ELECTRIC FIELDS \& RESISTORS IN CIRCUITS/ TUTORIAL ANSWERS

ANSWERS FOR TUTORIAL 1

1.

2. $X=150$ since the field is uniform.
3. The electric force on the drop is given by

$$
\begin{aligned}
\mathrm{F}_{\mathrm{e}} & =\mathrm{Q} \times \mathrm{E} \\
& =3 \times 10^{-12} \times 4 \times 10^{4} \\
& =1.2 \times 10^{-7}
\end{aligned}
$$

Since the drop is floating, the electric force, $1.2 \times 10^{-7} \mathrm{~N}$, is the same as its weight.
4. The electrical work done is given by $\mathrm{W}=\mathrm{QV}$

$$
\begin{aligned}
& =5 \times 10^{-12} \mathrm{H}(150-10) \\
& =7 \times 10^{-10}
\end{aligned}
$$

Since the motion is caused by the sphere's weight, the work done by the gravitational field is $7 \times 10-10 \mathrm{~J}$.

ANSWERS FOR TUTORIAL 2

1.

a) $\mathrm{P}=\mathrm{VI}$ gives $48=12 \mathrm{xI}$

Thus $\mathrm{I}=4$
The current in the lamp is 4 A
b)

$$
\begin{aligned}
\frac{\mathrm{V}}{\mathrm{I}}=\mathrm{R} & \Rightarrow \quad \frac{12}{4}=\mathrm{R} \\
& \Rightarrow \quad \mathrm{R}=3
\end{aligned}
$$

The lamp's resistance is 3Ω
2. $\frac{9.6}{I}=2000 \Rightarrow I=4.8 \times 10^{-3}$

The current in the resistor is 4.8 mA
3.

$$
\begin{aligned}
\mathrm{R} & =3 \times 125 \times 10^{-3} \\
& =375 \times 10^{-3} \\
\frac{\mathrm{v}}{4} & =375 \times 10^{-3} \quad \Rightarrow \quad \mathrm{v}=1.5
\end{aligned}
$$

The wire has a p.d. of 1.5 V across it.

ANSWERS FOR TUTORIAL 3

1. a)

$$
\mathrm{W}=\mathrm{QV} \quad \Rightarrow \quad \mathrm{~W}=15 \times 1200=1.8 \times 10^{4}
$$

There are 18000 J of work done.
b) $\quad \mathrm{P}=\frac{\mathrm{W}}{\mathrm{t}} \Rightarrow \quad \mathrm{P}=\frac{1.8 \times 10^{4}}{600}$

It is a 30 W device.
c) $\begin{aligned} \mathrm{I}=\frac{\mathrm{Q}}{\mathrm{t}} \Rightarrow \quad \mathrm{I} & =\frac{15}{600} \\ & =2.5 \times 10^{-2}\end{aligned}$

The current in the device is 25 mA
d)

$$
\begin{aligned}
\mathrm{V} \times \mathrm{I} & =\frac{\text { joules }}{\text { coulombs }} \times \frac{\text { coulombs }}{\sec } \\
& =\frac{\text { joules }}{\text { sec }}
\end{aligned}
$$

The product of volts and amps is watts.
2.

$$
\begin{array}{ll}
\mathrm{P}=\mathrm{VI} \Rightarrow & 24=12 \times \mathrm{I} \\
& \Rightarrow \\
\mathrm{I}=2 \\
& \\
\frac{\mathrm{~V}}{\mathrm{I}}=\mathrm{R} & \Rightarrow \\
& \frac{12}{2}=\mathrm{R} \\
& \Rightarrow \\
\mathrm{R}=6
\end{array}
$$

The bulb has a resistance of 6Ω

$$
\mathrm{E}=\mathrm{V}+\mathrm{Ir} \quad \Rightarrow \quad 12=9+3 \times \mathrm{r}
$$

3.

$$
\Rightarrow \quad r=1
$$

The battery's internal resistance is 1Ω
4.
a) $E=I R+I r$

A 'short circuit' means that $\mathrm{R}=$ zero
Thus the equation above gives $12=0+\mathrm{Ix} 0.001$ or $\mathrm{I}=1.2 \times 10^{4}$
The short circuit current is 12000A
b) $\quad 1.5=0+\mathrm{Ix} 1.25$

Thus I = 1.2
The short circuit current of a dry cell is 1.2A
5.

$\mathrm{E}=\mathrm{V}+\mathrm{Ir}$	\Rightarrow	$\mathrm{E}=5.7+1.5 \times \mathrm{r}-\cdots-\cdots-\cdots---(1)$
and		$\mathrm{E}=4.6+2 \times \mathrm{r}-\cdots--\cdots-\cdots---(2)$
Subtract $:$	\Rightarrow	$0=1.1-0.5 \times \mathrm{r}$
	\Rightarrow	$\mathrm{r}=2.2$

Substitute this value of r in equation (1) to get

$$
\begin{aligned}
\mathrm{E} & =5.7+1.5 \times 2.2 \\
& =5.7+3.3 \\
& =9
\end{aligned}
$$

The e.m.f. of the power supply is 9 V and its internal resistance is 2.2 Ω.

ANSWERS FOR TUTORIAL 4

$$
R=R_{1}+R_{2}+R_{3} \Rightarrow \quad R=10+200+1000
$$

1.

$$
\Rightarrow \quad R=1210
$$

The total resistance is 1210Ω
2.

$$
\begin{aligned}
R=R_{1}+R_{2}+R_{3} & \Rightarrow 250=95+R+115 \\
\Rightarrow & R=40
\end{aligned}
$$

The unknown resistance is 40Ω
3.

$$
\begin{aligned}
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} & \Rightarrow \frac{1}{R}=\frac{3}{900} \\
\Rightarrow \quad R & =\frac{900}{3} \\
& =300
\end{aligned}
$$

The equivalent resistance is 300Ω
4.

$$
\begin{aligned}
\frac{1}{250}=\frac{1}{500}+\frac{1}{R} & \Rightarrow \frac{1}{R}=\frac{1}{250}-\frac{1}{500}=\frac{1}{500} \\
& \Rightarrow R=500
\end{aligned}
$$

The unknown resistance is 500Ω
5.

$$
\frac{1}{R}=\frac{1}{200}+\frac{1}{300}+\frac{1}{600}=\frac{3+2+1}{600}=\frac{6}{600}
$$

$$
\Rightarrow \quad R=\frac{600}{6}=100
$$

The equivalent resistance is 100Ω
6.

$$
\begin{aligned}
& \frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \Rightarrow \frac{1}{R}=\frac{4}{4} \\
& \Rightarrow \quad R=\frac{4}{4} \\
&=1
\end{aligned}
$$

The equivalent resistance is 1Ω
7.

$$
\begin{aligned}
\frac{1}{18.75}=\frac{1}{75}+\frac{1}{R} & \Rightarrow \frac{1}{R}=\frac{1}{18.75}-\frac{1}{75}=\frac{1}{25} \\
& \Rightarrow R=25
\end{aligned}
$$

The unknown resistance is 25Ω

ANSWERS FOR TUTORIAL 5

1.

$$
\begin{aligned}
\frac{R_{1}}{R_{2}}=\frac{R_{3}}{R_{4}} & \Rightarrow \frac{126}{147}=\frac{228}{R} \\
& \Rightarrow \frac{147}{126}=\frac{R}{228} \\
& \Rightarrow R=266
\end{aligned}
$$

The unknown resistance is 266Ω
2.

$$
\frac{350}{1050}=\frac{R}{450} \quad \Rightarrow \quad R=150
$$

\mathbf{R} has a value of 150Ω
3. Yes; the resistors do not have the same ratio in each branch and so the micro-ammeter registers a current which requires a p.d. across it. If you care to calculate the actual values, you find that \mathbf{A} is at 8 V and \mathbf{B} at 6 V . This gives a 2 V p.d. between \mathbf{B} and \mathbf{A}.

ANSWERS FOR TUTORIAL 6

1. a)

$$
\begin{aligned}
R=R_{1}+R_{2}+R_{3} & \Rightarrow R=2+4+6 \\
& \Rightarrow R=12
\end{aligned}
$$

The total resistance for this circuit is 12Ω.
b) Ohm's law gives $I=\frac{24}{12}=2$

The current is $2 A$
c) Apply Ohm's law to each resistor in turn to get:
$\mathrm{V}_{2}=2 \times 2=4 ; \quad \mathrm{V}_{4}=2 \times 4=8 ; \quad \mathrm{V}_{6}=2 \times 6=12$
The p.d.'s are $4 \mathrm{~V}, 8 \mathrm{~V}$ and 12 V across the 2,4 and 6Ω resistors respectively.
2. a)

$$
\begin{aligned}
& \frac{1}{R}=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}=0.5+0.25+0.167=0.917 \\
& \Rightarrow \quad R=\frac{1}{0.917}=1.09
\end{aligned}
$$

The total is 1.09Ω
N.B. When there are several resistors in parallel, their equivalent resistance is always a little less than the least resistance in use.
b) Apply Ohm's law to each resistor in turn.
$I_{2}=\frac{12}{2}=6 ; \quad I_{4}=\frac{12}{4}=3 ; \quad I_{6}=\frac{12}{6}=2$
The currents are $6 \mathrm{~A}, 3 \mathrm{~A}$ and 2 A in the 2,4 and 6Ω resistors respectively.
3. a) The reading increases since the 1000Ω resistor which limits the ammeter current to $10 \mu \mathrm{~A}$ has been removed.
b) It doubles the current in each branch of the network which still leaves the micro-ammeter reading zero.
4. Since the out-of-balance current and resistance are directly proportional,

$$
\begin{aligned}
\frac{I_{1}}{R_{1}}=\frac{I_{2}}{R_{2}} & \Rightarrow \frac{30 \times 10^{-6}}{25}=\frac{36 \times 10^{-6}}{R_{2}} \\
& \Rightarrow R_{2}=30
\end{aligned}
$$

The resistance is 30Ω.
5. The strain gauge is made into one arm of a Wheatstone bridge which is then balanced with another identical strain gauge in an unstrained position. This means that any future strain on the working gauge causes an out-of-balance resistance whose size can be measured from the size of the out-of-balance current. We then apply different weights to the hacksaw blade and use the out-of-balance current as a measure of the amount of bending.

