LOCKERBIE ACADEMY
 TRANSPORT UNIT

S1-S3 Road Safety \& PHYSICS

S1-S3 Physics Transport

Velocity-Time GRAPHS

 advanced 2 Complete after the acceleration sectionS1-S3 Physics Transport

Velocity-Time
 GRAPHS

Describing graphs

The motion of any object can be represented by a line drawn on a speed-time or velocity-time graph. This give a visual indication of how objects are moving.
Examples

- Speeding up Uniform/
- increasing Steady speed velocity
-(accelerating)

- constant velocity

- (constant speed) • (decelerating)
- Slowing down
- negative
acceleration

Describe the motion represented by the line on each speed-time graph:

0-8 seconds: \qquad from \qquad metres per second to ___ metres per second. (Constant/uniform \qquad
8-11 seconds: \qquad metres per second.
11-18 seconds: \qquad from \qquad metres per second to metres per second. (Constant/uniform

0-5 seconds: from \qquad metres per second to ___ metres per second. (Constant/uniform \qquad).
5-12 seconds: \qquad
\qquad metres per second.
12-17 seconds: \qquad from \qquad metres per second
to \qquad metres per second. (Constant/uniform

Abstract

).

$0-5$ seconds: Speeding up from rest (0 metres per second) to 10 metres per second. (Constant/uniform acceleration). 5-15 seconds: Steady speed of 10 metres per second. 15-20 seconds: Slowing down from 10 metres per second to speed/metres per second rest (0 metres per second). (Constant/uniform deceleration).

time/ seconds

Maximum speed = 9 metres per second. Total time $=18$ seconds.

A cyclist travels at a steady speed of 9 metres per second for 6 seconds before decelerating constantly/uniformly to a speed of 2 metres per second in 7 seconds. She then travels at this steady speed for a further
speed/ metres per second

time/ seconds

A racing car travels at a steady speed of 10 metres per second for 2 seconds before accelerating constantly/uniformly for 12 seconds to a speed of 90 metres per second. The car then immediately decelerates constantly/uniformly for 6 seconds to a speed of 70 metres per second.

time/ seconds

S1-S3 Physics Transport

$$
\begin{gathered}
\text { Velocity-Time } \\
\text { GRAPHS }
\end{gathered}
$$

Finding the acceleration from velocity-time graphs

The gradient of a velocity time graph (steepness) tells us the acceleration of the object. The steeper the graph (bigger the gradient) the greater the acceleration.

Finding the gradient of a velocity-time graph

Drawing Speed-Time Graphs

Draw a speed-time graph for the following journey

- A train leaves the station and take 30 s to accelerate to $15 \mathrm{~m} / \mathrm{s}$.
- It remains at this speed for a further 15 seconds.
- As it approaches the next station it slows to $5 \mathrm{~m} / \mathrm{s}$. It takes 20 seconds to decelerate to this speed
- As it finally pulls into the next station it slows to a stop in 15 seconds.

What It Should Look Like

What It Should Look Like

Describe the motion represented by the line on each speed-time graph:

time/ seconds
0-10 seconds: \qquad from \qquad metres per second to ___ metres per second. (Constant/uniform \qquad
10-15 seconds: \qquad
\qquad metres per second.
15-20 seconds: from \qquad metres per second
to 02/10/metres per second. (Constan直/uniform \qquad).

Finding the Acceleration from velocity-time graph:

time/ seconds

Gradient $=$ rise/run
$\mathrm{a}=(\mathrm{v}-\mathrm{u}) / \mathrm{t}$
$\mathrm{a}=(10-0) / 10$
$\mathrm{a}=1 \mathrm{~m} / \mathrm{s}^{2}$

Gradient $=$ rise/run
$\mathrm{a}=(\mathrm{v}-\mathrm{u}) / \mathrm{t}$
$a=(10-10) / 5 \quad a=(0-10) / 5$
$a=0 \mathrm{~m} / \mathrm{s}^{2}$

Gradient $=$ rise/run
$\mathrm{a}=(\mathrm{v}-\mathrm{u}) / \mathrm{t}$
$a=-2 \mathrm{~m} / \mathrm{s}^{2}$

Problems

1. Calculate the average velocity over $\mathrm{OA} A B$ and BC

2. Calculate (a)the acceleration over OA, AB and BC (b) the total distance traveled in the 12 s

$$
\begin{aligned}
& 5 \mathrm{~m} / \mathrm{s}^{2}, 0,3.75 \mathrm{~m} / \mathrm{s}^{2} \\
& 127.5 \mathrm{~m}
\end{aligned}
$$

S1-S3 Physics Transport

$$
\begin{gathered} \text { Velocity-Time } \\ \text { GRAPHS } \end{gathered}
$$

 Velocity-Time

 Velocity-Time GRAPHS

 GRAPHS}

Finding the distance and displacement from velocitytime graphs

- The AREA under a speed time graph tells us HOW FAR we have travelled (DISTANCE)
- The area under a velocity time graph tells us the DISPLACEMENT of the object.

Speed - Time Graphs 2

Speed time graphs, when drawn accurately can be used to find the total distance travelled during a journey. No matter what the shape of the graph....

Total distance covered=Area under a speed time graph

Often, to find the area, the graph will need to be split into standard geometrical shapes like triangles and rectangles

Make a sketch of this
graph and divide it up into appropriate shapes

Finding the area of different shapes

Q. How would you find the area of a square or a rectangle?
A. You would multiply the base by the height to find the area.

$$
\text { Area }=b \times h
$$

Q. How would you find the area of a triangle?

The triangle is half of a rectangle with the same base and height. The triangle therefore has half the area of

A. The area of the triangle is $1 / 2$ base x height.
Area $=1 / 2 \times b \times h$

Q. How could you find the area of this shape (called a trapezium)?

You could divide it up into triangles and rectangles, and
 then find the area of each part.
A.

Area $1=1 / 2 \times b \times h_{1}$
Area $2=b \times h_{2}$

The AREA under a speed time graph tells us HOW FAR we have travelled (DISTANCE)

My object is travelling very fast. It is travelling at constant speed, its instantaneous speed is constant. It's acceleration is zero. To find the distance travelled, d, we'd use the formula;

Find the average speed for this journey.

$$
\begin{aligned}
& \bar{v}=\frac{u+v}{2} \\
& \bar{v}=\frac{0+10}{2}=5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The area of the triangle is exactly the same as the area of the rectangle with a speed exactly half way between the two values, $u \& v$

$$
\begin{aligned}
& d=\bar{v} \times t \\
& d=5 \times 30=150 m
\end{aligned}
$$

the area of the pink shape is the same as the area of the yellow triangle. Both give you the distance travelled

How far did it go?

Time (s)

How far did it go?

Displacement = area under $\mathrm{v}-\mathrm{t}$ graph
$=$ Triangle $A+$ Rectangle $B+$ Triangle $C+$ Rectangle $D+$ Triangle E
$=\left(\frac{1}{2} \times 30 \times 15\right)+(15 \times 15)+\left(\frac{1}{2} \times 10 \times 20\right)+(20 \times 5)+\left(\frac{1}{2} \times 15 \times 5\right)$
$=225+225+100+100+37.5$
$=687.5 \mathrm{~m}$

Problem

2. Calculate the total distance traveled in the 12 s

Velocity time graphs; Summary

- The gradient of a velocity time graph gives the acceleration of an object
- the area under a velocity time graph gives the total distance travelled
- Increasing or decreasing gradient gives the rate at which the acceleration is increasing or decreasing
- Zero gradient means the object is travelling at constant speed

S1-S3 Physics Transport

Distance-Time GRAPHS

Distance-time graphs

Distance time graphs ; Summary

- The gradient of a distance time graph gives the velocity
- increasing gradient means object is accelerating
- decreasing gradient means object is decelerating
- zero gradient means object is stationary

Problems

1. Describe the motion of the vehicle during the 12 s journey
2. Calculate the average speed over OA AB and BC

$5 \mathrm{~m} / \mathrm{s}, 0 \mathrm{~m} / \mathrm{s}, 3.75 \mathrm{~m} / \mathrm{s}$
