S3 Transport Need to Know Sheet

1.6	I can perform calculations involving the relationship between speed, distance and time (d=vt) Speed is the distance travelled in unit time (distance travelled per second)			
	\bar{v} =	$=\frac{d}{t}$		
1.8	I can determine average and instantaneous speed.			
	The instantaneous speed of a vehicle at a given point can be measured by finding the average speed during a very short time as the vehicle passes that point.			
	$v = \frac{\Delta d}{\Delta t} = \frac{l}{t}$			
	The instantaneous speed of an object is defined as the length of the vehicle divide by the time to pass a point.			
1.9	I can describe experiments to measure average and instantaneous speed.			
	Average Speed			
	<i>Light</i> <i>Timer</i> <i>Light</i> <i>gate 1</i> <i>Trolley</i> <i>nstructions</i> <i>Light</i> <i>gate 2</i> <i>the time</i> <i>formula:</i>	ure the average speed you need to <u>measure the</u> <u>e for the whole journey</u> and measure <u>the time</u> <u>or the whole journey</u> . The distance can be ed with a trundle wheel, tape measure etc., and e can be measured with a stop watch. Use the $\bar{v} = \frac{d}{t}$		
	2.5 cm Instantaneous Speed			
	Light gate connected to interface &			
1.1	I can define the terms scalars and vectors			
	a scalar quantity is completely described by stating its magnitude (size) & unit.			
	a vector quantity is completely described by stating its magnitude, unit and direction			
1.2				
	Scalars	Vectors		
		Velocity		
	Energy	~		
	Temperature	Acceleration		
	Temperature Speed	Acceleration Displacement		
	Temperature Speed Time	Acceleration Displacement Force		
	Temperature Speed	Acceleration Displacement		

3.1	I can define acceleration as the final velocity subtract the initial velocity divided by the time for the change, or change in velocity divide by the time for the change.		
	$a = \frac{v - u}{t} = \frac{\Delta v}{t}$		
3.1	I can define the acceleration as rate of change of velocity.		
	Acceleration is the rate of change of velocity. Acceleration is the change in velocity per unit time.		
	An acceleration of 2 ms ⁻² means the velocity increases by 2 ms ⁻¹ every second		
3.2	I can use the relationship involving acceleration, change in speed and time (a = $\Delta v/t$).		
	$a = \frac{v - u}{t} = \frac{\Delta v}{t}$		
	$\Delta v = v - u$		
3.3	I can use appropriate relationships to solve problems involving acceleration, initial velocity (or speed) final velocity (or speed) and time of change $\left(a = \frac{v-u}{t}\right)$.		
	A girl is riding a bicycle. She starts at rest, and accelerates to 20 ms ⁻¹ in 8.0 seconds, calculate her acceleration. $\Delta v = v - u = 20 - 0 = 20$		
	$a = \frac{\Delta v}{t} = \frac{20}{8} = 2.5 \ ms^{-2}$		
	A car increases its velocity from 30 ms ⁻¹ to 80 ms ⁻¹ in 20 seconds. Calculate its acceleration. $a = \frac{v - u}{t}$ $a = \frac{80 - 30}{20} = 2.5 ms^{-2}$		
3.5	I can describe an experiment to measure acceleration		
	Instructions for double mask method.		
	1. Measure the length of the two parts of the double mask,		
	 Set the computer to measure acceleration, and input Release the trolley and record the acceleration, 		
	 The computer measures the time for each part of the double mask to pass through the light gate, and the time between the two parts. It then uses these to calculate acceleration 		
	$a = \frac{(v - u)}{t}$		
	$a = \frac{t}{t}$ 6. Repeat several times and calculate an average.		
	Instructions for single mask method		
	1. Measure the length of the mask, d.		
	 Set the computer to measure acceleration, and input d. Release the trolley and record the acceleration, a. 		
	 The computer measures the time for each for the mask to pass through each light gate the light gate, and the time between the two light gates. It then uses these to calculate acceleration 		
	$a = \frac{(v - u)}{t}$		
	6. Repeat several times and calculate an average.		
	o. Repeat several times and calculate all average.		

	Calculate the acceleration shown in the graph below:		
	Solution v=18:	on J=6; t=10	
	v=18; v i i i i i i i i i i i i i i i i i i i		
	a git	$a = \frac{v - u}{t}$	
		18 - 6	
	time (s)	$a = \frac{18 - 6}{10} = 1.2 \ ms^{-2}$	
	Solution using gradient $\gamma_0 = \gamma_1$		
	$m = \frac{y_2 - y_1}{x_2 - x_2}$		
	18 - 6		
	$m = a = \frac{18 - 6}{10 - 0} = 1.2 \text{ ms}^{-2}$		
4.1	I can give applications and use Newton's laws and balanced for speed), making reference to the frictional forces of the object		
	Newton's First Law : A body will remain at rest or tra- line, unless acted upon by an unbalanced force.	avel at a constant speed in a straight	
	Newton's Second Law we normally write as a formula:		
	$F_{un} = ma$		
	Unbalanced Force = $mass \times acceleration$		
	$(Newtons) = (Kilogram) \times (metres pers)$	econd squared)	
	Newton's Third Law states: For every action there is a		
	Or If A exerts a force on B, B exerts an equal but opposi	te force on A.	
	Difference between N1 and N3 Laws		
4.2	I can give applications of Newton's laws and balanced forces for situations where more than one force is acting, (F=ma)	to explain and or determine acceleration	
	A force can change an object's:	Why a boat floats	
	 direction of motion (an acceleration) 	buoyancy force/upthrust/force	
	> shape	water on ship/flotation force	
	> speed (cause an acceleration)		
	start a mass moving (cause an acceleration)	eration)	
	If none of these occur the forces on an object are	\downarrow	
	either balanced or zero.	weight/force of gravity (1)	
	A car is travelling at a constant speed along a flat level r	road.	
	The forces on the car are balanced as the car is travellin	ng at constant speed.	
	If an unbalanced force is added to the car will accelerat	e.	
	A hot air balloon is falling at constant velocity to the ground.		
	(i) A free body diagram with the forces labelled o	on the balloon.	

		W= weight, F= frictional forces.			
	(ii) (iii)	The forces on the balloon are equal in size and opposite in direction A balloonist throws a sandbag over the side of the balloon basket, state what happens to the forces on the balloon. The weight decreases, the frictional forces remains constant for an			
	(iv)	instant Describe the motion of the balloon when the sandbag is thrown overboard. The balloon will accelerate upwards as there is an unbalanced upwards force until a new terminal velocity is reached			
4.3		F=ma to solve problems involving unbalanced force, mass and acceleration for situations ore than one force is acting, in one dimension.			
		as a mass of 700 kg, and can accelerate at 3.0 ms ⁻² . If the engines produce a force of what is the size of			
	(i) the unbalanced force on the boat, and				
	(ii) the drag force of the water on the boat?				
	(i) F = ma = 700kg × 3ms ⁻² = 2100 N				
	(II) DRAG FORCE = 7000N - 2100N = 5800N				
4.4	I can use W=mg to solve problems involving weight mass and gravitational field strength, including on different planets (where g is given on page 2 of section1)				
		Force = mass × acceleration the same so a and g must be the equivalent Weight = mass × gravitational field strength			
4.5	l can use	Newton's 3rd law and its application to explain motion resulting from a 'reaction' force.			
		If I sit on a chair I am exerting a force (equal to my weight) on the chair (if my legs are off the ground). I am not accelerating so the forces on me must be balanced. So there must be a reaction force equal in size and opposite in direction to my weight. This is the reaction force from the chair.			

V/m s ⁻¹ E	2. Terminal velocity D. Parachute opens E. New terminal velocity F: Landing t /s
point	Forces and Motion
А	Newton's 2 nd Law F=ma
	F=weight, m = mass of the skydiver and kit, a=acceleration.
	Initial velocity in the vertical direction is zero, the object accelerates under the force of gravity at 9.8ms ⁻² . Initially no drag force.
В	Newton's 2 nd Law F=ma
	F_{un} =weight+drag (which is in the opposite direction), m = mass of the skydiver and kit, a=acceleration.
	As vertical speed increases air resistance acting against the parachutist increases. At B weight is greater than drag so the skydiver accelerates with a reduced acceleration than at the start.
C	Newton's 1 st Law An object will move at constant velocity unless acted upon by an unbalanced force. The forces are balanced.
	At C Weight = drag so the skydiver falls at constant speed, terminal velocity.
D	Newton's 2 nd Law F=ma
	Fun=weight+ frictional forces (which are much greater than weight so F is negative), m = mass of the skydiver and kit, a=acceleration.
	The parachute is opened At D drag forces are much greater than the weight (the parachute has been opened) so there is a high deceleration (or negative acceleration)
E	Newton's 1 st Law An object will move at constant velocity unless acted upon by an unbalanced force. The forces are balanced.
	At E Weight = drag so the skydiver falls at constant speed, terminal velocity
F	Newton's 2 nd Law F=ma and Newton's 3 rd Law For every action there is an equal but opposite reaction.
	Fun=weight+ forces from the ground, m = mass of the skydiver and kit, a=acceleration.
	The skydiver touches the ground creating a large force on the ground (slowing down) The ground produced an equal but opposite force on the skydiver which cause a great negative acceleration