2003 Physics

Higher

Finalised Marking Instructions

Scottish Qualifications Authority
 Detailed Marking Instructions - Higher Physics 2003

1. General Marking Instructions

SQA published Physics General Marking Instructions in July 1999. Please refer to this publication when interpreting the detailed marking instructions that follow.

2. Recording of marks

The following additional advice was given to markers regarding the recording of marks on candidate scripts.
(a) The total mark awarded for each question should be recorded in the outer margin. The inner margin should be used to record the mark for each part of a question as indicated in the detailed marking instructions.
(b) The fine divisions of marks shown in the detailed marking scheme may be recorded within the body of the script beside the candidate's response. Where such marks are shown they must total to the mark in the inner margin.
(c) Numbers recorded on candidate scripts should always be the marks being awarded. Negative marks or marks to be subtracted should not be recorded on scripts.
(d) The number out of which a mark is scored should never be recorded as a denominator. ($\frac{1}{2}$ mark will always mean one half mark and never 1 out of 2)
(e) Where square ruled paper is enclosed inside answer books it should be clearly indicated that this item has been considered by the marker. The mark awarded should be transferred to the script booklet inner margin and marked \mathbf{G}.
(f) The mark awarded for each question should be transferred to the grid on the back of the script. When the marker has completed marking the candidate's response to all questions, the marks for individual questions are added to give the total script mark.
(g) The total mark awarded for an individual question may include an odd half mark $-\frac{1}{2}$. If there is an odd half mark in the total script mark, this is rounded up to the next whole number when transferred to the box on the front of the script.

2003 Physics Higher

Marking scheme
Section A

1.	D	11.	D
2.	E	12.	E
3.	A	13.	C
4.	D	14.	B
5.	A	15.	B
6.	C	16.	B
7.	E	17.	D
8.	C	18.	A
9.	B	19.	E
10.	E	20.	A

2003 Physics Higher			
Sample Answer and Mark Allocation	Notes	Marks	
21. (a) (i) $\begin{align*} v_{\mathrm{h}} & =v \cos \theta \\ & =35 \cdot 0 \cos 40^{\circ} \tag{1/2}\\ & =26 \cdot 8 \mathrm{~m} \mathrm{~s}^{-1} \tag{1/2} \end{align*}$	unit needed for second ($1 / 2$) allow $26 \cdot 812$ to 27 for sig figs	1	7
(ii) $\begin{align*} v_{\mathrm{v}}= & v \sin \theta \\ = & 35 \cdot 0 \sin 40^{\circ} \tag{1/2}\\ = & 22.5 \mathrm{~m} \mathrm{~s}^{-1} \tag{1/2}\\ & 23 \mathrm{~m} \mathrm{~s}^{-1} \text { loses }(1 / 2) \end{align*}$	unit needed for second (1/2) allow 22.498 to 22 for sig figs 22.49 no unit/working - (0) $22.49 \mathrm{~m} \mathrm{~s}^{-1}(1 / 2)$ truncating error	1	
(iii) $v=u+a t$ $\begin{align*} 0 & =22 \cdot 5-9 \cdot 8 t(1 / 2) \quad(g=10 \operatorname{deduct}(1 / 2)) \\ \Rightarrow t & =\frac{22 \cdot 5}{9 \cdot 8} \tag{1/2}\\ t & =2 \cdot 3 \mathrm{~s} \tag{1/2} \end{align*}$ deduct $(1 / 2)$ if go on eg $\frac{2 \cdot 3}{2}$	$\begin{equation*} v^{2}=u^{2}+2 a s \Rightarrow s=25 \cdot 8(\mathrm{~m}) \tag{1/2} \end{equation*}$ $\begin{align*} & \quad \text { OR } \tag{1/2}\\ & \begin{array}{l} s=\bar{v} t \\ 25 \cdot 8=\frac{22 \cdot 5}{2} t \\ t=2 \cdot 29 \mathrm{~s} \end{array} \left\lvert\, \begin{array}{l} s=\left(\frac{u+v}{2}\right) t \\ 25 \cdot 8=\frac{22 \cdot 5}{2} t \\ t=2 \cdot 29 \mathrm{~s} \quad(1) \end{array}\right. \end{align*}$ OR u consistent with (a)(ii) u and a must have opposite signs in substitution otherwise formula ($1 / 2$) only watch for $\left.\begin{array}{l} v=u+a t \\ 22 \cdot 5=0+9 \cdot 8 t \\ t=2 \cdot 3 \mathrm{~s} \end{array}\right\} \begin{aligned} & \text { get }\left(\frac{1}{2}\right) \\ & \text { unless } \\ & \text { explain that } \end{aligned}$ time to fall from maximum height is the same	$2 \cdot$	

2003 Physics Higher			
Sample Answer and Mark Allocation	Notes		arks
21. (b) $\begin{aligned} \text { time to } \mathrm{Q} & =2 \times \text { time to max height } \\ & =4.60(\mathrm{~s}) \\ \text { time of flight } & =4.60+0 \cdot 48=5.08(\mathrm{~s}) \end{aligned}$ $\text { (horiz) dist }=(\text { hor }) \text { speed } \times \text { time }(\text { of flight })(1 / 2)$ $\begin{align*} \text { OR } \quad s=\left(\frac{u+v}{2}\right) t \quad \text { OR } \quad s=u t+\frac{1}{2} a t^{2} \\ \text { stop if } a \neq 0 \end{align*}$	OR time consistent with (a)(iii) OR speed consistent with (a)(i) $\begin{aligned} \text { OR } & (2 \cdot 3 \times 26 \cdot 8)+ \\ & (2 \cdot 3 \times 26 \cdot 8)+ \\ & (0.48 \times 26 \cdot 8) \\ & =136 \mathrm{~m} \end{aligned}$	3•+	

2003 Physics Higher			
Sample Answer and Mark Allocation	Notes	Marks	
22. (a) Change in momentum $=m v-m u$ $\begin{align*} = & (38 \times 4 \cdot 6)-(38 \times 2 \cdot 2) \tag{1/2}\\ & =91 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \\ \text { accept } & \mathrm{Ns} \mathrm{but} \mathrm{~N} \mathrm{~s}^{-1} \text { loses }(1 / 2) \end{align*}$ $(1 / 2),(1 / 2)$	$m u-m v(0) \mathrm{W} . \mathrm{P}$. OR 174.8-83.6 allow 90 OR $91 \cdot 2$ for sig figs	2	9
(b) $\begin{align*} F \times t & =\Delta m v \tag{1/2}\\ \Rightarrow 130 \times t & =91 \tag{1⁄22}\\ t & =0.70 \mathrm{~s} \end{align*}$	$\begin{align*} & F=m a=\frac{m(v-u)}{t} \tag{1/2}\\ & 130=\frac{38(4.6-2.2)}{t} \tag{1/2}\\ & t=0.70 \mathrm{~s} \tag{1/2} \end{align*}$ OR $\Delta m v$ consistent with (a) $(2 \cdot 2-4 \cdot 6) \text { is W. P. }$	$2 \cdot$	
(c) total mom. before $=$ total mom. after $\begin{align*} & \Rightarrow(54 \times 2.2)+(38 \times 2.2)=54 v+(38 \times 4 \cdot 6) \tag{1/2}\\ & \Rightarrow 54 v=202.4-174.8 \\ & \Rightarrow \quad v \tag{1/2}\\ & \quad=\frac{27.6}{54} \tag{1/2}\\ & \quad=0.51 \mathrm{~m} \mathrm{~s}^{-1} \end{align*}$ deduct $(1 / 2)$ if v is negative	$(1 / 2)(1 / 2)$ ' a ' must be negative in substitution 1.h.s. could be $(92 \times 2 \cdot 2)$ OR $118 \cdot 8+83 \cdot 6=54 v+174 \cdot 8$ OR $F t=(m v-m u)$ $-130 \times 0.7=54 v-(54 \times 2.2)$ $\begin{equation*} -91=54 v-118.8 \tag{1/2} \end{equation*}$ $\begin{equation*} v=0.51 \mathrm{~m} \mathrm{~s}^{-1} \tag{1/2} \end{equation*}$ OR original mom. of $\mathrm{R}=118.8$ new mom. of R $\begin{align*} = & 118 \cdot 8-91 \cdot 2 \tag{1/2}\\ v=\frac{27 \cdot 6}{54} & =0.51 \mathrm{~m} \mathrm{~s}^{-1} \end{align*}$ allow 0.5 to 0.5111 for sig figs	2	

2003 Physics Higher			
Sample Answer and Mark Allocation	Notes		arks
22. (d) $\begin{aligned} E_{\mathrm{k}} \text { before } & =\left(\frac{1}{2} m v^{2}\right)_{\mathrm{R}}+\left(\frac{1}{2} m v^{2}\right)_{\mathrm{S}} \\ & =\frac{1}{2}\left(54 \times 2 \cdot 2^{2}\right)+\frac{1}{2}\left(38 \times 2 \cdot 2^{2}\right) \\ & =223(\mathrm{~J}) \end{aligned}$ $\begin{aligned} E_{\mathrm{k}} \text { after } & =\left(\frac{1}{2}\left(54 \times 0 \cdot 51^{2}\right)\right)+\frac{1}{2}\left(38 \times 4 \cdot 6^{2}\right) \\ & =(7 \cdot 0)+402 \\ & (=409(\mathrm{~J})) \end{aligned}$ \Rightarrow interaction is not elastic not elastic as E_{k} lost loses (1)	If no E_{k} calculation (0) OR $\left(\frac{1}{2} m_{\mathrm{R}+\mathrm{S}} v^{2}\right)$ but $\frac{1}{2} m v^{2}$ gets (0) unless goes further OR $\frac{1}{2} 92 \times 2 \cdot 2^{2}$ If set out as E_{k} before $=$ E_{k} after then show it is an inequality - ignore this bad form and award marks OR consistent with (c) Note - no sig. fig. penalty as final answer is not numerical 'inelastic' can get (3)		

2003 Physics Higher			
Sample Answer and Mark Allocation	Notes	Marks	
23. (a) (i)	(0) if not a straight line through origin deduct ($1 / 2$) if either/both labels(s)/ origin is/are missing	1	7
(ii) $\begin{align*} (\Delta) p & =\rho g h \tag{1/2}\\ p & =1 \cdot 00 \times 10^{3} \times 9.8 \times 0.25 \tag{1/2}\\ p & =2.45 \times 10^{3} \mathrm{~Pa} \tag{1/2}\\ & (\text { accept } 2450 / 2500 \mathrm{~Pa}) \end{align*}$	if $\boldsymbol{\operatorname { s t a r t }}(\Delta) p=\rho g h+$ atmospheric pressure (0) W.P. $\text { if } \begin{gathered} \rho=1 \cdot 0 \\ \downarrow \\ \downarrow \\ p=2.45 \mathrm{~Pa}(11 / 2) \end{gathered}$ unit error if $g=10$, deduct $(1 / 2)$ once in question no data mark(s) if $g=-9 \cdot 8 \Rightarrow$ formula ($1 / 2$) only if now add atmospheric pressure deduct $(1 / 2) \Rightarrow$ (11/2) max	2	
(iii) the increased pressure has caused the volume of trapped air to decrease or air to be compressed	(1) or (0)	1•+	

2003 Physics Higher			
Sample Answer and Mark Allocation	Notes	Marks	
23. (b) $\begin{align*} & \text { (b) } \quad p=\frac{F}{A} \\ & F=(300+2700) \times 9.8=29400(\mathrm{~N}) \tag{1/2}\\ & A=2.0 \times 1.5=3.0\left(\mathrm{~m}^{2}\right) \tag{1/2}\\ & \Rightarrow \quad p=9.8 \times 10^{3}(\mathrm{~Pa}) \\ & \Rightarrow \text { Total pressure }=1.01 \times 10^{5}+9.8 \times 10^{3} \\ & = \\ & \quad=1.11 \times 10^{5} \mathrm{~Pa} \\ & \left(=1.108 \times 10^{5} \mathrm{~Pa}\right) \end{align*}$	$\begin{aligned} & p=\rho g h+p_{\mathrm{ATM}}(\mathbf{0}) \mathrm{W} . \mathrm{P} . \\ & h \neq 1 \cdot 1 \mathrm{~m} \\ & p=\rho g h+p_{\mathrm{ATM}}+\frac{m_{\mathrm{TANK}} g}{\mathrm{~A}} \\ & \text { (indep. } \end{aligned}$ if stop here, (2) max, but units must be given ie $p=9800\left(\mathbf{1}^{1 ⁄ 2}\right)$ (1) but deduct $(1 / 2)$ if Pa not given	3•+	

2003 Physics Higher			
Sample Answer and Mark Allocation	Notes	Marks	
24 (b)(ii) the internal resistance would decrease the current in the circuit/proportion of V across the element and so would reduce the power output [or a complete recalculation as in (b)(i) with increased total circuit resistance] but no W. P. \{there must be an attempt at a reason (and not W. P.) to get second ($1 / 2$) mark \} ie power output reduces	Power constant or increases (0) Required for any marks "overall resistance increases, e.m.f. constant gives power less as $\begin{equation*} P=\frac{V^{2}}{R} \tag{1/2} \end{equation*}$ voltage: $\left.\begin{array}{l}\begin{array}{c}\text { flowing } \\ \text { through } \\ \text { restricted }\end{array}\end{array}\right\}$ W. P. (0)	1•+	

2003 Physics Higher			
Sample Answer and Mark Allocation	Notes	Marks	
25. (a) $\text { (i) } \begin{aligned} \mathrm{y} \text {-gain } & =\frac{15}{3} \\ & =5\left(\mathrm{~V} \mathrm{div}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { setting }=5 \mathrm{~V}(1 / 2) \\ & \mathrm{Vcm}^{-1} \text { loses second (1/2) } \\ & \text { bare " } 5 \mathrm{Vcm}^{-1} \text { gets }\left(\frac{1}{2}\right) \end{aligned}$	$1 \cdot$	9
$\text { (ii) } \begin{align*} & f=\frac{1}{T} \tag{1/2}\\ & f=\frac{1}{2 \cdot 5 \times 1 \times 10^{-3}} \tag{1/2}\\ &=400(\mathrm{~Hz})(1) \quad \text { any other } \\ & \text { unit loses }(1 / 2) \end{align*}$	$\begin{aligned} & \text { using } v=f \lambda \text { W. P. (0) } \\ & \frac{1}{2 \cdot 5}=0 \cdot 4(\mathrm{~Hz})(\mathbf{1} 1 / 2) \\ & \quad 0 \cdot 4 \mathrm{kHz}(11 / 2) \\ & 2 \cdot 5 \pm 0 \cdot 2 \\ & 370 \text { to } 435(\mathrm{~Hz}) \end{aligned}$	2•	
(b) $\text { (i) } \begin{aligned} V_{\mathrm{rms}} & =\frac{V_{\mathrm{p}}}{\sqrt{2}} \\ & =\frac{12}{\sqrt{2}} \\ & =8.5 \mathrm{~V} \end{aligned}$ Accept $8.4 \mathrm{~V}(12 \times 0.7)$ $(1 / 2),(1 / 2)$	must be 12 V otherwise formula ($1 / 2$) only if left as $\frac{12}{\sqrt{2}} \mathrm{~V}\left(\mathbf{1}^{1 / 2}\right)$	2	
$\text { (ii) } \quad \begin{align*} E & =\frac{1}{2} C \times V^{2} \tag{1/2}\\ & =\frac{1}{2} 220 \times 10^{-6} \times 12^{2} \tag{1/2}\\ & =0.016 \mathrm{~J} \tag{1/2}\\ & (=0.01584 \mathrm{~J}) \\ & (=0.02 \mathrm{~J}) \end{align*}$	must be 12 V otherwise formula (1⁄2) only $\left\{\begin{array}{l} E=\frac{1}{2} Q V \& Q=V C\left(\frac{1}{2}\right) \\ Q=12 \times 220 \times 10^{-6} \\ Q=2.64 \times 10^{-3} \\ E=\frac{1}{2} 2.64 \times 10^{-3} \times 12 \tag{1/2}\\ E=0.016 \mathrm{~J} \quad(1 / 2)(1 / 2) \end{array}\right.$	2•+	
(iii) it increases	```(1) or (0) (1) "increases" + irrel. Phys "increases" + WP (0) eg as \(V\) increases```	1	
(vi) the capacitor repeatedly/keeps on/continually/again and again charges and discharges (allowing the flow of charge at all times)	(1) or (0) could be by diagram (charges on plates) current flows backwards and forwards changing direction regularly (0) capacitors block d.c. but not a.c. (0)	1•+	

2003 Physics Higher			
Sample Answer and Mark Allocation	Notes	Marks	
26. (a) $\begin{align*} & \frac{R_{\mathrm{LDR}}}{5500}=\frac{150}{330} \tag{1}\\ & \Rightarrow R_{\mathrm{LDR}}=2500 \Omega \tag{1/2} \end{align*}$	no "formula" (1⁄2) allocated ie $\frac{R_{1}}{R_{2}}=\frac{R_{3}}{R_{4}}$ not given Accept $\frac{15}{33}$ but $\frac{15}{330}$ (0)	2	8
(b) (i) (n channel enhancement) MOSFET	mosfet (1) "transistor" gets (0) MOSFIT/MOSVET/ MOSPHET (0)	1	
$\text { (ii) } \begin{align*} V_{\mathrm{o}} & =\left(V_{2}-V_{1}\right) \times \frac{R_{f}}{R_{\text {in }}} \tag{1/2}\\ V_{\mathrm{o}} & =(1.50-1.28) \times \frac{22.5}{1.5} \tag{1/2}\\ V_{\mathrm{o}} & =3.3 \mathrm{~V} \tag{1/2} \end{align*}$	$(1.28-1.50) \frac{22.5}{1.5} \rightarrow$ formula ($1 / 2$) max if formula written but (0) if 1 st line is as above	$2 \cdot$	
	If $R_{\text {LDR }}$ decreases (0) total W. P. " $R_{\text {LDR }}$ changes" keep marking OR p. d. between X and Y becomes zero/bridge balances again negative voltage to MOSFET is W. P. (1) max OR $V_{\text {out }}$ becomes zero next ($1 / 2$) mark depends on this being gained use of switching at 0.7 V loses last $(1 / 2) \Rightarrow$ ($1^{1 / 2}$) max Explanation of why valve is open does not answer the question (0)	2•+	

2003 Physics Higher			
Sample Answer and Mark Allocation	Notes	Marks	
26. (c) There is no longer total internal reflection as the refractive index of the water is greater than that of air/critical angle increased If "angle of incidence changes" or "critical angle decreased" or "total internal reflection now happens" all W. P. (0)	Independent ($1 / 2$) marks OR Angle of incidence is no longer greater than critical angle "as angle of incidence at Q is now less than critical angle" (1/2)	1•	

2003 Physics Higher			
Sample Answer and Mark Allocation	Notes	Marks	
27. (a) (i) E_{4} to E_{3} as this is the smallest ΔE or $E=\frac{h c}{\lambda} \quad \begin{cases}\text { giving smallest freq. } \\ \text { and } f \alpha \frac{1}{\lambda} & v=f \lambda \text { needs } \\ \text { backing up }\end{cases}$ (eg v constant)	Between E_{3} and E_{4} is acceptable (0) if not E_{4} to E_{3} E_{3} to E_{4} (0) Bare E_{4} to E_{3} no explanation (0) $\mathrm{E}_{4} \rightarrow \mathrm{E}_{3}$ as smallest ΔE, largest f (1) $\mathrm{E}_{4} \rightarrow \mathrm{E}_{3}$ as largest ΔE (0) W. P. as explanation (there must be an attempt at a reason (and not WP) to get first ($1 / 2$) mark)	$2 \cdot$	9
$\begin{align*} & \text { (ii) }(\Delta) E=-2.4 \times 10^{-19}-(-) 5.6 \times 10^{-19} \\ & \quad(\Delta) E=h f(1 / 2)-\text { independent } \\ & \Rightarrow 3.2 \times 10^{-19}=6.63 \times 10^{-34} \times f \tag{1/2}\\ & \text { if omit } \times 10^{-19}-\mathrm{W} . \mathrm{P} \text {. } \tag{1/2}\\ & f=4.83 \times 10^{14} \mathrm{~Hz} \tag{1/2}\\ & \left(2.07 \times 10^{-15} \mathrm{~Hz} \text { can get }\left(2^{1 ⁄ 2}\right)\right) \end{align*}$	ignore -ve here (substitution) (for data, clearly identified anywhere) look anywhere for $E=h f$ $h=6 \cdot 63 \times 10^{-34}\left(\frac{1}{2}\right)$ $E=8 \times 10^{-19} \mathrm{~J}$ is W. P. stop marking deduct $(1 / 2)$ if still -ve	3•+	
(b) (i) same (1) $4.74 \times 10^{14} \mathrm{~Hz}$ $(1 / 2)(1 / 2)$	+ irrel Physics (1) (eg " f same because the direction changes") but W. P. (0)	1	

2003 Physics Higher

Sample Answer and Mark Allocation	Notes	
27. (b) $\text { (ii) } \begin{align*} \frac{v_{1}}{v_{2}} & =n \\ \Rightarrow & v_{2}=\frac{3.0 \times 10^{8}}{1 \cdot 60} \tag{1/2}\\ v_{2} & =1.88 \times 10^{8}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\ \lambda & =\frac{v}{f} \tag{1/2}\\ \lambda & =\frac{1.88 \times 10^{8}}{4 \cdot 74 \times 10^{14}} \tag{1/2}\\ \lambda & =3.97 \times 10^{-7} \mathrm{~m} \end{align*}$ (for substitution) $(1 / 2)(1 / 2)$ OR $\begin{align*} & \lambda=\frac{v}{f} \tag{1/2}\\ & \lambda=\frac{3.0 \times 10^{8}}{4.74 \times 10^{14}} \tag{1/2}\\ & \lambda=6.33 \times 10^{-7}(\mathrm{~m}) \\ & \frac{\lambda_{1}}{\lambda_{2}}=n \tag{1/2}\\ & \lambda_{2}=\frac{6.33 \times 10^{-7}}{1 \cdot 60} \tag{1/2}\\ & \lambda_{2}=3.96 \times 10^{-7} \mathrm{~m} \tag{1/2} \end{align*}$ (1/2) (for substitution)	if freq. from (b)(i) is wrong need to work through $\begin{aligned} & \left(\text { or } 3.96 \times 10^{-7} \mathrm{~m}\right) \\ & 3.9 \times 10^{-7} \mathrm{~m} \text { loses }(1 / 2) \\ & \text { accept } 4 \times 10^{-7} \mathrm{~m} \end{aligned}$ Summary: $\begin{aligned} & v=f \lambda \\ & \frac{v_{1}}{v_{2}}=\frac{\lambda_{1}}{\lambda_{2}}=n \end{aligned}$ subst. in each formula * $(1 / 2)(1 / 2)$ final answer $(1 / 2)(1 / 2)$	3•+

2003 Physics Higher			
Sample Answer and Mark Allocation	Notes	Marks	
28. (a) (i) The detector passes through areas of constructive and destructive interference Maxima/Constructive areas are where waves (from the two gaps) meet in phase Minima/Destructive areas are where waves (from the two gaps) meet out of phase $\text { alternatives }\left\{\begin{array}{l} \text { diff whole no. of } \lambda \mathrm{s} \text { OR in-step } \tag{1⁄2}\\ \text { out of phase }=\text { crest }+ \text { trough OR } \\ \text { path diff odd no. of half } \lambda \mathrm{s} \text { OR out } \\ \text { of step } \\ \text { accept not in phase } \end{array}\right.$	must be in terms of waves not sources indep ($1 / 2$)s can be shown by diagram but these two answers subsume the first ($1 / 2$)	1112	7
(ii) $\begin{align*} & \text { path diff. }=n \lambda \tag{1/2}\\ & 766-682=3 \lambda \\ & (84) \\ & \lambda=28 \mathrm{~mm} \end{align*}$	path difference $=84 \mathrm{~mm}$ (0) on its own $n \lambda=d \sin \theta(\mathbf{0})$ bare " 28 " loses last ($1 / 2$)	$11 / 2$	
 (1) for inversion + waveshape \qquad (1⁄2) for same amplitude ($1 / 2$) for same frequency	(0) unless voltage/time graph if units and/or values missing from axes, deduct ($1 / 2$) for each axis unless overlayed on original trace lose this (1) if waves flattened, square waves, rectified etc	$2 \cdot$	
(ii) sound from headphones and noise are out of phase/in antiphase (1) this causes destructive interference (independent marks "sounds cancel out" (1/2) "sounds are out of phase and cancel out" (112)	2•+	

2003 Physics Higher			
Sample Answer and Mark Allocation	Notes	Marks	
29. (a) (i) alpha (1) or α (1)	Helium nucleus (1) Helium/helium particle (0)	1	8
(ii) $\begin{align*} & A=\frac{N}{t} \tag{1/2}\\ & A=\frac{720000}{120} \tag{1/2}\\ & A=6000 \mathrm{~Bq} \text { OR decays s } \tag{1/2} \end{align*}$	360000 Bq can get (11/2) as unit error but 360000 decays/min gets (2) counts/second \Rightarrow unit error deduct ($1 / 2$)	2	
(b) (i) $60 \rightarrow 30$ (or equivalent) in 3.0 cm	bare 3 gets ($1^{1 / 2}$) missing unit bare " 3.0 cm " gets (2) (2.8 to 3.2 cm)	$2 \cdot$	
(ii) uncertainties in measurements give a range of possible values /a range of values come from repeated measurements /there are random uncertainties in repeated readings /radioactive decay is a random process giving a range of values Examples: /to show error/uncertainty in each reading (1) /this is the error bar (0) /shows uncertainty in reading (and thickness) (1) /shows uncertainty in thickness (0) /shows the uncertainty (0)	$\}(1) \text { OR (0) }$	$1 \cdot$	
(c) $\begin{align*} & H=D_{1} Q_{1}+D_{2} Q_{2} \tag{1/2}\\ & 6.4 \times 10^{-5}=D_{1} \times 20+1.2 \times 10^{-5} \times 1 \tag{1/2}\\ & \Rightarrow 20 D_{1}=5.2 \times 10^{-5} \tag{1/2}\\ & \Rightarrow D_{1}=2.6 \mu \mathrm{~Gy} \tag{1/2} \end{align*}$ if use \dot{H} and \dot{D} accept as bad form	$\begin{align*} & \text { no (1/2) for just } H=D Q \\ & H_{2}=D_{2} Q_{2}=1 \cdot 2 \times 10^{-5} \\ & H_{1}=(6 \cdot 4-1 \cdot 2) \times 10^{-5}{ }^{(1 / 2)} \\ & D_{1}=\frac{5 \cdot 2 \times 10^{-5}}{20} \tag{1/2}\\ & =2 \cdot 6 \times 10^{-6} \text { Gy }(1 / 2)(1 / 2) \end{align*}$	$2 \cdot$	

