2005 Physics

Higher

Finalised Marking Instructions

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments.

Scottish Qualifications Authority

Detailed Marking Instructions - Higher Physics

1. General Marking Instructions

SQA published Physics General Marking Instructions in July 1999. Please refer to this publication when interpreting the detailed marking instructions.

2. Recording of marks

The following additional advice was given to markers regarding the recording of marks on candidate scripts.
(a) The total mark awarded for each question should be recorded in the outer margin. The inner margin should be used to record the mark for each part of a question as indicated in the detailed marking instructions.
(b) The fine divisions of marks shown in the detailed marking scheme may be recorded within the body of the script beside the candidate's response. Where such marks are shown they must total to the mark in the inner margin.
(c) Numbers recorded on candidate scripts should always be the marks being awarded. Negative marks or marks to be subtracted should not be recorded on scripts.
(d) The number out of which a mark is scored should never be recorded as a denominator. ($1 / 2$ mark will always mean one half mark and never 1 out of 2)
(e) Where square ruled paper is enclosed inside answer books it should be clearly indicated that this item has been considered by the marker. The mark awarded should be transferred to the script booklet inner margin and marked G.
(f) The mark awarded for each question should be transferred to the grid on the back of the script. When the marker has completed marking the candidate's response to all questions, the marks for individual questions are added to give the total script mark.
(g) The total mark awarded for an individual question may include an odd half mark - $1 / 2$. If there is an odd half mark in the total script mark, this is rounded up to the next whole number when transferred to the box on the front of the script.
3. Other Marking Symbols which may be used

TICK - Correct point as detailed in scheme, includes data entry
SCORE THROUGH - Any part of answer which is wrong. (For a block of wrong answer indicate zero marks.)
INVERTED VEE - A point omitted which has led to a loss of marks.
WAVY LINE - Under an answer worth marks which is wrong only because a wrong answer has been carried forward from a previous part.
"G" - Reference to a graph on separate paper. You MUST show a mark on the graph paper and the SAME mark on the script.

4. Marking Symbols which may NOT be used.

"WP"	-	Marks not awarded because an apparently correct answer was due to the use of "wrong physics".
"ARITH"	-	Candidate has made an arithmetic mistake.
"SIG FIGS" or "SF" $\quad-\quad$Candidate has made a mistake in the number of significant figures for a final answer.		

$\underline{\text { Physics - Marking Issues }}$

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

1.	Answers	Mark + comment	Issue
	$\mathrm{V}=\mathrm{IR}$	(1/2)	Ideal Answer
	$7 \cdot 5=1 \cdot 5 \mathrm{R}$	(1/2)	
	$\mathrm{R}=5 \cdot 0 \Omega$	(1)	
2.	$5 \cdot 0 \Omega$	(2) Correct Answer	GMI 1
3.	$5 \cdot 0$	(11/2) Unit missing	GMI 2(a)
4.	$4 \cdot 0 \Omega$	(0) No evidence/Wrong Answer	GMI 1
5.	Ω	(0) No final answer	GMI 1
6.	$\mathrm{R}=\frac{V}{I}=\frac{7 \cdot 5}{1.5}=4.0 \Omega$	(11/2) Arithmetic error	GMI 7
7.	$\mathrm{R}=\frac{V}{I}=4 \cdot 0 \Omega$	(1/2) Formula only	GMI 4 and 1
8.	$\mathrm{R}=\frac{V}{I}=$ \qquad	(1/2) Formula only	GMI 4 and 1
9.	$\mathrm{R}=\frac{V}{I}=\frac{7 \cdot 5}{1.5}=$	(1) Formula + subs/No final answer	GMI 4 and 1
10.	$\mathrm{R}=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0$	(1) Formula + substitution	GMI 2(a) and 7
11.	$\mathrm{R}=\frac{V}{I}=\frac{1 \cdot 5}{7 \cdot 5}=5 \cdot 0 \Omega$	(1/2) Formula but wrong substitution	GMI 5
12.	$\mathrm{R}=\frac{V}{I}=\frac{75}{1 \cdot 5}=5 \cdot 0 \Omega$	(1/2) Formula but wrong substitution	GMI 5
13.	$\mathrm{R}=\frac{I}{V}=\frac{7 \cdot 5}{1 \cdot 5}=5 \cdot 0 \Omega$	(0) Wrong formula	GMI 5
14.	$\mathrm{V}=\mathrm{IR} \quad 7 \cdot 5=1.5 \times \mathrm{R} \quad \mathrm{R}=0 \cdot 2 \Omega$	(11/2) Arithmetic error	GMI 7
15.	$\mathrm{V}=\mathrm{IR}$		
	$\mathrm{R}=\frac{I}{V}=\frac{1 \cdot 5}{7 \cdot 5}=0 \cdot 2 \Omega$	(1/2) Formula only	GMI 20

2005 Physics Higher
Marking scheme

Section A

1.	A	11.	E
2.	E	12.	C
3.	C	13.	B
4.	B	14.	B
5.	E	15.	A
6.	B	16.	A
7.	C	17.	D
8.	D	18.	D
9.	E	19.	B
10.	C	20.	D

2005 Physics - Higher			
Sample Answer and Mark Allocation	Notes	Inner Margin	Outer Margin
21. (a) (i) (A) $\begin{aligned} & \left(\begin{array}{l} \text { Mean }=\frac{0.015+0.013+0.014+0.019+0.017+0.018}{6} \\ \text { Mean }=\frac{0.096}{6} \end{array}\right] \\ & \text { Mean }=0.016 \mathrm{~s} \end{aligned}$	$\begin{aligned} & (0.02 \mathrm{~s}(1)) \\ & 0.016 \mathrm{~s}(1) \\ & 0.016(1 / 2) \end{aligned}$ $0 \cdot 016+$ wrong unit (1/2) Any other figure unless due to Arith (0)	$1 \cdot$	8
(a) (i) (B) $\begin{aligned} & {\left[\text { Uncertainty }=\frac{0.019-0.013}{6}\right]} \\ & \text { Uncertainty }=(\pm) 0.001 \text { (1) } \end{aligned}$ Goes on to calculate percentage uncertainty (0)	$\begin{aligned} & \text { (} \pm) 0.001 \mathrm{~s}(1) \\ & \text { (} \pm) 0.001+\text { wrong unit }(1 / 2) \\ & \text { (土) } 0.001+\text { wrong unit as in (a) } \\ & \text { (i) (A) (1) ie consistent with } \\ & \text { (a) (i) (A) } \end{aligned}$	$1 \cdot$	
(a) (ii) $\begin{aligned} & \mathrm{v}=\frac{\mathrm{d}}{\mathrm{t}}=\frac{0.020}{0.016}(\mathrm{t} / 2) \\ & \mathrm{v}=1.25\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$ $\begin{aligned} \mathrm{v}^{2} & =\mathrm{u}^{2}+2 \mathrm{as} \quad(1 / 2) \\ 1 \cdot 25^{2} & =0+2 \mathrm{xax}^{-2 \cdot 60 \quad(1 / 2)} \\ \mathrm{a} & =1 \cdot 30 \mathrm{~m} \mathrm{~s}^{-2} \quad(1) \end{aligned}$	Consistent with (a) (i) (A) $\begin{aligned} & t=\frac{\mathrm{d}}{\mathrm{v}}=\frac{0 \cdot 6}{0 \cdot 625}=0.96 \\ & a=\frac{\mathrm{v}-\mathrm{u}}{\mathrm{t}}=\frac{1 \cdot 25-0}{0.96(1 / 2)} \\ & =1.3 \mathrm{~m} \mathrm{~s}^{-2}(\mathbf{l}) \end{aligned}$ Both equations ($1 / 2$) Wrong v then $\max (2)$ unless Arith Allow 1•3 to $1 \cdot 302$	$3 \cdot$	

2005 Physics - Higher			
Sample Answer and Mark Allocation	Notes	Inner Margin	Outer
$21 \text { (b) (i) }$ Photoconductive (1)	OR photo-conducting (1)	1	
(b)(ii) - \quad Positive and negative charge carriers no longer released (1) OR electron/hole pairs no longer released (1) OR (photo)diode no longer conducts (1) OR resistance of (photo)diode increases/higher (1) OR no current in (photo)diode (1) - voltage across photodiode/YZ rises (above 2 V) ($(1 / 2)$ OR voltage input to MOSFET rises ($1 / 2$) - causing the MOSFET to conduct ($1 / 2$) OR switches on MOSFET (1/2)	Mention LDR - stop marking "voltage at Y " - stop marking Accept transistor Cannot get last ($1 / 2$) on its own	$2+$	

2005 Physics - Higher	Notes	Inner Margin	Outer Margin
Sample Answer and Mark Allocation	Must include $9 \cdot 8 \mathrm{~m} \mathrm{~s}^{-2}$ OR with an acceleration of g OR due to gravity OR they are in free fall	$1+$	
(b)			
Both the occupants and the seats/capsule are accelerating towards the ground with an acceleration of $9 \cdot 8 \mathrm{~m} \mathrm{~s}^{-2}$ (1)			

2005 Physics - Higher			
Sample Answer and Mark Allocation	Notes	$\begin{array}{\|c\|} \hline \text { Inner } \\ \text { Margin } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { Outer } \\ \text { Margin } \end{array}$
23. (a) $\rho=\frac{\mathrm{m}}{\mathrm{~V}}(1 / 2)=\frac{0.012}{0.50 \times 0.30 \times 0.10}(1 / 2)=0.8 \mathrm{~kg} \mathrm{~m}^{-3}(1)$	OR $800 \mathrm{~g} \mathrm{~m}^{-3}$ Watch for $0.8 \mathrm{kgm}^{-2}$	2	7
(b) - \quad Pressure \propto depth ($1 / 2$) OR $\mathrm{P}=\rho \mathrm{gh}(1 / 2)$ - Pressure on the bottom surface is greater than pressure on the top surface ($1 / 2$) - Force on the bottom surface is greater than the force on the top surface (1) - OR Net force upwards (1)	- Must have one or both of the first two statements before final (1) can be awarded - Described in terms of the Principle of Archimedes (0)	2	
(c) - Decreases (1) - Force of friction (drag) increases as the speed increases (1) - Decreases because unbalanced force is less (1)	Must make an attempt at an explanation which is not wrong Physics to gain first (1) Poor use of language Eg Acceleration slowing down followed by correct explanation - second (1) awarded only Must refer to water resistance and speed	$2+$	
(d) Acceleration will be less because (1/2) - the mass (or weight) is greater ($1 / 2$) or heavier OR unbalanced force is less ($1 / 2$)	Poor language (0) Must make an attempt at an explanation which is not wrong Physics to gain first (1/2)	1+	

2005 Physics - Higher			$\begin{array}{\|l\|} \hline \text { Outer } \\ \text { Margin } \end{array}$
Sample Answer and Mark Allocation	Notes	Inner Margin	
(a) (iii) - As the temp increases the particles move faster/with greater kinetic energy/increased momentum (1/2) - The (average) force exerted by the particles on walls/ container/syringe increases ($1 / 2$) OR the force goes up \because the particles hit the walls more often ($1 / 2$) OR the particles have a larger change in momentum per second ($1 / 2$) OR the particles hit walls harder - \quad The volume increases (to increase the surface area) ($1 / 2$) - Keeping the pressure constant ($1 / 2$) OR to increase the surface area ($1 / 2$)	Must make reference to particle movement for any marks Pressure increases (WP) Anywhere except Pressure would increase then volume increases ($1 / 2$) to keep pressure constant (1/2)		
$\text { 24 (b) (i) } \begin{aligned} & \\ & \frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\underline{\mathrm{R}}_{3} \\ & \frac{\mathrm{R}}{500}=\underline{2000} \\ & \mathrm{R}=1000 \Omega \\ & \text { (l) } \end{aligned}$	No formula (1/2)	2	
(b) (ii)	Origin label not required in this case Deduct ($1 / 2$) for R or Resistance One quadrant max (1/2) Origin required	$1 \cdot$	

2005 Physics - Higher			
Sample Answer and Mark Allocation	Notes	$\begin{array}{\|c\|} \hline \begin{array}{l} \text { Inner } \\ \text { Margin } \\ \hline \end{array} \\ \hline \end{array}$	${ }_{\text {O }}^{\text {Outer }}$ Margin
25. (a) The energy given to each coulomb of charge passing through the source/circuit OR p.d. across the battery terminals when no current is drawn OR open circuit voltage OR T.P.D + lost volts	Not: emf in words Total voltage (0) Formula (0)	1	7
$\begin{aligned} & \text { (b) (i) (A) } \\ & 6 \mathrm{~V}(\mathrm{l}) \end{aligned}$	$\begin{aligned} & 6 \cdot 0 \pm 0 \cdot 1 \mathrm{~V}(1) \\ & 6 \cdot 0 \pm 0 \cdot 1(1 / 2) \\ & 6 \cdot 0 \pm 0 \cdot 1+\text { wrong unit }(1 / 2) \end{aligned}$	$1 \bullet$	
$\begin{array}{rlrl} \text { (b) (i) (B) } & & \\ & \text { OR } & \mathrm{r} & =(-) \text { gradient }(1 / 2) \\ \mathrm{r}=\frac{\mathrm{E}-\mathrm{V}}{\mathrm{I}}(1 / 2) & & \left(\frac{5-1}{0 \cdot 2-1}\right)(1 / 2) \\ \mathrm{r}=\frac{6-4 \cdot 5}{0 \cdot 3}(1 / 2) & & =5 \Omega(1) \\ \mathrm{r}=5 \cdot 0 \Omega(1) & \mathrm{OR} & \mathrm{R} & =\frac{\mathrm{V}}{\mathrm{I}}(1 / 2) \\ & & =3 / 0.6(1 / 2) \\ & & =5 \Omega(1) \end{array}$	Consistent with (b) (i) (A) Can use any appropriate values from graph $\mathrm{r}=-5 \Omega(11 / 2)$	2•	
(b) (ii) $\begin{aligned} & \mathrm{V}=\operatorname{IR}(1 / 2) \\ & 4 \cdot 5=0 \cdot 3 \mathrm{R} \quad(1 / 2) \\ & \mathrm{R}=15 \Omega \end{aligned}$	Consistent with (b) (i) OR $\begin{aligned} & \mathrm{E}=\mathrm{IR}_{\text {total }}(1 / 2) \\ & 6=\operatorname{Ix}(5+15)(1 / 2) \\ & \mathrm{I}=0.30 \mathrm{~A} \end{aligned}$ No final answer max ($1 / 2$)	1	

2005 Physics - Higher	Notes	Inner Margin	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Outer } \\ \text { Margin } \end{array} \\ \hline \end{array}$
Sample Answer and Mark Allocation			
25. (c)			
Combined resistance in parallel $=\frac{30 \times 15}{45}=10(\Omega)(1)$	$\mathrm{R}_{\mathrm{T}}=\frac{1}{\mathrm{R}^{1}}+\frac{1}{\mathrm{R}^{2}}(\mathrm{wp})(0)$		
$\begin{aligned} & \mathrm{E}=\mathrm{IR} \\ & 6=\mathrm{I}(10+5)(1 / 2) \end{aligned}$	$\begin{aligned} & \frac{1}{\mathrm{R}}=\frac{1}{15}+\frac{1}{30} \\ & \mathrm{R}=10(\Omega) \text { (1) } \end{aligned}$		
$\mathrm{I}=0.4(\mathrm{~A})(1 / 2) \quad$ (This is the reading on ammeter)	Consistent with (b) (i) (B) and (b) (i) (A)	$2 \cdot$	

2005 Physics - Higher			
Sample Answer and Mark Allocation	Notes	Inner Margin	Outer Margin
	Axes must be labelled Wrong shape (0) Shape correct (1) Then $9(\mathrm{~V})(1 / 2)$ 1.5 (s) ($/ 1 / 2$) On separate sheet	2	10
(a) (ii) - Time will be longer ($1 / 2$) - Initial (charging) current will be less ($1 / 2$) OR average current will be less ($1 / 2$) OR current at any time will be less ($1 / 2$) OR current at all times will be less ($1 / 2$)	- Must attempt explanation - Time longer on its own (0) - Time longer \because R increases (0) - Time longer \because current less ($1 / 2$)	$1 \bullet$	
$\begin{aligned} & \hline \text { (a) (iii) } \quad \mathrm{C}==\underset{\mathrm{V}}{\mathrm{~V}}(1 / 2) \\ & 2200 \times 10^{-6}=\frac{\mathrm{Q}}{5}(1 / 2) \\ &(1) \\ & \mathrm{Q}=0.011 \mathrm{C}(1) \\ & \text { But } \quad \mathrm{Q}=\mathrm{CV}=2200 \times 10^{-6} \times 4=8800 \times 10^{-6} \mathrm{C}(1 / 2) \\ & \mathrm{Q}=2200 \times 10^{-6} \times 4=8800 \times 10^{-6} \mathrm{C}(0) \end{aligned}$	(1/2) for correct substitution (1) for $5(\mathrm{~V})$ anywhere - If $\mathrm{V}=4 \mathrm{~V} \max (1 / 2)$	3+	
	No square or no 81 shown then formula ($1 / 2$) only Both formulae for (1/2)	2	
(b)(ii) $\begin{aligned} & \mathrm{V}=\mathrm{IR} \quad(1 / 2) \\ & 9=\mathrm{I} \times 100 \times 10^{3}(1 / 2) \\ & \mathrm{I}=9 \times 10^{-5} \mathrm{~A}(1) \end{aligned}$		2	

26. (a) (i)

- Correct shape (1) (needed for any marks)
- Line starts at $9(1 / 2)$
- Line finishes at $1.5(1 / 2)$

But

- Deduct $(1 / 2)$ if no origin given
- Deduct $(1 / 2)$ if no V next to 9 OR V OR pd OR voltage OR appropriate label given
- Deduct $(1 / 2)$ if no s next to 1.5 OR t OR time label given

2005 Physics - Higher		Inner Margin Outer Margin 8	
Sample Answer and Mark Allocation	Notes		
$28 \text { (a) (i) } \begin{aligned} \\ \qquad \begin{aligned} \mathrm{n} & =\frac{\sin \theta_{1}}{\sin \theta_{2}} \text { OR } \frac{\sin \theta_{\text {air }}(1 / 2)}{\sin \theta_{\text {glass }}} \\ \mathrm{n} & =\frac{\sin 47^{(0)}}{\sin 29^{(0)}}(1 / 2) \\ \mathrm{n} & =1.51(1) \end{aligned} \quad \text { OR } \frac{\sin \mathrm{i}}{\sin \mathrm{r}}(1 / 2) \\ \end{aligned}$	$n=\frac{\sin 43}{\sin 6} \max (1 / 2)$ $1 \cdot 50$ on its own (0) $1 \cdot 5$ on its own (2) If unit given $\max \left(1^{1 / 2}\right)$ Calculator in radians $\mathrm{n}=-0 \cdot 19\left(1^{1 / 2}\right)$ max Calculator in gradians $\mathrm{n}=1.53(11 / 2)$ max	$2 \bullet$	8
(a) (ii)	$\begin{aligned} & 59^{\circ} \text { or } 31^{0}(1 / 2) \\ & 51^{\circ} \text { or } 39^{\circ}\left(1^{1 / 2}\right)-\text { consistent } \\ & \text { with (a) (i) } \\ & \text { If }^{\circ} \text { missing }\left(1^{1 / 2}\right) \max \\ & 1.51=\frac{\sin \theta}{\sin 31}(1) \text { only if } \\ & \text { angle shown on diagram } \\ & \theta=\text { arithmetic error } \\ & \text { Protractor: } 59^{\circ} \pm 1^{\circ} \\ & 58^{\circ}=53^{\circ} \\ & 60^{\circ} \rightarrow 49^{\circ} \end{aligned}$	2+	
(b) (i)			
Bigger crests and troughs Constructive interference Bigger amplitudeWaves are meeting/in phase$\left.\begin{array}{l}\text { /in step } \\ / \text { crest }+ \text { crest and trough }+ \text { trough } \\ / \mathrm{pd}=\text { n } \lambda \\ \text { /by diagram } \sim+\sim \Rightarrow \(1)\end{array}\right\}(1 / 2)$	Independent marking	1	

2005 Physics - Higher			
Sample Answer and Mark Allocation	Notes	$\begin{aligned} & \text { Inner } \\ & \text { Margin } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Outer } \\ \text { Margin } \end{array}$
$\begin{aligned} & \text { (b) (ii) } \begin{aligned} \mathrm{d} \sin \theta & =\mathrm{n} \lambda(1 / 2) \\ \frac{1 \times 10^{-3}}{300} \sin \theta(1 / 2) & =2 \times 650 \times 10^{-9}(1 / 2) \\ \theta & =23^{\circ}(1 / 2) \end{aligned} \\ & \text { But } \frac{1}{300} \sin \theta=2 \times 650 \times 10^{-9} \\ & \theta=0.022^{\circ}(1 / 2) \end{aligned}$	$\begin{aligned} & 300 \sin \theta=2 \times 650 \times 10^{-9} \max (1) \\ & \text { If }{ }^{0} \text { missing max }\left(1^{1 / 2}\right) \\ & \text { Watch for } \\ & \quad \mathrm{d} \sin \theta=\mathrm{n} \lambda(1 / 2) \\ & (1 / 2) 0 \cdot 003 \sin \theta=2 \times 650 \times 10^{-6}(1 / 2) \\ & \quad \theta=25 \cdot 7^{0}(1 / 2) \end{aligned}$		
(b) (iii) \quad The fringes are closer together ($1 / 2$) wavelength of blue light $<\lambda$ of red light ($1 / 2$) OR frequency of blue light $>\mathrm{f}$ of red light OR λ blue is smaller OR f greater Angle θ smaller $\cdots \lambda$ blue $<\lambda$ red (1/2)	Fringes closer together on its own or with wrong Physics (0) Refraction (wp) Shorter wavelength diffracts less $\max (1 / 2)$	1+	

2005 Physics - Higher			
Sample Answer and Mark Allocation	Notes	$\begin{array}{\|c\|} \hline \begin{array}{l} \text { Inner } \\ \text { Margin } \end{array} \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline \begin{array}{l} \text { Outer } \\ \text { Margin } \end{array} \\ \hline \end{array}$
29 (a) (1)	Must be labelled No origin max (1/2)	1	5
(b) (i) $\begin{aligned} & \mathrm{E}(=\mathrm{hf})=\frac{h c}{\lambda}(1 / 2) \\ & \mathrm{E}=\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{400 \times 10^{-9}} \\ & \mathrm{E}=4.97 \times 10^{-19}(1 / 2) \end{aligned}$ $\begin{aligned} & \mathrm{E}_{\mathrm{k}}=4.97 \times 10^{-19}-3.11 \times 10^{-19}(1 / 2) \\ & \mathrm{E}_{\mathrm{k}}=1.86 \times 10^{-19} \mathrm{~J}(1) \end{aligned}$ $\begin{aligned} & \text { OR } \begin{aligned} \frac{\mathrm{hc}}{\lambda}(1 / 2) & =\mathrm{hf}_{0}+\mathrm{E}_{\mathrm{K}} \\ \frac{6 \cdot 63 \times 10^{-34} \times 3 \cdot 0 \times 10^{8}}{400 \times 10^{-9}}(1 / 2) & =\mathrm{hf}_{0}+\mathrm{E}_{\mathrm{K}} \\ 4.97 \times 10^{-19}(1 / 2) & =3.11 \times 10^{-19}+\mathrm{E}_{\mathrm{K}}(1 / 2) \\ \mathrm{E}_{\mathrm{K}} & =1.86 \times 10^{-19} \mathrm{~J}(1) \end{aligned} \end{aligned}$	$\begin{aligned} & \mathrm{v}=\mathrm{f} \lambda \\ & 3 \times 10^{8}=\mathrm{f} \times 400 \times 10^{-9} \\ & \mathrm{f}=7.5 \times 10^{14}(\mathrm{~Hz}) \\ & \mathrm{E}=\mathrm{hf} \text { and } \mathrm{v}=\mathrm{f} \mathrm{\lambda}(1 / 2) \\ & \mathrm{E}=6.63 \times 10^{-34} \times 7.5 \times \\ & 10^{14}(1 / 2) \\ & \mathrm{E}=4.97 \times 10^{-19}(1 / 2) \\ & \mathrm{E}_{\mathrm{K}}=4.97 \times 10^{-19} \mathrm{~J} \max (1 \mathrm{l} / 2) \\ & \mathrm{E}_{\mathrm{K}}=\frac{\mathrm{hc}}{\lambda} \mathrm{WP}(0) \\ & 1.8625 \times 10^{-19} \mathrm{~J}(3) \end{aligned}$	$3 \cdot$	
(b) (ii) Some electrons may have enough (kinetic) energy to travel from the (metal) plate to the (metal) cylinder (1)		1+	

2005 Physics - Higher			
Sample Answer and Mark Allocation	Notes	Inner Margin	Outer Margin
$\begin{array}{\|l\|} \hline 30 \text { (a) (i) } \end{array}$ Half value thickness $=5 \mathrm{~mm}$ (1)	$\begin{aligned} & 5(1 / 2) \\ & 5+\text { wrong unit }(1 / 2) \\ & \text { Any other figure }+\mathrm{mm}(0) \\ & 5 \cdot 0 \pm 0.1 \mathrm{~mm}(1) \\ & \text { half life }=5 \mathrm{~mm}(0) \\ & \mathrm{T}_{1 / 2}=5 \mathrm{~mm}(1) \end{aligned}$	1	5
	$\begin{align*} & 15 \mathrm{~mm} \text { (2) } \\ & \text { consistent with (a) (i) } \\ & \text { ignore half-life } \\ & 15(1 / 2) \tag{1} \end{align*}$	2	
(b) $\begin{aligned} & \mathrm{H}=\mathrm{DQ}(1 / 2) \\ & \mathrm{H}=\mathrm{D}_{1} \mathrm{Q}_{1}+\mathrm{D}_{2} \mathrm{Q}_{2}+\mathrm{D}_{3} \mathrm{Q}_{3} \\ & \mathrm{H}=\left(1 \times 2 \times 10^{-3}\right)+\left(3 \times 400 \times 10^{-6}\right)+\left(10 \times 80 \times 10^{-6}\right)(1 / 2) \\ & \mathrm{H}=4 \times 10^{-3}(\mathrm{~Sv})=4(\mathrm{mSv}) \end{aligned}$ $\text { Number of hours }=\frac{500 \times 10^{-3}}{4 \times 10^{-3}}$ $\text { Number of hours }=125 \text { (h) (1) }$	$125+$ wrong unit ($1^{1 / 2}$)	$2 \bullet$	

