

2011 Physics

Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2011

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations Team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations Team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Scottish Qualifications Authority

Marking Instructions – Higher Physics

1. General Marking Instructions

SQA published Physics General Marking Instructions in July 1999. Please refer to this publication when interpreting the detailed Marking Instructions.

2. Recording of marks

The following additional advice was given to markers regarding the recording of marks on candidate scripts.

- (a) The total mark awarded for each question should be recorded in the outer margin. The inner margin should be used to record the mark for each part of a question as indicated in the detailed Marking Instructions.
- (b) The fine divisions of marks shown in the detailed Marking Instructions may be recorded within the body of the script beside the candidate's response. Where such marks are shown they must total to the mark in the inner margin.
- (c) Numbers recorded on candidate scripts should always be the marks being awarded. Negative marks or marks to be subtracted should not be recorded on scripts.
- (d) The number out of which a mark is scored should **never** be recorded as a **denominator**. (¹/₂ mark will always mean one half mark and never 1 out of 2)
- (e) Where square ruled paper is enclosed inside answer books it should be clearly indicated that this item has been considered by the marker. The mark awarded should be transferred to the script booklet inner margin and marked G.
- (f) The mark awarded for each question should be transferred to the grid on the back of the script. When the marker has completed marking the candidate's response to all questions, the marks for individual questions are added to give the total script mark.
- (g) The total mark awarded for an individual question may include an odd half mark $-\frac{1}{2}$. If there is an odd half mark in the total script mark, this is rounded up to the next whole number when transferred to the box on the front of the script.

3. Other Marking Symbols which may be used

TICK SCORE THROUGH	_	Correct point as detailed in scheme, includes data entry Any part of answer which is wrong. (For a block of wrong answers indicate zero marks.)
INVERTED VEE WAVY LINE	_	A point omitted which has led to a loss of marks. Under an answer worth marks which is wrong only
"G"	_	because a wrong answer has been carried forward from a previous part. Reference to a graph on separate paper. You MUST show a mark on the graph paper and the SAME mark on the script.

4. Marking Symbols which may <u>NOT</u> be used.

"WP"	_	Marks not awarded because an apparently correct answer was due to the use of "wrong physics".
"ARITH" "SIG FIGS" or "SF"	_	Candidate has made an arithmetic mistake. Candidate has made a mistake in the number of significant figures for a final answer.

Physics – Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

1.	Answers V=IR $7\cdot5=1\cdot5R$ $R=5\cdot0\Omega$	Mark +comment (½) (½) (1)	Issue Ideal Answer
2.	5·0Ω	(2) Correct Answer	GMI 1
3.	5.0	(1½) Unit missing	GMI 2(a)
4.	4.0 Ω	(0) No evidence/Wrong Answer	GMI 1
5.	Ω	(0) No final answer	GMI 1
6.	$R = \frac{V}{I} = \frac{7.5}{1.5} = 4.0 \Omega$	(1 ¹ / ₂) Arithmetic error	GMI 7
7.	$R = \frac{V}{I} = 4.0 \Omega$	(¹ / ₂) Formula only	GMI 4 and 1
8.	$R = \frac{V}{I} = _ \Omega$	(1/2) Formula only	GMI 4 and 1
9.	$R = \frac{V}{I} = \frac{7.5}{1.5} = \underline{\qquad} \Omega$	(1) Formula + subs/No final answer	GMI 4 and 1
10.	$R = \frac{V}{I} = \frac{7.5}{1.5} = 4.0$	(1) Formula + substitution	GMI 2(a) and 7
11.	$R = \frac{V}{I} = \frac{1.5}{7.5} = 5.0 \Omega$	(¹ / ₂) Formula but wrong substitution	GMI 5
12.	$R = \frac{V}{I} = \frac{75}{1.5} = 5.0 \Omega$	(¹ / ₂) Formula but wrong substitution	GMI 5
13.	$R = \frac{I}{V} = \frac{7.5}{1.5} = 5.0 \Omega$	(0) Wrong formula	GMI 5
14.	$V=IR 7.5 = 1.5 \times R R=0.2 \Omega$	$(1\frac{1}{2})$ Arithmetic error	GMI 7
15.	$V = IR$ $R = \frac{I}{V} = \frac{1.5}{7.5} = 0.2 \Omega$	(½) Formula only	GMI 20

2011 Physics Higher

Marking scheme

Section A

1.	С	11.	В
2.	Е	12.	А
3.	С	13.	D
4.	А	14.	Е
5.	С	15.	D
6.	D	16.	В
7.	А	17.	D
8.	Е	18.	А
9.	С	19.	В
10.	В	20.	А

			11 Physics – Higher				
Samp	ole Ansv	ver and	d Mark Allocation		Notes	Inner Margin	Outer Margir
21.	(a)	(i)	$v^{2} = u^{2} + 2as$ $0 = 7^{2} + 2 \times (-9 \cdot 8) \times s$ $s = 2 \cdot 5 \text{ m}$	1/2 1/2 1	OR $v = u + at$ $0 = 7 + (-9 \cdot 8) t$ $t = 0 \cdot 71 s$ $s = ut + \frac{1}{2} a t^{2}$ $= 7 \times 0 \cdot 71 + \frac{1}{2} (-9 \cdot 8) (0 \cdot 71)^{2}$ final answer 1 $= 2 \cdot 5 m$ If take g = 10 or 9 \cdot 81 then deduct $\frac{1}{2}$ per question	2	6
		(ii)	v = u + at	1/2	OR $s = \left(\frac{u+v}{2}\right)t$ $\frac{1}{2}$	1	
			$0 = 7 + (-9 \cdot 8) \times t$	1/2	$s = \left(\frac{u+v}{2}\right)t \qquad \frac{1}{2}$ $2.5 = \left(\frac{7+0}{2}\right) \times t \qquad \frac{1}{2}$		
			<i>t</i> = 0.71 s		t = 0.71 s Deduct $\frac{1}{2}$ if last line is missing Deduct $\frac{1}{2}$ if missing or wrong unit 'secs' is a unit error and loses $\frac{1}{2}$ As this is a 'show' question, answer must quote a formula		

			11 Physics – Higher				
Samj	ple Ansv	wer and	d Mark Allocation		Notes	Inner Margin	Outer Margin
						Margin	wargi
21.	(b)	(i)	1.5 m s ⁻¹ to the right	1	If miss out direction – deduct ½ Missing units – deduct ½	1•	
		(ii)	Statement Z	1	If no attempt at justification or wrong Physics in justification	2+	
			Horizontal speed of ball remains constant and equal to (horizontal) speed of trolley or Horizontal speed of the ball remains constant at 1.5 m s ⁻¹	1	Horizontal is required		

Samj	ole An		11 Physics – Higher Mark Allocation	Notes	Inner Margin	Outer	
22.	(a)	(i)	$Impulse = Area under F-t graph$ $= \frac{1}{2} \times 6.4 \times 0.25$ $= 0.80 \text{ kg m s}^{-1}$	1/2 1/2 1	OR Ns but Ns ⁻¹ is a unit error – deduct ½ Accept 0.8 kg m s ⁻¹	2	7
		(ii)	0.80 kg m s ⁻¹ in the negative direction OR to the left OR negative sign	1/2 1/2	OR Ns but Ns ⁻¹ is a unit error – deduct ½ OR consistent with (a) (i)	1	
		(iii)	(Impulse = Change in momentum) $F \times t = mv - mu$ -0.80 = m (-0.45 - 0.48) m = 0.86 kg	1/2 1/2 1	If signs incorrect give only formula ¹ / ₂ OR consistent with (a) (ii)	2+	
	(b)	force	new original time		Relative position of new graph on axis not important	2•	
		-	r of graph larger f graph shorter	1 1	Labels on axes missing Origin missing		

Samp	ole Ansv		011 Physics – Higher I Mark Allocation		Notes	Inner Margin	Outer Margi
23.	(a)	(i)	$m = 111 \cdot 49 - 111 \cdot 26$ = 0.23 g $\rho = m/V$ = 0.23 × 10 ⁻³ /2.0 × 10 ⁻⁴ = 1.15 kg m ⁻³	1/2 1/2 1/2 1/2	If calculate two densities and subtract – no penalty ½ off for each unit error	2	7
		(ii)	Not all the air will be evacuated from jar OR It is impossible to get a (perfect) vacuum OR Some air has leaked back in	1		1•	
	(b)	(i)	$P_1V_1 = P_2V_2$ $1 \cdot 01 \times 10^5 \times 200 = P_2 \times 250$ $P_2 = 8 \cdot 1 \times 10^4 \operatorname{Pa}$	¹ / ₂ ¹ / ₂ 1	Accept: $P_2 = 8, 8.1, 8.08, 8.080 \times 10^4 \text{ Pa}$ OR 80 000, 81 000, 80 800 Pa	2•	
		(ii)	Particles collide with walls of jar Number of collisions on walls of jar is less frequent/less often Average force (on walls) decreases Pressure on walls of jar decreases	1/2 1/2 1/2 1/2	Look for this description first - it is needed before any other marks can be given For 'particles' accept 'molecules' Must be frequency, not just "less collisions" Any mention of E_k or speed of particles changing – max $\frac{1}{2}$ mark	2	

G			011 Physics – Higher				
Sam	ple Ans	wer and	l Mark Allocation		Notes	Inner Margin	Outer Margin
24.	(a)	(i)		Any mention of voltage 'flowing', 'travelling' or 'moving' is wrong Physics and gets zero	1	7	
		(ii)	$I = \frac{E}{(R+r)}$	1/2	$OR \ r = \frac{lost \ volts}{I} \qquad \frac{1}{2}$	1	
			$1.25 = \frac{10}{(6+r)}$	1/2	$= \frac{10-7\cdot 5}{1\cdot 25} \qquad \qquad \forall_2$		
			$r = 2.0 \Omega$		$=$ 2.0 Ω		
					Deduct ½ if last line is missing Deduct ½ if wrong unit		
					$\frac{R_1}{R_2} = \frac{V_1}{V_2}$ ¹ / ₂		
					$\frac{r}{6\cdot 0} = \frac{2\cdot 5}{7\cdot 5} \qquad \frac{1}{2}$		
					$r = 2.0 \Omega \qquad 1$		
	(b)	(i)	(Total) resistance decreases (circuit) current increases	$\frac{1}{2}$ $\frac{1}{2}$	All independent marks	2•	
			lost volts increases	1	The use of up and down arrows is not accepted		
		(ii)	Parallel resistance = $R = V/I$ = $6 \cdot 0/2 \cdot 0$ = $3 \cdot 0 \Omega$	$\frac{1/2}{1/2}$	OR Total resistance $= E/I$ $\frac{1}{2}$ = 10/2.0 $= 5.0 \Omega$ Resistance of	3+	
					parallel network = $5-2$ $\frac{1}{2}$ = 3Ω		
			$1/R_{\rm T} = 1/R_1 + 1/R_2$	1⁄2	OR $R_{\rm T} = \frac{Product}{Sum}$ $\frac{V_2}{V_2}$		
			1/3 = 1/6 + 1/R	1/2	$3 = \frac{6 \times R}{1/2}$		
			$R = 6.0 \Omega$	1	$6 + R$ $R = 6 \cdot 0 \ \Omega \qquad 1$ Note – potential divider ratio could be used to get $R_p = 3 \cdot 0 \ \Omega$		

	011 Physics – Higher				
swer and	d Mark Allocation		Notes	Inner Margin	Outer Margir
plates OR 200 μ OR One v capac	by 1 volt C per volt olt across the plates of the itor causes 200 μ C of charge to be	. 1	1	10	
(i)	I = E/R = 12/1400 = 0.0086 A (8.6 mA)	1/2 1/2 1		2	
(ii)	$E = \frac{1}{2} CV^2$	1/2		3•	
	$= \frac{1}{2} \times (200 \times 10^{-6}) \times 12^{2}$ = 0.0144 J final stored energy = $\frac{1}{2} \times (200 \times 10^{-6}) \times 4^{2}$	1/2 1/2	If this number is rounded off (eg to 0.014) – deduct $\frac{1}{2}$		
	= 0.0016 J Difference = $0.0144 - 0.0016$ decrease in stored energy = 0.0128 J	¹ / ₂	Deduct ¹ / ₂ if missing or wrong unit		
	swer and 200 μ plates OR 200 μ OR One v capac stored	swer and Mark Allocation 200 μ C of charge increases voltage across plates by 1 volt OR 200 μ C per volt OR One volt across the plates of the capacitor causes 200 μ C of charge to be stored (i) $I = E/R$ = 12/1400 = 0.0086 A (8.6 mA) (ii) $E = \frac{1}{2}CV^2$ initial stored energy $= \frac{1}{2} \times (200 \times 10^{-6}) \times 12^2$ = 0.0144 J final stored energy $= \frac{1}{2} \times (200 \times 10^{-6}) \times 4^2$ = 0.0016 J Difference = 0.0144 - 0.0016 decrease in stored energy	swer and Mark Allocation 200 μ C of charge increases voltage across 1 plates by 1 volt OR 200 μ C per volt OR One volt across the plates of the capacitor causes 200 μ C of charge to be stored (i) $I = E/R$ $\frac{1}{2}$ $= 12/1400$ $\frac{1}{2}$ = 0.0086 A 1 (8.6 mA) (ii) $E = \frac{1}{2}CV^2$ $\frac{1}{2}$ initial stored energy $= \frac{1}{2} \times (200 \times 10^{-6}) \times 12^2$ $\frac{1}{2}$ = 0.0144 J final stored energy $= \frac{1}{2} \times (200 \times 10^{-6}) \times 4^2$ $\frac{1}{2}$ = 0.0016 J Difference $= 0.0144 - 0.0016$ $\frac{1}{2}$ decrease in stored energy	swer and Mark AllocationNotes200 μ C of charge increases voltage across1plates by 1 volt0R200 μ C per volt0ROne volt across the plates of the capacitor causes 200 μ C of charge to be stored1(i) $I = E/R$ $\frac{1}{2}$ $= 12/1400$ $\frac{1}{2}$ $= 0.0086 A$ 1 (8.6 mA) 1(ii) $E = \frac{1}{2}CV^2$ $\frac{1}{2}$ initial stored energy $=\frac{1}{2}\times(200 \times 10^6) \times 12^2$ $= \frac{1}{2}\times(200 \times 10^6) \times 12^2$ $\frac{1}{2}$ final stored energy $=\frac{1}{2}\times(200 \times 10^6) \times 4^2$ $=\frac{1}{2}\times(200 \times 10^6) \times 4^2$ $\frac{1}{2}$ If this number is rounded off (eg to 0.014) - deduct $\frac{1}{2}$ final stored energy $=\frac{1}{2}\times(200 \times 10^6) \times 4^2$ $=\frac{1}{2}\times(200 \times 10^6) \times 4^2$ $\frac{1}{2}$ $=\frac{1}{2}$ $\frac{1}{2}$ $=0.0016 J$ $\frac{1}{2}$ Difference = $0.0144 \cdot 0.0016$ $\frac{1}{2}$ decrease in stored energy $\frac{1}{2}$	swer and Mark AllocationNotesInner Margin200 µC of charge increases voltage across plates by 1 volt OR One volt across the plates of the capacitor causes 200 µC of charge to be stored1(i) $I = E/R$ $= 12/1400$ $= 0.0086 A$ $(8.6 mA)$ $\frac{1}{2}$ (ii) $E = \frac{1}{2}CV^2$ initial stored energy $= \frac{1}{2} \times (200 \times 10^{-6}) \times 12^2$ $= 0.0144 J$ final stored energy $= \frac{1}{2} \times (200 \times 10^{-6}) \times 4^2$ $= 0.0016 J$ Difference = $0.0144 - 0.0016$ $\frac{1}{2}$ 3•

	20)11 Physics – Higher			
Sample Ans	wer and	l Mark Allocation	Notes	Inner Margin	Outer Margin
(c)	(i)	0·30 s	Deduct ¼ if missing or wrong unit	1•	
	(ii)	$s = ut + \frac{1}{2} a t^{2} \qquad \frac{1}{2}$ $0.80 = 1.5 \times 0.3 + \frac{1}{2} \times a \times (0.3)^{2} \frac{1}{2}$ $a = 7.8 \text{ m s}^{-2} \qquad 1$	OR consistent with 25(c) (i)	2+	
	(iii)	Percentage (fractional) uncertainty in (measuring) <u>distance</u> will be smaller or Percentage (fractional) uncertainty in (measuring) <u>time</u> will be smaller	Must be <i>percentage</i> or <i>fractional</i> uncertainty ie "uncertainty in time is less" is insufficient	1+	

		011 Physics – Higher				
Sample A	Answer and	l Mark Allocation		Notes	Inner Margin	Outer Margir
26. (a) (i)	Inverting	1	Do not accept "inverted" or "inverse"	1	7
	(ii)	$V_{\rm o} = -\frac{R_{\rm f}}{R_{\rm l}} \times V_{\rm l}$	1/2	Formula is wrong if negative sign is missing	2	
		$12 = \frac{-80}{10} \times V_1$ $V_1 = -1.5 \text{ V}$	¹ / ₂	or using any other correct points from graph Accuracy of calculation determined from ± ½ scale division reading from graph		
	(iii)	Output cannot be greater than (approx 85% of) the supply voltage OR Saturation <u>of the amplifier</u> has been reached	1	"Output voltage saturates" - no "It saturates" - no "Op amp saturates" - yes	1	

Samela A-		011 Physics – Higher	Neter	Incor	Outer	
Sample Al	iswer and	d Mark Allocation		Notes	Inner Margin	Margin
27. (a)	(i)	$n = \frac{\sin \theta_1}{\sin \theta_2}$	1/2		2	7
		$1.66 = \frac{\sin 40}{\sin \theta}$	1/2			
		$\theta = 22 \cdot 8^{\circ}$	1	Degrees symbol missing – ½ off		
	(ii)	(A) $\sin \theta_{\rm C} = 1/n$	1/2		2	
		= 1/1.66	1⁄2			
		$\theta_{\rm C}$ = 37.0°	1	Degrees symbol missing – ½ off		
		(B) 74°	1	or consistent with 27(a)(ii)(A) Degrees symbol missing – ½ off	1+	

2011 Physics – Hig				
Sample Answer and Mark Allocation	1	Notes	Inner Margin	Outer Margin
 (b) No OR "it is totally inter <i>n</i> depends on freque OR <i>n</i>_{blue} > <i>n</i>_{red} OR blue refracts more the (critical angle) blue < (critical angle) blue < (critical angle of incidence has angle of incidence of blue is greater than the critical angle of incidence of blue is greater than the critical angle of incidence of blue is greater than the critical angle of incidence of blue is greater than the critical angle of incidence of blue is greater than the critical angle of incidence of blue is greater than the critical angle of incidence of blue is greater than the critical angle of incidence of blue is greater than the critical angle of incidence of blue is greater than the critical angle of incidence is greater than the criti	$\left.\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	progressing Must be totally internally reflected, not just internally reflected	2+	

2011 Physics – Higher							
Samp	ole Ans	wer and	d Mark Allocation		Notes	Inner Margin	Outer Margin
28.	(a)	OR Energ OR	travels as waves y in light is carried as a wave is a wave	1	"Light carries waves" - NO	1	5
	(b)	(i)	$d\sin\theta = n\lambda$ $5 \times 10^{-6} \times \sin 11 = 2 \times \lambda$ $\lambda = 480 \text{ nm}$	1/2 1/2 1	If use 22° then only ½ for formula Must be 11° and n = 2	2	
		(ii)	Spacing of maxima increases λ in liquid increases (as <i>n</i> decreases) $\sin\theta = n\lambda/d$ θ increases	1/2 1/2 1/2 1/2	Look for first statement before progressing No justification – zero Wrong Physics in justification gets zero, eg any mention of the 'n' in this formula being the refractive index	2+	

Sample Ans	2011 Physics – Higher wer and Mark Allocation	Notes	Inner Margin	Outer Margin
29. (a)	(i) $f = \frac{c}{\lambda}$ 1/2 $= \frac{3 \cdot 00 \times 10^8}{525 \times 10^{-9}}$ 1/2 $= 5 \cdot 71 \times 10^{14} \text{ Hz}$ E = hf 1/2 $= 6 \cdot 63 \times 10^{-34} \times 5 \cdot 71 \times 10^{14}$ 1/2 $= 3 \cdot 79 \times 10^{-19} \text{ J}$	Last line needed – if not ½ off No or wrong unit ½ off	2•	6
	(ii) $\begin{bmatrix} E_k = hf - hf_0 \\ = 3.79 \times 10^{-19} - 2.24 \times 10^{-19} \end{bmatrix}$ = $1.55 \times 10^{-19} J$ 1	Must use 3.79×10^{-19} A negative answer gets zero	1	
(b)	(i) <u>Photons</u> with frequency below f_o do not have enough <u>energy</u> to release electrons OR <u>Photons</u> with frequency below f_o have <u>energy</u> smaller than work function 1	"because f_0 is threshold frequency" – No Must be an answer in terms of photon energy	1	
	(ii) Work function $= hf_0$ (or $E = hf_0$) $\frac{1}{2}$ $2 \cdot 24 \times 10^{-19} = (6 \cdot 63 \times 10^{-34}) \times f_0 \frac{1}{2}$ $f_0 = 3 \cdot 38 \times 10^{14} \text{ Hz}$ 1		2•	

2011 Physics – Higher Sample Answer and Mark Allocation			011 Physics – Higher	Notes	Innor	Outor	
			u maik Anocauon		inotes	Inner Margin	Outer Margir
30.	(a)	(i)	(Nuclear) Fusion	1	"Fussion" gets 0 marks	1	8
		(ii)	Total mass before			3•	
			$= 3.342 \times 10^{-27} + 5.005 \times 10^{-27}$				
			= 8.347 × 10 ⁻²⁷ (kg)	$\frac{1}{2}$			
			Total mass after		If one mass is rounded, max 1 If both rounded, max $\frac{1}{2}$ (formula)		
			$= 6.642 \times 10^{-27} + 1.675 \times 10^{-27}$		11 both founded, max /2 (formula)		
			= 8.317×10^{-27} (kg)	1/2			
			Loss in mass = 0.030×10^{-27} (kg)				
			Energy released = mc^2	1/2			
			$= 0.030 \times 10^{-27} \times (3.00 \times 10^8)^2$	1/2			
			$= 2.7 \times 10^{-12} \mathrm{J}$	1			
	(b)	(i)	Energy absorbed	1/2	If subtraction results in a negative	3+	
			$= -1.360 \times 10^{-19} - (-5.424 \times 10^{-19})$		energy – only formulae marks		
			$= 4.064 \times 10^{-19} (J)$				
			E = hf	1/2			
			$4.064 \times 10^{-19} = 6.63 \times 10^{-34} \times f$	1/2			
			$f = 6.13 \times 10^{14} \text{ (Hz)}$				
			$\lambda = \frac{c}{f}$	1/2			
			$= \frac{3 \cdot 00 \times 10^8}{6 \cdot 13 \times 10^{14}}$	1/2			
			= 489 nm	1/2			
		(ii)	"Blue" OR "blue-green" NOT "green"		<i>or</i> consistent with (b)(i) as long as in the visible spectrum	1•	

[END OF MARKING INSTRUCTIONS]