ELECTRIC FIELDS & RESISTORS IN CIRCUITS/ TUTORIAL ANSWERS

ANSWERS FOR TUTORIAL 1

1.

- 2. $X = 15^{\circ}$ since the field is uniform.
- 3. The electric force on the drop is given by

$$F_e = Q \times E$$

= 3 × 10 ⁻¹² × 4 × 10 ⁴
= 1.2 × 10 ⁻⁷

Since the drop is *floating*, the electric force, $1.2x10^{-7}N$, is the same as its weight.

4. The electrical work done is given by W=QV

$$=5x10^{-12} H (150-10)$$

 $=7x10^{-10}$

Since the motion is caused by the sphere's weight, the work done by the gravitational field is $7x10^{-10}J$.

- 1. a) P=VI gives 48=12xI
 Thus I = 4
 The current in the lamp is 4A
 - b) $\frac{V}{I} = R \implies \frac{12}{4} = R$ $\Rightarrow R = 3$

The lamp's resistance is 3Ω

2.
$$\frac{9.6}{I} = 2000 \implies I = 4.8 \times 10^{-3}$$

The current in the resistor is 4.8mA

3.
$$R = 3 \times 125 \times 10^{-3}$$
$$= 375 \times 10^{-3}$$

$$\frac{v}{4} = 375 \times 10^{-3} \qquad \Rightarrow \qquad v = 1.5$$

The wire has a p.d. of 1.5V across it.

1. a)
$$W = QV$$
 \Rightarrow $W = 15 \times 1200 = 1.8 \times 10^{-4}$

There are 18000J of work done.

b)
$$P = \frac{W}{t} \Rightarrow P = \frac{1.8 \times 10^{-4}}{600}$$

$$= 30$$
It is a 30W device.

c)
$$I = \frac{Q}{t} \implies I = \frac{15}{600}$$

= 2.5 × 10⁻²

The current in the device is 25mA

d)
$$V \times I = \frac{\text{joules}}{\text{cou lo mb s}} \times \frac{\text{cou lo mb s}}{\text{sec}}$$
$$= \frac{\text{joules}}{\text{sec}}$$

The product of volts and amps is watts.

2.
$$P = VI \implies 24 = 12 \times I$$

$$\Rightarrow I = 2$$

$$\frac{V}{I} = R \implies \frac{12}{2} = R$$

$$\Rightarrow R = 6$$

The bulb has a resistance of 6Ω

3.

$$E = V + Ir \qquad \Rightarrow \qquad 12 = 9 + 3 \times r$$
$$\Rightarrow \qquad r = 1$$

The battery's internal resistance is 1Ω

- 4. a) E = IR + IrA 'short circuit' means that R = zeroThus the equation above gives 12 = 0 + Ix0.001 or $I = 1.2x10^4$ The short circuit current is 12000A
 - b) 1.5 = 0 + Ix1.25Thus I = 1.2The short circuit current of a dry cell is 1.2A

Substitute this value of \mathbf{r} in equation (1) to get $E=5.7 + 1.5 \times 2.2$ =5.7 + 3.3= 9

The e.m.f. of the power supply is 9V and its internal resistance is 2.2Ω .

1.
$$R = R_1 + R_2 + R_3 \implies R = 10 + 200 + 1000$$

 $\Rightarrow R = 1210$

The total resistance is 1210Ω

$$R = R_1 + R_2 + R_3 \qquad \Rightarrow 250 = 95 + R + 115$$

$$\Rightarrow R = 40$$

The unknown resistance is 40Ω

3.
$$\frac{1}{R} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} \implies \frac{1}{R} = \frac{3}{900}$$

$$\Rightarrow R = \frac{900}{3}$$

$$= 300$$

The equivalent resistance is 300Ω

4.
$$\frac{1}{250} = \frac{1}{500} + \frac{1}{R} \implies \frac{1}{R} = \frac{1}{250} - \frac{1}{500} = \frac{1}{500}$$
$$\Rightarrow R = 500$$

The unknown resistance is 500Ω

5.

$$\frac{1}{R} = \frac{1}{200} + \frac{1}{300} + \frac{1}{600} = \frac{3+2+1}{600} = \frac{6}{600}$$

$$\Rightarrow R = \frac{600}{6} = 100$$

The equivalent resistance is 100Ω

6.

$$\frac{1}{R} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} \qquad \Rightarrow \qquad \frac{1}{R} = \frac{4}{4}$$

$$\Rightarrow \qquad R = \frac{4}{4}$$

$$= 1$$

The equivalent resistance is 1Ω

$$\frac{1}{18.75} = \frac{1}{75} + \frac{1}{R} \implies \frac{1}{R} = \frac{1}{18.75} - \frac{1}{75} = \frac{1}{25}$$
$$\Rightarrow R = 25$$

The unknown resistance is 25Ω

1.

$$\frac{R_1}{R_2} = \frac{R_3}{R_4} \implies \frac{126}{147} = \frac{228}{R}$$

$$\Rightarrow \frac{147}{126} = \frac{R}{228}$$

$$\Rightarrow R = 266$$

The unknown resistance is 266Ω

2.

$$\frac{350}{1050} = \frac{R}{450} \qquad \Rightarrow \qquad R = 150$$

R has a value of 150Ω

3. Yes; the resistors do not have the same ratio in each branch and so the micro-ammeter registers a current which requires a p.d. across it. If you care to calculate the actual values, you find that A is at 8V and B at 6V. This gives a 2V p.d. between B and A.

1. a)
$$R = R_{1} + R_{2} + R_{3} \implies R = 2 + 4 + 6$$
$$\implies R = 12$$

The total resistance for this circuit is 12Ω .

- Ohm's law gives $I = \frac{24}{12} = 2$ b) The current is 2A
- Apply Ohm's law to each resistor in turn to get: c) $V_2 = 2x^2 = 4$; $V_4 = 2x^4 = 8$; $V_6 = 2x^6 = 12$ The p.d.'s are 4V, 8V and 12V across the 2, 4 and 6Ω resistors respectively.
- 2. a) $\frac{1}{R} = \frac{1}{2} + \frac{1}{4} + \frac{1}{6} = 0.5 + 0.25 + 0.167 = 0.917$ $\Rightarrow R = \frac{1}{0.917} = 1.09$

The total is 1.09Ω

- **N.B.** When there are several resistors in parallel, their equivalent resistance is always a little less than the least resistance in use.
- Apply Ohm's law to each resistor in turn. b)

$$I_2 = \frac{12}{2} = 6;$$
 $I_4 = \frac{12}{4} = 3;$ $I_6 = \frac{12}{6} = 2$

The currents are 6A, 3A and 2A in the 2,4 and 6 Ω resistors respectively.

- The reading increases since the 1000Ω resistor which 3. a) limits the ammeter current to 10µA has been removed.
 - It doubles the current in each branch of the network which b) still leaves the micro-ammeter reading zero.

4. Since the out-of-balance current and resistance are directly proportional,

$$\frac{I_{1}}{R_{1}} = \frac{I_{2}}{R_{2}} \implies \frac{30 \times 10^{-6}}{25} = \frac{36 \times 10^{-6}}{R_{2}}$$

$$\Rightarrow R_{2} = 30$$

The resistance is 30Ω .

5. The strain gauge is made into one arm of a Wheatstone bridge which is then balanced with another identical strain gauge in an unstrained position. This means that any future strain on the working gauge causes an out-of-balance resistance whose size can be measured from the size of the out-of-balance current. We then apply different weights to the hacksaw blade and use the out-of-balance current as a measure of the amount of bending.