Assignments from 2018

Before you do your assignment for real, check out the practical skills booklet, containing everything you need to know to create a great assignment.

For teachers: this is what is allowed in to the write up phase

Here are some sample assignment links

TopicStarter SheetAdditional Help reporting stage
OUR DYNAMIC UNIVERSE
'g' AH determining g A
H method determining g A
'g' BH determining g BH method determining g B
SlopesH acc down slope AH method acc down slope A
SlopesH Assign acc down slope BH method acc down slope B
PARTICLES AND WAVES
RefractionH Refraction AH method Refraction A
Critical AngleH critical angleH method critical angle
PlanckH determining h AH method determining h
PlanckH determining h BH method determining h B
1/d2H inverse squareH method 1/d2
ELECTRICITY
A.C. D.C. aH ac dc AH method ac dc A
A.C. D.C. bH ac dc BH method ac dc B
Vp v VrmsH Vp v VrmsH method Vp v Vrms
Internal Resistance & EMF AH EMFH method EMF
Power matchingH power matchingAdvanced
H method power matching
Capacitors AH Capacitor A
H method Capacitor A
Capacitors BH Capacitor BH method Capacitor B
Capacitors C
Capacitors D
Other possible
Wheatstone BridgeH Wheatstone BridgeWheatstone
H method Wheatstone
Op Amps inverting mode gainH Op Amps AH method Op Amps A

Op amps
Op Amps bandwidthH Op Amps BH method Op Amps B
Half value thicknessH Half Value Thickness 2020Might not be suitable for coverage but in old H
Exoplanets AH Exoplanet A
H method Exoplanet A
Exoplanet BH Exoplanet BH method Exoplanet B
WHY NOT SHAREANY SHEETS
Finding wavelength from diffraction grating
Finding the wavelength of microwaves by standing waves
Signature

Sept 2023


“The experiments detailed in the course specification can be used for assignments. Centres are obviously free to choose other experiments if they wish, as long as they’re commensurate with the level. One of the advantages of using the experiments in the course is that you can be sure that the physics is accessible and at the correct level.

In the past, we saw some examples where centres had used rotational motion experiments with N5 candidates, and you could tell that the candidates had no clue what they were doing. It’s also been obvious at National 5 level that some centres are still using kits they had for Standard Grade investigations, which is fine, but you do need to make sure that the underlying physics is accessible. To give an example, solar cells was always a popular topic for Standard Grade and we see centres using them for National 5, but explaining how a solar cell produces a potential difference is something N5 candidates will probably struggle with (Higher candidates do when we ask them in the exam).

Higher, of course has the alternative two experiment route, which is quite popular especially with topics such as internal resistance where they can do the two experimental variations.

Your colleagues may wish to have a look at the Physics pages on the Understanding Standards website:

SQA – Understanding Standards: Introduction (Nat 5)

SQA – Understanding Standards: Introduction (Higher)

where they will see several exemplars based on the experiments detailed in the course specification.

If you have things that have worked well in the past, then it’s worth remembering that nothing has changed in any of the coursework requirements, and therefore they should still work in the same way.”

SQA Brilliant Person

This summary is based on the updated information from the SQA. The first two links are for the candidate guide which is produced by the SQA and contains the information that students can access. This can be taken into the reporting stage of your assignment. It is important to check off what you have done at the end of your assignment with the marking instructions. Prior to this it would be a good idea to have gone through the Practical Skills Booklet.

The link below takes you to the full information document which is produced by the SQA. It is a current document. This cannot be taken into the Reporting stage of your assignment, although the document above can.

SQA Higher Physics Assignment.pdf

HigherCATPhysics

Here is the powerpoint Martyn and I produced for the IOP on Assignments

This assignment is worth 20 marks, contributing 20% to the overall marks for the course assessment. t applies to the assignment for Higher Physics.

SectionDescriptionMark
Title and structureAn informative title and a structure that can easily be followed.1
AimA description of the purpose of your investigation.1
Underlying physicsA description of the physics relevant to your aim, which shows your understanding.3
Data collection and handlingA brief description of an approach used to collect experimental data.1
Sufficient raw data from your experiment.1
Data from your experiment, including any mean and/or other derived values, presented in a table with headings and units.1
Numerical or graphical data relevant to your experiment obtained from an internet/literature source, or raw data relevant to your aim obtained from your second experiment.1
A citation for an internet/literature source and the reference listed later in the report.1
Graphical presentationThe axes have suitable scales.1
Suitable labels and units on the axes.1
All data points plotted accurately and, where appropriate, line or curve of best fit drawn.1
UncertaintiesScale reading uncertainties shown for all measurements and random uncertainty in measurements calculated.2
AnalysisAnalysis Discussion of experimental data.1
ConclusionA conclusion relating to your aim based on all the data in your report.1
EvaluationThree evaluative statements supported by justifications.3
Total20

Signature

Sept 2023

More Revision Resources

Came across these lovely, although large font, flashcards. They have the prefix name Woodmill, so I assume they were made by someone from Woodmill High School. If you reveal yourself I’ll thank you personally. Print double sided on A4 to get ready made flashcards. If that is not possible just copy them out!

Thanks to Mr Dawson from Wallace Hall Academy in D&G for these great resources. Use them well!

DYNAMICS

Particles

Signature
October 2021

Notes for exams

Here are some documents for setting exam papers which should be of use for teachers and also give students practise at answering questions from the command words.

My thanks to Mr S Farmer and Mr A Bailey for these.

Signature

Revision Past Papers

Mr Dawson has sorted the SQA papers by topic to save time when revising. Don’t rush to the answers until after you’ve completed a whole section.

Thanks to Mr Dawson from Wallace Hall Academy (D&G) for this excellent resource. All your SQA Higher past papers sorted by unit and topic.

Signature

February 2020


Revision Review 1

Revision Reviews 1 word

Revision Reviews 1 pdf

Covering Units Prefixes and Scientific Notation and Uncertainties. Also scalars and vectors.

Review Answers, don’t cheat, it wont do anyone any good, especially you!

Review answers1_2 word

Review answers1_2 pdf

The above answers are only corrected to the first two review!

Electricity Resources

The 2018 part 1 Electricity Notes.

this is the pdf version of the document above covering a.c/ d.c, rms, resistance, circuits, and emf.  

And even hotter off the press part 2 Electricity Notes, sorry these have taken 6 months!


Remember

An LED is FORWARD biased. A photon is emitted when an electron falls from the conduction band into the valence band.

Power Matching (word)  Power Matching (pdf) Here is a task to show how to get the greatest power from your circuit. I’ve uploaded it as a pdf and word document.

Here are the answers in an excel spreadsheet, but don’t peek until you’ve completed your own graphs and table! power matching

semiconductors working 2

White Board Revision of Electricity 2

final-question-past-paper Here are the questions from the Revised Higher Physics Papers in topic order with the marking instructions. If you can’t read this I can upload as a pdf file, just ask!

 A graph of current against time for charging and discharging at different frequencies. Notice how at low frequencies (0-16s) the current can drop quite low, whereas at higher frequencies (16-26s) their is greater current overall.

Here is a nice introduction to semiconductors

Band Theory

My powerpoint for this section contains some exciting explanations that I’ve “borrow” from Chris Hooley, Paul at High School Physics Explained and helpmyphysics. The first powerpoint is 588MB so I’ve had to break it up to upload it. If you want to use it you’ll need to download each part and paste it all back together!

This is the first section of semiconductors but I’ve ad to break it up to upload it

I’ve taken out the embedded videos so some of the helpmyphysics, you might need to cut some of it. Hope it helps you.

[table id=16 /]

2016 Higher Question Paper

Some cars use LEDs in place of filament lamps. An LED is made from semiconductor material that has been doped with impurities to create a p-n junction. The diagram represents the band structure of an LED.

A voltage is applied across an LED so that it is forward biased and emits light.

Using band theory, explain how the LED emits light.

(Voltage applied causes) electrons to move towards conduction band of p-type/ away from n-type (towards the junction) (1)

Electrons move/ drop from conduction band to valence band (1)

Photon emitted (when electron drops) (1)

Anderson High School

Thanks to N. Hunter for these great notes from Anderson High.

This is the end of the course! Thanks for making the journey with me. Just revision to do now. All of those resources can be found in the REVISION section.

Worked Answers

For speed I will add some of the worked answer files here until I can produce an answer booklet, which I’ll do a.s.a.p.

capacitance tutorial answers

electric fields and resistors tutorials 2010

ac voltage tutorials answers corrected

electric fields and resistors tutorial answers

Signature

ODU Resources

You moaned and I responded. Here are just the notes for the ODU section, no questions to put you off. I will move the questions to the Learning Outcome Booklet.

ODU Notes and Practicals

Updated for the 2018 changes

Part 1, containing notes, tutorials and practicals

OUR DYNAMIC UNIVERSE 2018 pdf

OUR DYNAMIC UNIVERSE 2018 word

Part 2 of the notes in word format, you can adapt these if you can open them.

These are part 2 of the notes in pdf format, so you all ought to be able to open them.

OUR DYNAMIC UNIVERSE part 2 

Well after spending 18 months or more several years ago putting everything together students have unanimously declared they want everything separated, so your wish is my command students- here is the complete Our Dynamic Universe section notes with nothing but the essential practicals plus one!

These are part 1 of the notes in pdf format, so you all ought to be able to open them. There is a word version underneath.

These are part 1 of the notes in word format, you can adapt these if you can open them.

New for 2022 KNOWLEDGE ORGANISERS

Teamwork by Mr Stewart (Berwickshire HS) and I. He designed and made them and I tweaked them. Thanks Mr Stewart they’re ace!

Thanks Mr R Stewart- what a team!

Thanks Mr R Stewart!

For those having trouble with Unit 1 part 1 try this little document

1. 1a Equations of motion

1. 1a Equations of motion

I’ve removed the Time Dilation detailed version and added it as a separate document as I suspect most of you wont read them; which is a pity as it makes everything seem fine! Based on Russell Stannard’s excellent book “Relativity- a very short introduction” Oxford. (2008)  ISBN 978–0–19–923622–0)

ODU worked ANSWERS_4 Currently the most up to date version of the worked answers.

ODU worked ANSWERS_4 The pdf version of the most up to date version of the worked answers.

Additional Support

Chapter 1 exam questions B for CFE higher

Chapter 1 exam Answers B for CFE higher

These are powerpoints prepared for the Revised Higher in 2000. They are still relevant now, and talk through example questions. They are great for revision.

It might be old, but sometimes the old ones are the best. Link for the ppp below!

Linked to some talking questions and answer. ppp below

For those struggling with the vectors try these to give you some practice Great Resource from Mr Crookes. Set up your 2 vectors, either use a scale diagram or components and compare to the given answer. Enjoy!

If you don’t like proving v2=u2+2as from v=u+at then use this neat little sheet from Mr Mackenzie.

A lovely little summary from G Gibb!

Equations of Motion

4.4 ODU EqoM 2012 this document has the macros enabled (actually I think you might need to contact me to get the macros, they are not allowed to be uploaded on a WordPress Website. It allows you to check your answers for the acceleration time graphs that you drew from the velocity time graph diagrams.

using displacement equation to prove the last equation

Click on the image to open a power point of Adding Vectors.

Forces, Energy and Power

Momentum

africanfastfood This is an introduction to the momentum topic; think about the collision and where the energy is transferred.

Collisions- Think Safety before buying a car!

Gravitation

Projectiles thanks to Mr. Rossi for this one.

Battleships & AWACS Projectiles thanks to Mr. Rossi for this one too.

Special Relativity

Time dilation02

Cleonis [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0/)]

The green dots and red dots in the animation represent spaceships. The ships of the green fleet have no velocity relative to each other, so for the clocks onboard of the individual ships, the same amount of time elapses relative to each other, and they can set up a procedure to maintain a synchronized standard fleet time. The ships of the “red fleet” are moving with a velocity of 0.866 of the speed of light with respect to the green fleet.

The blue dots represent pulses of light. One cycle of light-pulses between two green ships takes two seconds of “green time”, one second for each leg.

{\displaystyle {\sqrt {3}}}

As seen from the perspective of the reds, the transit time of the light pulses they exchange among each other is one second of “red time” for each leg. As seen from the perspective of the greens, the red ships’ cycle of exchanging light pulses travels a diagonal path that is two light-seconds long. (As seen from the green perspective the reds travel 1.73 ({\displaystyle {\sqrt {3}}}) light-seconds of distance for every two seconds of green time.)The animation cycles between the green perspective and the red perspective, to emphasize the symmetry.

OnVelocities This is a document referred to in the Research Task in the ODU part 2 notes.

PHYSICS WORLD ARTICLE DECEMBER 2009 This is a document referred to in the Research Task in ODU part 2 notes

The Expanding Universe

The expanding universe powerpoints. Might not be quite the final version

This is the pdf version of the powerpoint

The above is the pdf version of the powerpoint

Are we missing something in the Expanding Universe?

AH (Doppler)– some of this is relevant to Higher.

HOMEWORK

The homework booklets are now in the HOMEWORK section.

Homework Booklet Complete pp6-8 (first question), 10-16, 18. Complete notes on Units prefixes and Sci Notation, Uncertainties, Equations of Motion. Read up on Forces.

Updated August 2019
Signature

Quantity, Symbol, Unit, Unit Symbol

Comments from the Workshop

Revision

Clicking on the link above will take you to the You Must Justify Questions that we didn’t have time for! Please look over this.

Flashcards

CfE Higher Revision Cards A4

Quantity, Symbol, Unit, Unit Symbol

I’ve put together, with Mrs Mac’s help, a document with quantity, symbol, unit and unit symbol so that you know the meaning of the terms in the Relationships Sheet. It is in EXCEL so that you can sort it by course, quantity or symbol.

Quantity, Symbol, Units the excel sheet

Quantity, Symbol, Units a pdf sheet sorted by course and then alphabetical by quantity.

This is the same information in readily available Tablepress form. If you click on the Higher tab at the top it should sort by terms that you need in alphabetical order, or search for a term. Let me know if I’ve missed any.

Quantity, Symbol, Unit, Unit Symbol Table for N5-AH

NHAPhysical Quantity symUnitUnit Abb.
5absorbed dose D gray Gy
5absorbed dose rate H (dot)gray per second gray per hour gray per year Gys-1 Gyh -1 Gyy-1
567acceleration a metre per second per second m s-2
567acceleration due to gravity g metre per second per second m s -2
5activity A becquerel Bq
567amplitude A metre m
567angle θ degree °
567area A square metre m 2
567average speedv (bar)metre per second m s-1
567average velocity v (bar)metre per second m s -1
567change of speed ∆v metre per second m s -1
567change of velocity ∆v metre per second m s-1
5count rate - counts per second (counts per minute) -
567current I ampere A
567displacement s metre m
567distance dmetre, light year m , ly
567distance, depth, height d or h metre m
5effective dose H sievert Sv
567electric charge Q coulomb C
567electric charge Q or q coulomb C
567electric current I ampere A
567energy E joule J
5equivalent dose H sievert Sv
5equivalent dose rate H (dot)sievert per second sievert per hour sievert per year Svs-1 Svh-1 Svy -1
567final velocity v metre per second m s-1
567force F newton N
567force, tension, upthrust, thrustF newton N
567frequency f hertz Hz
567gravitational field strength g newton per kilogram N kg-1
567gravitational potential energy Epjoule J
5half-life t1/2 second (minute, hour, day, year) s
56heat energy Eh joule J
567height, depth h metre m
567initial speed u metre per second m/s
567initial velocity u metre per second m s-1
567kinetic energy Ek joule J
567length l metre m
567mass m kilogram kg
5number of nuclei decayingN - -
567period T second s
567potential difference V volt V
567potential energy Ep joule J
567power P watt W
567pressure P or p pascal Pa
5radiation weighting factor wR- -
567radius r metre m
567resistance R ohm Ω
567specific heat capacity c joule per kilogram per degree Celsius Jkg-1°C -1
56specific latent heat l joule per kilogram Jkg-1
567speed of light in a vacuum c metre per second m s-1
567speed, final speed v metre per second ms -1
567speed, velocity, final velocity v metre per second m s-1
567supply voltage Vsvolt V
567temperature T degree Celsius °C
567temperature T kelvin K
567time t second s
567total resistance Rohm Ω
567voltage V volt V
567voltage, potential difference V volt V
567volume V cubic metre m3
567weight W newton N
567work done W or E Wjoule J
7angle θ radian rad
7angular acceleration aradian per second per second rad s-2
7angular displacement θ radian rad
7angular frequency ω radian per second rad s-1
7angular momentum L kilogram metre squared per second kg m2s -1
7angular velocity,
final angular velocity
ω radian per second rad s-1
7apparent brightnessbWatts per square metreWm-2
7back emfevolt V
67capacitance C farad F
7capacitive reactance Xcohm W
6critical angle θc degree °
density ρ kilogram per cubic metre kg m-3
7displacement s or x or y metre m
efficiency η - -
67electric field strength E newton per coulomb
volts per metre
N C-1
Vm-1
7electrical potential V volt V
67electromotive force (e.m.f) E or ε volt V
6energy level E1 , E2 , etcjoule J
feedback resistance Rfohm Ω
focal length of a lens f metre m
6frequency of source fs hertz Hz
67fringe separation ∆x metre m
67grating to screen distance D metre m
7gravitational potential U or V joule per kilogram J kg-1
half-value thickness T1/2 metre m
67impulse (∆p) newton second
kilogram metre per second
Ns
kgms-1
7induced e.m.f. E or ε volt V
7inductor reactanceXLohm W
7initial angular velocity ω oradian per second rad s-1
input energy E ijoule J
input power Piwatt W
input voltage V1 or V2 volt V
input voltage V ivolt V
6internal resistance r ohm Ω
67irradiance I watt per square metre W m-1
7luminoscityLWattW
7magnetic induction B tesla T
7moment of inertia I kilogram metre squared kg m2
67momentum p kilogram metre per second kg m s-1
6number of photons per second per cross sectional area N - -
number of turns on primary coil np- -
number of turns on secondary coil ns- -
6observed wavelengthλobservedmetrem
output energy Eo joule J
output power Powatt W
output voltage Vo volt V
6peak current Ipeak ampere A
6peak voltage V peak volt V
7phase angle Φ radian rad
67Planck’s constant h joule second Js
7polarising angle
(Brewster’s angle)
ipdegree ̊
power (of a lens) P dioptre D
power gain Pgain - -
7Power per unit areaWatts per square metreWm-2
primary current Ip ampere A
primary voltage Vpvolt V
7radial acceleration ar metre per second per second m s-2
6redshiftz--
67refractive index n - -
6relativistic lengthl'metrem
6relativistic timet'seconds
rest mass mo kilogram kg
6rest wavelengthλrestmetrem
6root mean square current I rmsampere A
6root mean square voltage Vrmsvolt V
7rotational kinetic energy Erotjoule J
7schwarzchild radiusrSchwarzchildmetrem
secondary current Is ampere A
secondary voltage Vsvolt V
7self-inductance L henry H
67slit separation d metre m
7tangential acceleration atmetre per second per second m s-2
6threshold frequency fohertz Hz
7time constanttseconds
7torque Τ newton metre Nm
7uncertainty in Energy∆E jouleJ
7uncertainty in momentum∆px kilogram metre per second kgms-1
7uncertainty in position∆x metre m
7uncertainty in time∆t seconds
6velocity of observer vometre per second m s-1
6velocity of source vsmetre per second m s-1
voltage gain - - -
voltage gain Ao or V gain - -
567wavelengthλmetrem
6work functionWjouleJ

 

Preferences