2010 Physics

Higher

Marking Instructions

(C) Scottish Qualifications Authority 2010

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from the External Print Team, Centre Services, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's External Print Team, Centre Services, at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Scottish Qualifications Authority

Detailed Marking Instructions - Higher Physics

1. General Marking Instructions

SQA published Physics General Marking Instructions in July 1999. Please refer to this publication when interpreting the detailed Marking Instructions.

2. Recording of marks

The following additional advice was given to markers regarding the recording of marks on candidate scripts.
(a) The total mark awarded for each question should be recorded in the outer margin. The inner margin should be used to record the mark for each part of a question as indicated in the detailed marking instructions.
(b) The fine divisions of marks shown in the detailed Marking Instructions may be recorded within the body of the script beside the candidate's response. Where such marks are shown they must total to the mark in the inner margin.
(c) Numbers recorded on candidate scripts should always be the marks being awarded. Negative marks or marks to be subtracted should not be recorded on scripts.
(d) The number out of which a mark is scored should never be recorded as a denominator. ($1 / 2$ mark will always mean one half mark and never 1 out of 2)
(e) Where square ruled paper is enclosed inside answer books it should be clearly indicated that this item has been considered by the marker. The mark awarded should be transferred to the script booklet inner margin and marked G.
(f) The mark awarded for each question should be transferred to the grid on the back of the script. When the marker has completed marking the candidate's response to all questions, the marks for individual questions are added to give the total script mark.
(g) The total mark awarded for an individual question may include an odd half mark $-1 / 2$. If there is an odd half mark in the total script mark, this is rounded up to the next whole number when transferred to the box on the front of the script.

3. Other Marking Symbols which may be used

TICK - Correct point as detailed in scheme, includes data entry
SCORE THROUGH - Any part of answer which is wrong. (For a block of wrong answers indicate zero marks.)
INVERTED VEE - A point omitted which has led to a loss of marks.
WAVY LINE - Under an answer worth marks which is wrong only because a wrong answer has been carried forward from a previous part.
"G" - Reference to a graph on separate paper. You MUST show a mark on the graph paper and the SAME mark on the script.

4. Marking Symbols which may NOT be used.

| "WP" | $-\quad$Marks not awarded because an apparently correct
 answer was due to the use of "wrong physics". |
| :--- | :--- | :--- |
| "ARITH" | $-\quad$Candidate has made an arithmetic mistake. |
| "SIG FIGS" or "SF" $-\quad$Candidate has made a mistake in the number of
 significant figures for a final answer. | |

Physics - Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

Answers

1.

$$
\begin{aligned}
& V=I R \\
& 7 \cdot 5=1 \cdot 5 R \\
& R=5 \cdot 0 \Omega
\end{aligned}
$$

2.

$5 \cdot 0 \Omega$
$5 \cdot 0$
$4 \cdot 0 \Omega$
\qquad Ω
5.
6. $R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0 \Omega$
7. $R=\frac{V}{I}=4.0 \Omega$
8. $R=\frac{V}{I}=$ \qquad Ω
(1/2) Formula only
(1/2) Formula only
(1) Formula + subs/No final answer
9. $R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=$ \qquad Ω
10. $\quad R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0$
(1) Formula + substitution
11. $R=\frac{V}{I}=\frac{1.5}{7.5}=5.0 \Omega$
(1/2) Formula but wrong substitution
12. $R=\frac{V}{I}=\frac{75}{1 \cdot 5}=5 \cdot 0 \Omega$
(1/2) Formula but wrong substitution
13. $R=\frac{I}{V}=\frac{7 \cdot 5}{1 \cdot 5}=5 \cdot 0 \Omega$
(0) Wrong formula
14. $\quad V=I R \quad 7 \cdot 5=1.5 \times R \quad R=0.2 \Omega$
(11/2) Arithmetic error
15. $V=I R$
$R=\frac{I}{V}=\frac{1 \cdot 5}{7 \cdot 5}=0 \cdot 2 \Omega$
(1/2) Formula only

Issue

Ideal Answer

GMI 1

GMI 2(a)
GMI 1

GMI 1

GMI 7

GMI 4 and 1

GMI 4 and 1

GMI 4 and 1

GMI 2(a) and 7

GMI 5

GMI 5

GMI 5

GMI 7

GMI 20

2010 Physics Higher

Marking scheme

Section A

1.	E	11.	D
2.	E	12.	C
3.	D	13.	E
4.	A	14.	A
5.	D	15.	B
6.	B	16.	D
7.	C	17.	E
8.	B	18.	D
9.	A	19.	B
10.	D	20.	C

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{2010 Physics - Higher} \& \& \& \\
\hline \multicolumn{3}{|l|}{Sample Answer and Mark Allocation} \& \multirow[t]{2}{*}{\begin{tabular}{l}
\multicolumn{1}{c|}{ Notes } \\
\begin{tabular}{l}
Cosine \& sine rules can be used \\
to get these answers but the \\
tolerances are for scale \\
diagrams only
\end{tabular} \\
\hline
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
\begin{tabular}{|l|l|}
\hline \(\begin{array}{l}\text { Inner } \\
\text { Margin }\end{array}\) \\
\hline
\end{tabular} \\
2
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
\begin{tabular}{|l|}
\hline Outer \\
Margin
\end{tabular} \\
7
\end{tabular}} \\
\hline \begin{tabular}{l}
21. \\
(a) \\
(i)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& 47 \mathrm{~km} \pm 1 \\
\& 156^{(0)} \pm 2
\end{aligned}
\] \\
\(24^{\circ}\) east of south is correct \(66^{\circ}\) south of east is correct
\end{tabular} \& 1
1 \& \& \& \\
\hline \& \[
\begin{aligned}
\& v=s / t \\
\& v=47100 \text { or } 47000 / 900 \\
\& v=52 \cdot 3 \text { or } 52 \cdot 2 \mathrm{~ms}^{-1} \\
\& {\left[\text { OR } 188 \mathrm{~km} \mathrm{~h}^{-1}\right. \text {] }} \\
\& \text { at } 156^{\circ}
\end{aligned}
\] \& \(1 / 2\)
1
\(1 / 2\) \& \begin{tabular}{l}
or consistent with (a)(i) \\
Taking \(\mathrm{t}=15\) is treated as unit error
\end{tabular} \& \(2 \bullet\) \& \\
\hline \begin{tabular}{l}
(b) \\
(i)
\end{tabular} \& Lift \(=\mathrm{mg}\) OR lift \(=\) weight OR forces balanced
\[
\begin{aligned}
W \& =1 \cdot 21 \times 10^{4} \times 9 \cdot 8 \\
W \& =119 \mathrm{kN}
\end{aligned}
\] \& \(1 / 2\)
\(1 / 2\) \& \& 1 \& \\
\hline (ii) \& \begin{tabular}{l}
Weight is less There is a resultant force OR unbalanced force OR net force upwards Upward acceleration OR \\
The helicopter accelerates upwards weight is less there is a net upward force
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
1

1
1
$1 / 2$

$1 / 2$ \& | Independent marks |
| :--- |
| Can be done by recalculation, ie New weight $=96040 \mathrm{~N} \quad 1 / 2$ $\begin{aligned} F & =119000-96040 \mathrm{~N} \\ & =22960 \mathrm{~N} \text { upwards } \quad 1 / 2 \end{aligned}$ $\begin{aligned} & a=F / \mathrm{m} \\ &=22960 / 9800 \\ &=2 \cdot 3 \mathrm{~ms} \mathrm{~s}^{-2} \text { upwards } 1 \\ & \text { must have both, } \mathbf{2 . 3} \mathbf{~ m ~ s}^{-2} \\ & \text { and 'upwards' } \end{aligned}$ |
| 'upward acceleration' could be described in terms of speed / velocity changes eg "it moves upwards getting faster" | \& $2+$ \&

\hline
\end{tabular}

2010 Physics - Higher		Notes	Inner Margin	Outer Margin
Sample Answer and Mark Allocation				
27. (a) $\begin{aligned} & S_{2} P-S_{l} P=(\mathrm{n}+1 / 2) \lambda \\ & 0.34=\lambda / 2 \\ & \lambda=0.68 \mathrm{~m} \end{aligned}$ OR path difference $=1 / 2 \lambda$ path difference $=0.34 \mathrm{~m}$ $\lambda=0.68 \mathrm{~m}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 \\ & \\ & 1 / 2 \\ & 1 / 2 \\ & 1 \end{aligned}$		$2 \bullet$	4
(b) Increases / greater No longer destructive interference	1 1	Second mark is conditional on the first	$2+$	

2010 Physics - Higher					
Sample Answer and Mark Allocation			Notes	Inner	Outer Margin
28. (a) (i)	$\begin{aligned} & P=F / A \\ & F=4.6 \times 10^{5} \times 3.00 \times 10^{-2} \\ & F=13800 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 \end{aligned}$		2	12
		$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 \\ & 1 \end{aligned}$		$3+$	
(b) (i)	Stays the same / constant / nothing / no change	1		1	
(ii)	$\begin{aligned} & n=\sin \theta_{1} / \sin \theta_{2} \\ & n=\sin 60 / \sin 41 \\ & n=1.32 \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 \end{aligned}$	Do not accept a bare statement of $n=1.33$	2 -	
	$\begin{aligned} & \sin \vartheta_{\mathrm{C}}=1 / \mathrm{n} \\ & \sin \vartheta_{\mathrm{C}}=1 / 1 \cdot 32 \\ & \vartheta_{\mathrm{C}}=49^{\circ} \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 \end{aligned}$	or consistent with (b)(ii) Degrees is a unit and is needed.	2	
(iv)	Less Larger refractive index	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Look for this first.	$2+$	

2010 Physics - Higher					
Sample Answer and Mark Allocation			Notes	Inner	Outer Margin
29. (a)	Very small area / diameter / radius (of beam) $I=P / A$ OR High irradiance	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$		1	7
	$\begin{aligned} & E=h f \\ & E=6.63 \times 10^{-34} \times 4.74 \times 10^{14} \\ & E=3.14 \times 10^{-19} \mathrm{~J} \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 \end{aligned}$		2	
	Frequency / wavelength / energy Direction Speed Phase / coherent velocity		any 2 rows $1 / 2$ mark each Not 'kinetic energy' / 'amplitude' / 'in step'	1	
	$\begin{aligned} & \lambda=v / f=3 \times 10^{8} / 4.74 \times 10^{14}=633(\mathrm{~nm}) \\ & n \lambda=d \sin \theta \\ & d=\left(2 \times 633 \times 10^{-9}\right) / \sin 30 \\ & d=2.5 \times 10^{-6} \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 \end{aligned}$	\longleftarrow anywhere	$3+$	

2010 Physics - Higher						
Sample Answer and Mark Allocation				Notes	Inner Margin	Outer Margin
30. (a)					$1 \bullet$	8
	(i)	$\begin{aligned} & r=93 \\ & s=237 \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$		1 -	
	(ii)	$T=$ Neptunium (OR Np)	1	or consistent with (b)(i)	$1 \bullet$	
	$\begin{aligned} & N= \\ & N= \\ & N= \end{aligned}$	$\begin{aligned} & \times 10^{3} \times 60 \\ & \times 10^{6} \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 \end{aligned}$	Deduct $1 / 2$ if any units given If ' t ' not in seconds \rightarrow $\max 1 / 2$ mark.	2 -	

