

2003 Physics

Higher

Finalised Marking Instructions

Scottish Qualifications Authority Detailed Marking Instructions — Higher Physics 2003

1. General Marking Instructions

SQA published *Physics General Marking Instructions* in July 1999. Please refer to this publication when interpreting the detailed marking instructions that follow.

2. **Recording of marks**

The following additional advice was given to markers regarding the recording of marks on candidate scripts.

- (a) The total mark awarded for each question should be recorded in the outer margin. The inner margin should be used to record the mark for each part of a question as indicated in the detailed marking instructions.
- (b) The fine divisions of marks shown in the detailed marking scheme may be recorded within the body of the script beside the candidate's response. Where such marks are shown they must total to the mark in the inner margin.
- (c) Numbers recorded on candidate scripts should always be the marks being awarded. Negative marks or marks to be subtracted should not be recorded on scripts.
- (d) The number out of which a mark is scored should **never** be recorded as a **denominator**. ($\frac{1}{2}$ mark will always mean one half mark and never 1 out of 2)
- (e) Where square ruled paper is enclosed inside answer books it should be clearly indicated that this item has been considered by the marker. The mark awarded should be transferred to the script booklet inner margin and marked G.
- (f) The mark awarded for each question should be transferred to the grid on the back of the script. When the marker has completed marking the candidate's response to all questions, the marks for individual questions are added to give the total script mark.
- (g) The total mark awarded for an individual question may include an odd half mark $-\frac{1}{2}$. If there is an odd half mark in the total script mark, this is rounded up to the next whole number when transferred to the box on the front of the script.

2003 Physics Higher

Marking scheme

Section A

1.	D	11.	D
2.	Ε	12.	E
3.	А	13.	С
4.	D	14.	В
5.	А	15.	В
6.	С	16.	В
7.	Ε	17.	D
8.	С	18.	А
9.	В	19.	E
10.	E	20.	А

2003 Physics Higher				
Sample Answer and Mark Allocation		Notes	Ma	rks
$= 26 \cdot 8 \text{ m s}^{-1}$ (ii) $v_v = v \sin \theta$ $= 35 \cdot 0 \sin 40^\circ$	(½) (½) (½) (½)	unit needed for second ($\frac{1}{2}$) allow 26.812 to 27 for sig figs unit needed for second ($\frac{1}{2}$) allow 22.498 to 22 for sig figs 22.49 no unit/working – (0) 22.49 m s ⁻¹ ($\frac{1}{2}$)	1	7
$0 = 22.5 - 9.8t (\frac{1}{2}) (g = 10 \text{ deduct (}\frac{1}{2})$		$v^{2} = u^{2} + 2as \implies s = 25 \cdot 8 \text{ (m)}$ $v^{2} = u^{2} + 2as \implies s = 25 \cdot 8 \text{ (m)}$ $s = \overline{v}t$ $25 \cdot 8 = \frac{22 \cdot 5}{2}t$ $t = 2 \cdot 29 \text{ s}$ $v = 2 \cdot 3 \text{ s}$ $v = 2 \cdot 3$	1	

2003 Physics Higher		
Sample Answer and Mark Allocation	Notes	Marks
	OR time consistent with (<i>a</i>)(iii)	
$s = 26 \cdot 8 \times 5 \cdot 08 $ (1/2) = 136 m (1/2), (1/2) (1/2), (1/2)		3•+

2003 Physics Higher				
Sample Answer and Mark Allocation		Notes	Ma	rks
1	(¹ / ₂)	<i>mu – mv</i> (0) W. P. OR 174·8 – 83·6 allow 90 OR 91·2 for sig figs	2	9
(b) $F \times t = \Delta mv$ $\Rightarrow 130 \times t = 91$ t = 0.70 s (½),	(¹ /2) (¹ /2) (¹ /2)	$F = ma = \frac{m(v - u)}{t} (\frac{1}{2})$ $130 = \frac{38(4 \cdot 6 - 2 \cdot 2)}{t} (\frac{1}{2})$ $t = 0.70 \text{ s} (\frac{1}{2}) (\frac{1}{2})$ OR Δmv consistent with (a) (2 \cdot 2 - 4 \cdot 6) is W. P.	2•	
(c) total mom. before = total mom. after $\Rightarrow (54 \times 2 \cdot 2) + (38 \times 2 \cdot 2) = 54v + (38 \times 4 \cdot 6)$ $\Rightarrow 54v = 202 \cdot 4 - 174 \cdot 8$ $\Rightarrow v = \frac{27 \cdot 6}{54}$ $= 0 \cdot 51 \text{ m s}^{-1}$ deduct (¹ / ₂) if v is negative	(¹ / ₂) (¹ / ₂) (¹ / ₂)	$a = \frac{F}{m}$ $v = u + at (\frac{1}{2})$ $a = \frac{-130}{54}$ $v = 2 \cdot 2 - 2 \cdot 41 \times 0.7$ $(\frac{1}{2})$ $a = -2 \cdot 41$ $v = 0.51 \text{ m s}^{-1}$ $(\frac{1}{2}) (\frac{1}{2})$ 'a' must be negative in	2	

2003 Physics Higher		
Sample Answer and Mark Allocation	Notes	Marks
$= \frac{1}{2} \left(54 \times 2 \cdot 2^2 \right) + \frac{1}{2} \left(38 \times 2 \cdot 2^2 \right) \qquad (\frac{1}{2})$	this bad form and award marks	3•+

2003 Physic	cs Higher				
Sample An	swer and Mark Allocation		Notes	Mark	s
23. (<i>a</i>) (i) pressure <i>p</i>	<i>h, d</i> , depth		(0) if not a straight line through origin deduct (½) if either/both labels(s)/	1	7
(ii)	$(\Delta)p = \rho g h$ $p = 1.00 \times 10^{3} \times 9.8 \times 0.25$ $p = 2.45 \times 10^{3} \text{ Pa}$ (accept 2450/2500 Pa)		origin is/are missing if start $(\Delta)p = \rho gh +$ atmospheric pressure (0) W.P. if $\rho = 1.0 \rightarrow p = 2.45$ kPa(2) \downarrow p = 2.45 Pa (1½) unit error if $g = 10$, deduct (½) once in question no data mark(s) if $g = -9.8 \Rightarrow$ formula (½) only if now add atmospheric pressure deduct (½) \Rightarrow (1½) max	2	
(iii)	the increased pressure has caused the volume of trapped a to decrease or air to be compressed	ir (1)	(1) or (0)	1•+	

2003 Physics Higher			
Sample Answer and Mark Allocation		Notes	Marks
23. (b) $p = \frac{F}{A}$ $F = (300 + 2700) \times 9.8 = 29400 \text{ (N)}$ $A = 2.0 \times 1.5 = 3.0 \text{ (m}^2\text{)}$	(¹ / ₂) (¹ / ₂) (¹ / ₂)	$p = \rho gh + p_{ATM} (0) \text{ W.P.}$ $h \neq 1.1 \text{ m}$ $p = \rho gh + p_{ATM} + \frac{m_{TANK}g}{A}$ indep. marks $(1/2)$	
$\Rightarrow p = 9.8 \times 10^{3} (Pa)$ $\Rightarrow Total pressure = 1.01 \times 10^{5} + 9.8 \times 10^{3}$ $= 1.11 \times 10^{5} Pa$ $(= 1.108 \times 10^{5} Pa)$	(1/2)	 if stop here, (2) max, but units must be given ie p = 9800 (1¹/₂) (1) but deduct (¹/₂) if Pa not given 	3•+

2003 Physics Higher				
Sample Answer and Mark Allocation	L	Notes	Ma	ırks
24. (a) $\frac{p_1}{T_1} = \frac{p_2}{T_2}$ $\Rightarrow \frac{1 \cdot 56 \times 10^5}{300} = \frac{p_2}{350}$ $\Rightarrow p_2 = 1 \cdot 82 \times 10^5 \text{ Pa}$	(1/2)	$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2} (1/2)$ formula (1/2) max if T not in K $T_2 = 50^{\circ} \text{ C}/323 \text{ K} \rightarrow$ formula (1/2) max unless state $T_2 = 27 + 273 + 50$ = 323 K max (1/2) arith	2	6
(b) (i) $P = \frac{V^2}{R}$ { $V_{\text{lamp}} = 30 \times \frac{0.50}{2.0}$ = 7.5 (V) $\Rightarrow P = \frac{(7.5)^2}{0.50}$ (1) for 7.5 (V) (½) for 0.50 (Q) = 113 W (112.5 W) [note $-\frac{30^2}{0.50} = 1800 \text{ W}$ is W.P., but can get (½) for (implied) formula] (1) max But if 450 W then divide by 4 can get full marks	(¹ ⁄2) (¹ ⁄2)	$P = \frac{30^2}{2} = 450 \text{ W (1/2)}$ implied formula P = 450 W (1/2) for correct units Summary: (1/2) for power formula \rightarrow needed before any marks awarded (1) for first calculated subst. V or I (1/2) for other subst. (1/2) (1/2) for answer Alt 1: $P = VI (1/2)$ $= 7.5 \times 15$ (1) + (1/2) (V or I)(other) = 113 W (1/2) (1/2) Alt 2: $P = I^2 R (1/2)$ $= (15)^2 \times 0.50$ (1) + (1/2) = 113 W (1/2) (1/2) $P = VI = 30 \times 15 = 450 \text{ W (1)}$	3•+	

2003 P	Physics Higher			
Sampl	e Answer and Mark Allocation		Notes	Marks
24 (<i>b</i>)(ii)	the internal resistance would decrease the current in the circuit/proportion of V across the element	(¹ /2)	Power constant or increases (0)	
	and so would reduce the power output [or a complete recalculation as in (b)(i) with increased total circuit resistance] but no W. P. {there must be an attempt at a reason (and not W. P.) to get second (1/2) mark} ie power output reduces	(1/2)	Required for any marks "overall resistance increases, e.m.f. constant gives power less as $P = \frac{V^2}{R}$ (¹ / ₂)	
			voltage: flowing through restricted W. P. (0)	1•+

2003 Physics Higher			
Sample Answer and Mark Allocation	Notes	Mar	ks
3	setting = 5 V ($\frac{1}{2}$) Vcm ⁻¹ loses second ($\frac{1}{2}$) bare "5 Vcm ⁻¹ gets ($\frac{1}{2}$)	1•	9
(ii) $f = \frac{1}{T}$ (1/2) $f = \frac{1}{2 \cdot 5 \times 1 \times 10^{-3}}$ (1/2) f = 400 (Hz) (1) any other f = 400 (Hz) (1) unit loses (1/2)) using $v = f\lambda$ W. P. (0) $\frac{1}{2 \cdot 5} = 0.4$ (Hz) (1 ¹ / ₂) 0.4 kHz (1 ¹ / ₂) 2.5 ± 0.2 370 to 435 (Hz)	2•	
$\sqrt{2}$ = 8.5 V	must be 12 V otherwise formula (1/2) only if left as $\frac{12}{\sqrt{2}}$ V (11/2)	2	
(ii) $E = \frac{1}{2}C \times V^2$ (¹ / ₂ $= \frac{1}{2}220 \times 10^{-6} \times 12^2$ (¹ / ₂ = 0.016 J (¹ / ₂), (¹ / ₂) (= 0.01584 J) (= 0.02 J)	must be 12 V otherwise formula (¹ / ₂) only OR $E = \frac{1}{2} QV \& Q = VC$ (¹ / ₂) $Q = 12 \times 220 \times 10^{-6}$ $Q = 2.64 \times 10^{-3}$ $E = \frac{1}{2} 2.64 \times 10^{-3} \times 12$ (¹ / ₂)		
(iii) it increases	$E = 0.016 \text{ J} (\frac{1}{2}) (\frac{1}{2})$ (1) or (0) (1) "increases" + irrel. Phys "increases" + WP (0) eg as V increases	2•+	
 (vi) the capacitor repeatedly/keeps on/continually/again and again charges and discharges (allowing the flow of charge at all times) 	(1) or (0)	1•+	

2003 Physics Higher			
Sample Answer and Mark Allocation	Notes	Mar	·ks
26. (a) $\frac{R_{\text{LDR}}}{5500} = \frac{150}{330}$ (1) $\Rightarrow R_{\text{LDR}} = 2500\Omega$ (¹ / ₂)(¹ / ₂)	no "formula" (½) allocated ie $\frac{R_1}{R_2} = \frac{R_3}{R_4}$ not given mark Accept $\frac{15}{33}$ but $\frac{15}{330}$ (0)	2	8
(b) (i) (n channel enhancement) MOSFET	mosfet (1) "transistor" gets (0) MOSFIT/MOSVET/ MOSPHET (0)	1	
$V_{\rm o} = (1.50 - 1.28) \times \frac{22.5}{1.5}$ (1/2)	$(1 \cdot 28 - 1 \cdot 50) \frac{22 \cdot 5}{1 \cdot 5} \rightarrow$ formula (1/2) max if formula written but (0) if 1st line is as above	2•	
$\Rightarrow \text{ smaller } V_{\text{out}} \text{ from op-amp} \qquad (1/2)$	 total W. P. "R_{LDR} changes" keep marking OR p. d. between X and Y becomes zero/bridge balances again negative voltage to MOSFET is W. P. (1) max OR V_{out} becomes zero next (½) mark depends on this being gained 		
	use of switching at 0.7 V loses last (½) \Rightarrow (1½) max Explanation of why valve is open does not answer the question (0)	2•+	

2003 Physics Higher		
Sample Answer and Mark Allocation	Notes	Marks
 26. (c) There is no longer total internal reflection (1/2 as the refractive index of the water is greater than that of air/critical angle increased (1/2 If "angle of incidence changes" or "critical angle decreased" or "total internal reflection now happens" all W. P. (0) 	Independent (½) marks OR Angle of <u>incidence</u> is no longer greater than critical angle "as angle of incidence at Q is now less than critical angle" (½)	1•

2003 PI	hysics Higher				
Sample Answer and Mark Allocation			Notes	Ma	rks
27. (a) or $E = \frac{hc}{\lambda}$	(i) E_4 to E_3 as this is the smallest ΔE $\begin{cases} \text{giving smallest freq.}\\ \text{and } f\alpha \frac{1}{\lambda} v = f\lambda \text{ needs}\\ \text{backing up}\\ (\text{eg } v \text{ constant}) \end{cases}$ (ii) $(\Delta)E = -2.4 \times 10^{-19}$ -(-) 5.6×10^{-19} -(-) $(-1)^{-19}$	(½) (½) (½)	Between E_3 and E_4 is acceptable (0) if not E_4 to E_3 E_3 to E_4 (0) Bare E_4 to E_3 no explanation (0) $E_4 \rightarrow E_3$ as smallest ΔE , largest f (1) $E_4 \rightarrow E_3$ as largest ΔE (0) W. P. as explanation (there must be an attempt at a reason (and not WP) to get first (1/2) mark) ignore –ve here	2•	9
	$(\Delta)E = hf (1/2) - \text{independent}$ $\Rightarrow 3.2 \times 10^{-19} = 6.63 \times 10^{-34} \times f$ if omit $\times 10^{-19} - \text{W}$. P. $f = 4.83 \times 10^{14} \text{Hz}$ $(2.07 \times 10^{-15} \text{Hz can get} (21/2))$	(½) (½)	(substitution) (for data, clearly identified anywhere) look anywhere for $E = hf$ $h = 6.63 \times 10^{-34}$ (½) $E = 8 \times 10^{-19}$ J is W. P. stop marking deduct (½) if still –ve	3•+	
(b)	(i) same (1) $4.74 \times 10^{14} \text{ Hz}$	(¹ /2)(¹ /2)	+ irrel Physics (1) (eg "f same because the direction changes") but W. P. (0)	1	

2003 Physics Higher					
Sample Answer and Mark Allocation			Notes	Marks	
27. (b) (i	i) $\frac{v_1}{v_2} = n$ $\Rightarrow v_2 = \frac{3 \cdot 0 \times 10^8}{1 \cdot 60} (\frac{1}{2})^2$ $v_2 = 1 \cdot 88 \times 10^8 \text{ (m s}^{-1)}$		if freq. from (<i>b</i>)(i) is wrong need to work through		
OR	$\lambda = \frac{v}{f}$ $\lambda = \frac{1 \cdot 88 \times 10^8}{4 \cdot 74 \times 10^{14}}$ $\lambda = 3 \cdot 97 \times 10^{-7} \mathrm{m}$	(½) (½) (½)(½)	(or 3.96×10^{-7} m) 3.9×10^{-7} m loses (1/2)		
	$\lambda = \frac{v}{f}$ $\lambda = \frac{3 \cdot 0 \times 10^8}{4 \cdot 74 \times 10^{14}} (1/2)$ $\lambda = 6 \cdot 33 \times 10^{-7} \text{ (m)}$ $\frac{\lambda_1}{\lambda_2} = n$ $\lambda_2 = \frac{6 \cdot 33 \times 10^{-7}}{1 \cdot 60}$	(for substitution) (¹ /2) (¹ /2)	accept 4 × 10 ⁻⁷ m Summary: $v = f\lambda$ (¹ / ₂) * $\frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2} = n$ (¹ / ₂) * subst. in each formula * (¹ / ₂)(¹ / ₂) final answer (¹ / ₂)(¹ / ₂)		
	$\lambda_2 = 3.96 \times 10^{-7} \mathrm{m}$	(¹ / ₂)(¹ / ₂)		3•+	

2003 Physics Higher			
Sample Answer and Mark Allocation	Notes	Marks	
Maxima/Constructive areas are where waves (from the two gaps) meet in phase (¹ / ₂ Minima/Destructive areas are where waves (from the two gaps) meet out o	 but these two answers subsume the first (½) 	11/2	
$766 - 682 = 3\lambda$ (1) (84)	(2) path difference = 84mm (0) on its own $n\lambda = d\sin\theta$ (0) bare "28" loses last (½)	11/2	
(b) (i) V_{out}/V 0.05 0 -0.05 0.1 0.2 0.3 0.4 (1) for inversion + waveshape $(\frac{1}{2})$ for same amplitude $(\frac{1}{2})$ for same frequency	 (0) unless voltage/time graph if units and/or values missing from axes, deduct (½) for each axis unless overlayed on original trace lose this (1) if waves flattened, square waves, rectified etc 	2•	
 (ii) sound from headphones and noise are out of phase/in antiphase (1) this causes destructive interference 	e independent marks		
	"sounds are out of phase and cancel out" (1½)	2•+	

2003 Physics Higher			
Sample Answer and Mark Allocation	Notes	Marks	
29. (<i>a</i>) (i) alpha (1) or α (1)	Helium nucleus (1) Helium/helium particle (0)	1	8
(ii) $A = \frac{N}{t}$ (1/2) $A = \frac{720000}{120}$ (1/2) $A = 6000 \text{ Bq } \mathbf{OR} \text{ decays s}^{-1}$ (1/2)(1/2)	360000 Bq can get $(1\frac{1}{2})$ as unit error but 360000 decays/min gets (2) counts/second \Rightarrow unit error deduct $(\frac{1}{2})$	2	
(b) (i) $60 \to 30$ (or equivalent) (1) in 3.0 cm (1)	bare 3 gets (1 ½) missing unit bare "3·0 cm" gets (2) (2·8 to 3·2 cm)	2•	
 (ii) uncertainties in measurements give a range of possible values /a range of values come from repeated measurements /there are random uncertainties in repeated readings /radioactive decay is a random process giving a range of values Examples: /to show error/uncertainty in each reading (1) /this is the error bar (0) /shows uncertainty in reading (and thickness) (1) /shows the uncertainty (0)) (1) OR (0)	1•	
(c) $H = D_1 Q_1 + D_2 Q_2$ (¹ / ₂) $6 \cdot 4 \times 10^{-5} = D_1 \times 20 + 1 \cdot 2 \times 10^{-5} \times 1$ (¹ / ₂) $\Rightarrow 20D_1 = 5 \cdot 2 \times 10^{-5}$ $\Rightarrow D_1 = 2 \cdot 6 \mu \text{Gy}$ (¹ / ₂)(¹ / ₂) if use \hat{H} and \hat{D} accept as bad form	no (¹ / ₂) for just $H = DQ$ $H_2 = D_2Q_2 = 1 \cdot 2 \times 10^{-5}$ $(^{1}/_2)$ $H_1 = (6 \cdot 4 - 1 \cdot 2) \times 10^{-5}$ $D_1 = \frac{5 \cdot 2 \times 10^{-5}}{20}$ $= 2 \cdot 6 \times 10^{-6} \text{ Gy} (^{1}/_2)(^{1}/_2)$		
		2•	

[END OF MARKING INSTRUCTIONS]

Page eighteen