

Velocity-Time

 GRAPHSadvanced 2
Complete after the acceleration section

S1-S3 Physics Transport

Velocity-Time GRAPHS

Finding the acceleration from velocity-time graphs

Drawing Speed-Time Graphs

Problems

1. Calculate the average velocity over $\mathrm{OA} A B$ and BC

2. Calculate (a)the acceleration over OA, AB and BC
(b) the total distance traveled in the 12 s
$5 \mathrm{~m} / \mathrm{s}^{2}, 0,3.75 \mathrm{~m} / \mathrm{s}^{2}$, 127.5 m

The AREA under a speed time graph tells us HOW FAR we have travelled (DISTANCE)

My object is travelling very fast. It is travelling at constant speed, its instantaneous speed is constant. It's acceleration is zero. To find the distance travelled, d, we'd use the formula;

$$
\begin{gathered}
v=\frac{d}{t} \\
d=v \times t \\
d=100 \times 300=30000 \mathrm{~m}
\end{gathered}
$$

Distance time graphs ; Summ

- The gradient of a distance time graph gives the velocity
- increasing gradient means object is accelerating
- decreasing gradient means object is decelerating
- zero gradient means object is stationary

Problems

1. Describe the motion of the vehicle during the 12 s journey
2. Calculate the average speed over $\mathrm{OA} A B$ and BC

