.9 \times 10^{-3} \tag{1}\\ & d=4.0 \times 10^{4} \mathrm{~m} \tag{1} \end{align*}$	3	Or consistent with (a)(i) and (b)(ii)(B) Accept: 4, 4.00, 4.002
	(c)		radius decreases pitch decreases	2	

10. A student is studying simple harmonic motion (SHM) using a mass oscillating vertically on the end of a spring.
(a) State what is meant by simple harmonic motion.
(b) The vertical displacement of an oscillating mass on a spring can be described by the expression

$$
y=A \cos \left(\sqrt{\frac{k}{m}} t\right)
$$

where the symbols have their usual meaning.
Show that this expression is a solution to the relationship

$$
m \frac{d^{2} y}{d t^{2}}+k y=0
$$

10. (continued)
(c) A mass of 0.75 kg is suspended from a spring of negligible mass, as shown in Figure 10A.

Figure 10A

The mass is now pulled down through a vertical distance of 0.038 m . It is then released, allowing it to oscillate about the equilibrium position.
The spring has a spring constant k of $24 \mathrm{Nm}^{-1}$.
(i) By considering the expression

$$
y=A \cos \left(\sqrt{\frac{k}{m}} t\right)
$$

show that the angular frequency of the mass is $5.7 \mathrm{rad} \mathrm{s}^{-1}$.
Space for working and answer
10. (c) (continued)
(ii) Determine the maximum acceleration of the mass.

Space for working and answer
(iii) On the axes below, sketch a graph showing how the acceleration of the mass varies with time, for the first full oscillation.

Numerical values are required on the acceleration axis only.

(An additional graph, if required, can be found on page 54.)

Back to Table

11. A travelling wave is represented by the equation

$$
y=12.6 \sin 2 \pi(1.32 t-1.04 x)
$$

(a) The energy of the wave is 8.17 mJ .

The wave is reflected and its amplitude halves.
(i) Calculate the energy of this reflected wave.
Space for working and answer
(ii) State the equation that represents this reflected wave.
11. (continued)
(b) A graph of another travelling wave, at one instant in time, is shown in Figure 11A.

Figure 11A

Determine the phase difference between points A and B .

Back to Table

Question			Expected response	Max mark	Additional guidance
11.	(a)	(i)	$\begin{align*} & E=k A^{2} \tag{1}\\ & \left(8.17=k \times 12.6^{2}\right) \tag{1}\\ & E_{2}=\frac{8.17}{12.6^{2}} \times 6.3^{2} \tag{1}\\ & E_{2}=2.04 \mathrm{~mJ} \tag{1} \end{align*}$	3	Accept: 2.0, 2.043, 2.0425 Accept: $\begin{align*} & \frac{E_{1}}{A_{1}^{2}}=\frac{E_{2}}{A_{2}^{2}} \\ & \frac{8.17}{12.6^{2}}=\frac{E_{2}}{6.3^{2}} \tag{1} \end{align*}$ $\begin{equation*} E_{2}=2.04 \mathrm{~mJ} \tag{1} \end{equation*}$
	(a)	(ii)	$y=6.3 \sin 2 \pi(1.32 t+1.04 x)$	2	1 for all numerical values 1 for change of sign
	(b)		$\begin{align*} & \phi=\frac{2 \pi x}{\lambda} \tag{1}\\ & \phi=\frac{2 \pi \times(3.6-2.0)}{4.0} \tag{1}\\ & \phi=\frac{4 \pi}{5} \mathrm{rad} \tag{1} \end{align*}$	3	Accept: 3, 2.5, 2.51, 2.513

12. A student carries out a Young's double slit experiment using a helium-neon laser.

The student observes an interference pattern on the screen as shown in Figure 12A.

Figure 12A
(a) The student records their measurements.

Slit to screen distance (m)	Slit separation (mm)
2.42 ± 0.02	0.38 ± 0.01

(i) Using the student's measurements, calculate the fringe separation.

Space for working and answer
(ii) Calculate the absolute uncertainty in this fringe separation.
12. (continued)
(b) The student now measures across 16 fringe separations.

16 fringe separations $=(62.4 \pm 0.5) \mathrm{mm}$
Using this data, determine the fringe separation.
You must include an uncertainty in your answer.
Space for working and answer
(c) State whether more confidence should be placed in the value for fringe separation obtained in (a) or in (b).
You must justify your answer.
(d) The student now repeats the experiment using a laser that produces light of wavelength 532 nm .
State the effect this has on the fringe separation.
You must justify your answer.

Back to Table

Question			Expected response	Max mark	Additional guidance
12.	(a)	(i)	$\begin{align*} & \Delta x=\frac{\lambda D}{d} \tag{1}\\ & \Delta x=\frac{633 \times 10^{-9} \times 2.42}{0.38 \times 10^{-3}} \tag{1}\\ & \Delta x=4.0 \times 10^{-3} \mathrm{~m} \end{align*}$	3	Accept: 4, 4.03, 4.031
		(ii)	$\begin{align*} & \frac{\Delta(\Delta x)}{\Delta x}=\sqrt{\left(\frac{\Delta D}{D}\right)^{2}+\left(\frac{\Delta d}{d}\right)^{2}} \tag{1}\\ & \frac{\Delta(\Delta x)}{4.0 \times 10^{-3}}=\sqrt{\left(\frac{0.02}{2.42}\right)^{2}+\left(\frac{0.01}{0.38}\right)^{2}} \tag{1}\\ & \Delta(\Delta x)=1.1 \times 10^{-4} \mathrm{~m} \tag{1} \end{align*}$	3	Or consistent with (a)(i) Suspend significant figures rule Accept: rule of three applied Accept calculations using percentages.
	(b)		$\Delta x=(3.90 \pm 0.03) \mathrm{mm}$	1	Suspend significant figures rule Accept uncertainty as a \%
	(c)		(b) or 3.90 mm As it has a smaller (absolute/fractional/percentage) uncertainty	2	MUST JUSTIFY Or consistent with (a) and/or (b) Accept: It is more precise. (1) Smaller random/systematic/scale reading uncertainty is incorrect.
	(d)		(The fringe separation) decreases (1) λ decreases, d and D remain constant	2	MUST JUSTIFY Accept: $\Delta x \propto \lambda$ for second mark

13. A student carries out an experiment to investigate the intensity of plane-polarised light transmitted through an analyser.
(a) State what is meant by plane-polarised light.
(b) The analyser can be rotated. The angle θ between the plane of polarisation and the transmission axis of the analyser is varied.
The light intensity is measured using a light meter.
This is shown in Figure 13A.

Figure 13A
The variation of measured light intensity I with θ is given by the relationship

$$
I=I_{0} \cos ^{2} \theta
$$

where I_{0} is the maximum light intensity.
Data from the student's experiment is shown in the table.

$\boldsymbol{I}\left(\mathrm{W} \mathrm{m}^{-2}\right)$	$\boldsymbol{\theta}\left({ }^{\circ}\right)$	$\cos ^{2} \boldsymbol{\theta}$
4.0	30.0	0.75
3.2	40.0	
2.8	45.0	
1.6	60.0	
0.5	80.0	

13. (b) (continued)
(i) Complete the table on page 38 to show all derived values of $\cos ^{2} \theta$.
(ii) Using the square-ruled paper on page 39, draw a graph from which a value of I_{0} can be determined.
(Additional square-ruled paper, if required, can be found on pages 52 and 53.)
(iii) Use information from your graph to determine a value for I_{0}.
(iv) Use information from your graph to determine the angle θ that gives a value for I of $3.5 \mathrm{~W} \mathrm{~m}^{-2}$.
(v) Use your graph to estimate the background light intensity.

13. (continued)

(c) (i) Suggest one change to the experimental procedure that would improve the accuracy of measurements of light intensity.
(ii) Suggest one change to the experimental procedure that would improve the precision of measurements of light intensity.

Back to Table

Back to Table

Question		Expected response	$\begin{array}{c}\text { Max } \\ \text { mark }\end{array}$	Additional guidance	
13.	(c)	(i)	$\begin{array}{l}\text { Reduce the background light level } \\ \text { OR } \\ \text { Place a black cloth on the bench } \\ \text { OR } \\ \text { Repeat measurements (and take the } \\ \text { mean) }\end{array}$	1	
	(ii)	$\begin{array}{l}\text { Repeat measurements (and take the } \\ \text { mean) } \\ \text { OR } \\ \text { Use a (light) meter that measures to } \\ \text { more decimal places/finer } \\ \text { graduations on scale }\end{array}$	1	$\begin{array}{l}\text { Measurements of angle only not } \\ \text { acceptable. 0 marks }\end{array}$	
Measurements of angle only not					
acceptable. 0 marks					

14. In a cathode ray oscilloscope, electrons are accelerated from rest between the cathode and anode. The electrons then travel with a constant horizontal velocity between the parallel deflection plates.

This arrangement is shown in Figure 14A.

Figure 14A
(a) The electrons pass through the anode with a horizontal velocity of $2.9 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$.

Determine the potential difference between the cathode and anode.
Space for working and answer

14. (continued)

(b) On the diagram below, sketch the electric field pattern between the parallel deflection plates.

(An additional diagram, if required, can be found on page 55.)
(c) Explain why the electrons follow a curved path between the parallel deflection plates.
14. (continued)
(d) The potential difference across the parallel deflection plates is 0.90 kV . Electrons passing between the plates are deflected by 4.0 mm in the vertical direction.

This is shown in Figure 14B.

Figure 14B
(i) The vertical component of the velocity of the electrons is $1.2 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$ as they exit the region between the plates.
Show that the vertical acceleration of the electrons between the parallel deflection plates is $1.8 \times 10^{16} \mathrm{~m} \mathrm{~s}^{-2}$.
Space for working and answer
14. (d) (continued)
(ii) By considering the electric field between the plates, determine the vertical separation of the plates.
Space for working and answer

Back to Table

Question			Expected response	Max mark	Additional guidance
14.	(a)		$\begin{align*} & \frac{1}{2} m v^{2}=Q V \tag{1}\\ & 0.5 \times 9.11 \times 10^{-31} \times\left(2.9 \times 10^{7}\right)^{2}=1.60 \times 10^{-19} \times V \tag{1}\\ & V=2.4 \times 10^{3} \mathrm{~V} \tag{1} \end{align*}$	3	Accept:2, 2.39, 2.394 Accept negative value for Q.
	(b)			1	Ignore end effects. Field lines must be straight/spaced uniformly. Field lines must start and end on the plates.
	(c)		The electrons travel with (constant) horizontal speed/velocity. Electrons travel with (constant) vertical acceleration.	2	No force in the horizontal direction (1) Unbalanced force in the vertical direction (1) Accept: Perpendicular to field in place of horizontal Parallel to field in place of vertical. Do not accept: Attracted to the top/positive plate without reference to unbalanced force for second mark
	(d)	(i)	$\begin{align*} & v^{2}=u^{2}+2 a s \tag{1}\\ & \left(1.2 \times 10^{7}\right)^{2}=0^{2}+2 \times a \times 4.0 \times 10^{-3} \tag{1}\\ & a=1.8 \times 10^{16} \mathrm{~ms}^{-2} \end{align*}$	2	SHOW Final answer must be shown, otherwise MAX 1.
		(ii)	$\begin{align*} & (F=m a) \\ & F=9.11 \times 10^{-31} \times 1.8 \times 10^{16} \\ & F=Q E \text { and } E=\frac{V}{d} \\ & \left(F=\frac{Q V}{d}\right) \\ & 9.11 \times 10^{-31} \times 1.8 \times 10^{16}=1.60 \times 10^{-19} \times \frac{0.90 \times 10^{3}}{d} \tag{1}\\ & d=8.8 \times 10^{-3} \mathrm{~m} \tag{1} \end{align*}$	4	Accept: 9, 8.78, 8.782

15. An undersea high voltage $D C$ electrical power link consists of two cables buried under the seabed.

The magnetic permeability of the seabed can be taken to be the same as the permeability of free space.

There is a current of 1.80 kA in each cable.
The cables are buried 30.0 m apart, as shown in Figure 15A.

Figure 15A
(a) (i) Calculate the magnetic induction at cable 2 due to the current in cable 1.3 Space for working and answer
15. (a) (continued)
(ii) Determine the magnitude of the force per unit length acting on cable 2 due to the current in cable 1.

Space for working and answer
(b) A third cable carries a fibre-optic link. The optical fibre is made of silicon dioxide.

The speed v_{m} of an electromagnetic wave in an optical fibre is given by the relationship

$$
v_{m}=\frac{1}{\sqrt{\varepsilon_{r} \varepsilon_{0} \mu_{r} \mu_{0}}}
$$

where ε_{r} is the relative permittivity of the optical fibre material
μ_{r} is the relative permeability of the optical fibre material and the other symbols have their usual meaning.

The speed of light in the optical fibre is $1.52 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$.
The relative permeability of silicon dioxide is 1.00 .
Determine the relative permittivity of silicon dioxide.
Space for working and answer

Back to Table

Question			Expected response	Max mark	Additional guidance
15.	(a)	(i)	$\begin{align*} & B=\frac{\mu_{0} I}{2 \pi r} \tag{1}\\ & B=\frac{4 \pi \times 10^{-7} \times 1.8 \times 10^{3}}{2 \pi \times 30.0} \tag{1}\\ & B=1.2 \times 10^{-5} \mathrm{~T} \tag{1} \end{align*}$	3	Accept: 1, 1.20, 1.200
		(ii)	$\begin{align*} & F=I l B \tag{1}\\ & \frac{F}{l}=1.8 \times 10^{3} \times 1.2 \times 10^{-5} \tag{1}\\ & \frac{F}{l}=2.2 \times 10^{-2} \mathrm{Nm}^{-1} \tag{1} \end{align*}$	3	or consistent with (a)(i) Accept: 2, 2.16, 2.160 Where l is substituted as 1 accept final answer in N
	(b)		$\begin{aligned} & \left(v_{m}=\frac{1}{\sqrt{\varepsilon_{r} \varepsilon_{0} \mu_{r} \mu_{0}}}\right) \\ & 1.52 \times 10^{8}=\frac{1}{\sqrt{\varepsilon_{r} \times 8.85 \times 10^{-12} \times 1.00 \times 4 \pi \times 10^{-7}}} \end{aligned}$ (1) $\begin{equation*} \varepsilon_{r}=3.89 \tag{1} \end{equation*}$	2	Accept:3.9, 3.892, 3.8919 If unit given in final answer (1) max.

16. An LC circuit in a radio receiver has an inductor and capacitor connected in parallel. The LC circuit is used to select different radio frequencies by varying the capacitance C of the capacitor.

The inductor has a fixed inductance L of $120 \mu \mathrm{H}$.
Part of the LC circuit is shown in Figure 16A.

Figure 16A
(a) State what is meant by inductive reactance.
(b) (i) The resonant frequency f_{0} of the LC circuit is the frequency at which the inductive reactance equals the capacitive reactance.
Show that this frequency can be expressed as

$$
f_{0}=\frac{1}{2 \pi \sqrt{L C}}
$$

where the symbols have their usual meanings.
16. (b) (continued)
(ii) The variation of the current with frequency in the LC circuit is shown in Figure 16B.

Figure 16B

At the resonant frequency, the current in the LC circuit is at a maximum. Determine the capacitance of the capacitor at the resonant frequency. Space for working and answer
16. (continued)
(c) The radio receiver also contains an RC circuit. The RC circuit is shown in Figure 16C.

Figure 16C

The capacitor in the RC circuit is fully charged.
When the radio receiver is switched off, this capacitor discharges through a resistor of resistance $125 \mathrm{k} \Omega$.

The time constant for the circuit is 250 s .
(i) Calculate the capacitance of this capacitor.

Space for working and answer
16. (c) (continued)
(ii) A graph of the potential difference V across the capacitor against time t is shown in Figure 16D.

Figure 16D

Using information from the graph, show that the voltage across the capacitor reduces to 37% of its original value after one time constant.

Space for working and answer

Back to Table

Question			Expected response	Max mark	Additional guidance
16.	(a)		Inductive reactance is the opposition (of an inductor) to changing current	1	
	(b)	(i)	$\begin{align*} & \left(X_{L}=2 \pi f L, X_{C}=\frac{1}{2 \pi f C}\right) \\ & 2 \pi f_{0} L=\frac{1}{2 \pi f_{0} C} \tag{1}\\ & f_{0}=\frac{1}{2 \pi \sqrt{L C}} \end{align*}$	2	NON-STANDARD SHOW 1 mark for both relationships 1 mark for equating using f_{0} If equated using f then maximum 1 mark Final relationship must be shown otherwise maximum 1 mark
		(ii)	$\begin{align*} & f_{0}=\frac{1}{2 \pi \sqrt{L C}} \\ & 160 \times 10^{3}=\frac{1}{2 \pi \sqrt{120 \times 10^{-6} \times C}} \tag{1}\\ & C=8.2 \times 10^{-9} \mathrm{~F} \tag{1} \end{align*}$	3	Accept: 8, 8.25, 8.246 1 mark for $f_{0}=160 \times 10^{3}(\mathrm{~Hz})$
	(c)	(i)	$\begin{align*} & \tau=R C \tag{1}\\ & 250=125 \times 10^{3} \times C \tag{1}\\ & C=2.0 \times 10^{-3} \mathrm{~F} \tag{1} \end{align*}$	3	Accept: 2, 2.00, 2.000
		(ii)	At 250 s , voltage $=4.4 \mathrm{~V}$ $\frac{4.4}{12.0}$ $\begin{equation*} (=0.37)=37 \% \tag{1} \end{equation*}$	2	NON-STANDARD SHOW $\begin{equation*} 37 \% \times 12=4.4(\mathrm{~V}) \tag{1} \end{equation*}$ 4.4 (V) gives a time of 250 s Accept 4.44 (V) Do not accept: 4 (V)

[END OF MARKING INSTRUCTIONS]

