Particles and Waves Resources

Powers of Ten- this was high tech when I was at school!

Since then a few things have moved on, not least with the physics as well as the graphics.

Orders of Magnitude

The class of scale or magnitude of any amount, where each class contains values of a fixed ratio (most often 10) to the class preceding it. For example, something that is 2 orders of magnitude larger is 100 times larger; something that is 3 orders of magnitude larger is 1000 times larger; and something that is 6 orders of magnitude larger is one million times larger, because 102 = 100, 103 = 1000, and 106 = one million

In its most common usage, the amount scaled is 10, and the scale is the exponent applied to this amount (therefore, to be an order of magnitude greater is to be 10 times, or 10 to the power of 1, greater).

Orders of magnitude are generally used to make very approximate comparisons and reflect very large differences. If two numbers differ by one order of magnitude, one is about ten times larger than the other. If they differ by two orders of magnitude, they differ by a factor of about 100. Two numbers of the same order of magnitude have roughly the same scale — the larger value is less than ten times the smaller value.

Source: Boundless. “Order of Magnitude Calculations.” Boundless Physics Boundless, 26 May. 2016. Retrieved 23 Jan. 2017 from https://www.boundless.com/physics/textbooks/boundless-physics-textbook/the-basics-of-physics-1/significant-figures-and-order-of-magnitude-33/order-of-magnitude-calculations-203-6080/

A proton is 3 orders of magnitude larger than a positron or electron.

Below are the updated 2019 versions. Currently the book is divided into the Standard Model, Forces and Particles and Nuclear Radiation in Part 1 and the waves part will be in part 2, which I have yet to finalise. If you want a colour copy, then you’re welcome to print it out at your own cost.on

P&W ANSWERS Now most of the notes are complete I can start working through the answers. I have got these in a jotter, but will plod through them as quick as I can. They are very slow to type up in equation editor.

…and finally the Particles and Waves book 2 is finished.

Particles and Waves Knowledge Organiser P1

Particles and Waves

Particles from the Particles and Waves section- 4 pages+ references (don’t print that one!)
These currently are 5 draft pages

Additional Resources- take your pick

Introduction to Particle Physics

The following two documents are a wonderful summary of the Particles and Waves topic from the Revised Higher course courtesy of George Watson’s College, which is very much the current CfE Higher Course.

Particles & Waves

Here’s a lovely little revision sheet on the Standard Model thanks to Mr Ian Cameron.

Standard Model IC word version

Standard Model IC pdf version

particleadventure.org/

Below are some cracking resources from Sally Weatherly, find her here!

New for 2021 Powerpoints!

Revision and Orders of Magnitude

Orders of magnitude cut out base

The Standard Model

How to tell a MESON from a BARYON (Stewart, K (2017))

MESON- two syllables = 2 quarks (a quark and antiquark pair)

BARYON- three syllables = 3 quarks

Sorting the Fundamental Particles

Standard Model Street

Standard Model Tweet

#Higgs Boson

= fundamental particle, used by HiggsField 2 interact with other particles 2 give them m, causes particles to slow, cannot reach c due to m.

found the sign 2022 is looking good

Charged Particles on Fields

Particle Accelerators

Nuclear

I don’t know who was the original source of some of this material on Physics Resources but thanks! Hope you don’t mind I updated it.

Tokamak-Energy-Leaflet

Inverse Square Law

Wave particle Duality

Interference

Spectra

Was this the original Spectra?

Line Spectra

Refraction

I’ve had to split this as it is too big. The second part will appear after Friday

The pdf obviously doesn’t have the video clips!

Other resources

quantum model of atom

quantum model of atom answers

atomic-timekeeping-poster

quantum model of atom Mrs Physics’ model of energy level, to help you remember, not necessarily to teach you Physics!

quantum model of atom answers Mrs Physics’ model of energy level answers. Don’t look at these until you’ve tried them yourself!

These are the tweets from the higher class this 2017. Describe in under 140 characters the following words. Let us know if you can do better. Some of the tweets are a little over as there are no symbols in wordpress that I can find.
TERMDEFINITION (140 characters or less)
#4 FUNDAMENTAL FORCESFundamental forces: interactions that cannot be reduced. There are 4 types. The forces keep all matter together in the universe.
#ANNIHALATEProcess in which a particle and antiparticle unite, annihilate each other, and produce 1 or more photons. Energy and momentum are conserved.
#ANTIMATTERMatter consisting of elementary particles which are the antiparticles of those making up normal matter.
#BARYONA subatomic particle which contains 3 quarks. Baryons are hadrons.
#BOSONA subatomic particle, such as a photon, which has zero or integral spin. All the force carrier particles are bosons.
#COLOUR Particle has 3 apparently identical quarks but have different properties categorised by colour to satisfy Pauli Exclusion Principle
#ELECTROMAGNETIC FORCE1 of 4 fundamental forces. influencing electrically charged particles. Responsible for electricity, magnetism and light and holds p+ and e- together
#ELECTROMAGNETIC FORCEAffects electrically charged particles. Responsible for electricity, magnetism, & light;holds e- and p+ in atoms; allows atoms to bond to form molecules. Causes objects to be solid
#EXCHANGE PARTICLEParticle that carries forces for strong force – gluon, weak force – W and Z bosons, electromagnetic – photon and gravitational – graviton.
#FERMIONMatter particles e.g. proton, neutron and electron. Can be hadrons or leptons
#GLUONA supposed massless subatomic particle believed to transmit the force binding quarks together in a hadron. They mediate the strong force.
#GRAVITATIONAL FORCEA force that attracts any object with mass.
#HADRONA particle made of quarks. Two families: baryons – made of 3 quarks & mesons – made of 1 quark & 1 antiquark. Protons & neutrons are baryons
#HIGGS BOSONfundamental particle, used by Higgs Field, to interact with other particles two give them m, causes particles to slow therefore cannot reach c due to m.
#LEPTONElementary particles, the basic building blocks of matter. Six leptons are in present structure. Varieties are called flavours.
#MESON Are intermediate mass particles that are made of a quark- antiquark pair. Mesons are bosons and hadrons.
#MUONA particle similar to the electron, with an electric charge of −1 e and a spin of 1/2, but with a much greater mass. It is classified as a lepton.
#NEUTRINOA neutral subatomic particle. Mass close to zero. Half-integral spin.Rarely reacts with normal matter. 3 types of neutrino are electron, muon and tau.
#POSITRONPositron= antielectron =the antiparticle of the electron has an electric charge is +1 e, a spin of 1/2, same mass as an electron.
#QUARKQuark: a fundamental particle. Quarks combine to form composite particles called hadrons. The most stable hadrons are protons and neutrons.
#SPINAll particles have spin. Can be up or down & has a fixed value which depends on the type of particle. Particles can be right or left handed
#STANDARD MODELTheory concerning electromagnetic, gravitational, strong and weak nuclear interactions and classifying all known subatomic particles.
#STRONG FORCEBinds quarks together to make subatomic particles e.g.protons and neutrons. Holds together the atomic nucleus. Causes interactions between particles that have quarks.
#WEAK FORCEA force that plays a role in things falling apart, or decaying.

Mrs Physics was given a tweet to do too. I think she did very well, exactly 140 characters with spaces!

Prof Aidan Robson (Glasgow University)
Hope no one gets to this stage!

It is not as Mrs B said Mrs H’s Bohring Model, but it is more like a Stewart method of remembering the Bohr model!

quantum model of atom

quantum model of atom answers

Photomultipliers- what the heck are they?

https://study.com/academy/lesson/how-photomultiplier-tubes-array-detectors-work.html

Simulations

Here are three links to some cracking simulations for this topic

https://www.cabrillo.edu/~jmccullough/Applets/Applets_by_Topic/Superposition_Interference.html

http://galileoandeinstein.physics.virginia.edu/more_stuff/Applets/rutherford/rutherford2.html

http://science.sbcc.edu/physics/flash/siliconsolarcell/bohratom.swf

PhET Interactive Simulations
University of Colorado Boulder
https://phet.colorado.edu

>

https://phet.colorado.edu/en/simulation/rutherford-scattering

Anderson High school Shetland Notes

With grateful thanks to Ms Nancy Hunter from Anderson High School in Shetland. Apparently these have been voted as the best Higher notes.

pw-booklet-1-teacher-20161212

pw-booklet-2-teacher-20161212

Online simulations

There is a great simulation from Phet Colorado Physics. It is fantastic and we must support this great site.

https://phet.colorado.edu/en/simulation/photoelectric

PhET Interactive Simulations
University of Colorado Boulder
https://phet.colorado.edu

Photoelectric Effect

 
Click to Run

This is a great little introduction to Chapter 7 Interference and Diffraction.

 

A great poster from NPL- measurements are in their care! The poster shows how time keeping has got more and more precise.

Scholar Notes

hg_cphy_Unit2

Signature

Mrs Physics

Updated January 2022

Preferences