2011 Physics

Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2011
The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations Team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations Team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Scottish Qualifications Authority

Marking Instructions - Higher Physics

1. General Marking Instructions

SQA published Physics General Marking Instructions in July 1999. Please refer to this publication when interpreting the detailed Marking Instructions.

2. Recording of marks

The following additional advice was given to markers regarding the recording of marks on candidate scripts.
(a) The total mark awarded for each question should be recorded in the outer margin. The inner margin should be used to record the mark for each part of a question as indicated in the detailed Marking Instructions.
(b) The fine divisions of marks shown in the detailed Marking Instructions may be recorded within the body of the script beside the candidate's response. Where such marks are shown they must total to the mark in the inner margin.
(c) Numbers recorded on candidate scripts should always be the marks being awarded. Negative marks or marks to be subtracted should not be recorded on scripts.
(d) The number out of which a mark is scored should never be recorded as a denominator. ($1 / 2$ mark will always mean one half mark and never 1 out of 2)
(e) Where square ruled paper is enclosed inside answer books it should be clearly indicated that this item has been considered by the marker. The mark awarded should be transferred to the script booklet inner margin and marked G.
(f) The mark awarded for each question should be transferred to the grid on the back of the script. When the marker has completed marking the candidate's response to all questions, the marks for individual questions are added to give the total script mark.
(g) The total mark awarded for an individual question may include an odd half mark $-1 / 2$. If there is an odd half mark in the total script mark, this is rounded up to the next whole number when transferred to the box on the front of the script.

3. Other Marking Symbols which may be used

TICK	-	Correct point as detailed in scheme, includes data entry Any part of answer which is wrong. (For a block of
SCORE THROUGH	-	wrong answers indicate zero marks.)
INVERTED VEE	-	A point omitted which has led to a loss of marks.
Under an answer worth marks which is wrong only		
WAVY LINE	-	because a wrong answer has been carried forward from
"G"	a previous part.	
Reference to a graph on separate paper. You MUST show a mark on the graph paper and the SAME mark on the script.		

4. Marking Symbols which may NOT be used.

"WP"	-	Marks not awarded because an apparently correct answer was due to the use of "wrong physics".
"ARITH"	-	Candidate has made an arithmetic mistake.
"SIG FIGS" or "SF"	Candidate has made a mistake in the number of significant figures for a final answer.	

Physics - Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

	Answers	Mark +comment	Issue
1.	$V=I R$	(1/2)	Ideal Answer
	$7 \cdot 5=1 \cdot 5 R$	(1/2)	
	$R=5 \cdot 0 \Omega$	(1)	
2.	5.0Ω	(2) Correct Answer	GMI 1
3.	$5 \cdot 0$	(112) Unit missing	GMI 2(a)
4.	$4 \cdot 0 \Omega$	(0) No evidence/Wrong Answer	GMI 1
5.	Ω	(0) No final answer	GMI 1
6.	$R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0 \Omega$	(11/2) Arithmetic error	GMI 7
7.	$R=\frac{V}{I}=4 \cdot 0 \Omega$	(1/2) Formula only	GMI 4 and 1
8.	$R=\frac{V}{I}=$	(1/2) Formula only	GMI 4 and 1
9.	$R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=$ \qquad	(1) Formula + subs/No final answer	GMI 4 and 1
10.	$R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0$	(1) Formula + substitution	GMI 2(a) and 7
11.	$R=\frac{V}{I}=\frac{1 \cdot 5}{7 \cdot 5}=5 \cdot 0 \Omega$	(1⁄2) Formula but wrong substitution	GMI 5
12.	$R=\frac{V}{I}=\frac{75}{1.5}=5 \cdot 0 \Omega$	(1⁄2) Formula but wrong substitution	GMI 5
13.	$R=\frac{I}{V}=\frac{7 \cdot 5}{1.5}=5.0 \Omega$	(0) Wrong formula	GMI 5
14.	$V=I R \quad 7 \cdot 5=1.5 \times R \quad R=0 \cdot 2 \Omega$	(11/2) Arithmetic error	GMI 7
15.	$V=I R$		
	$R=\frac{I}{V}=\frac{1 \cdot 5}{7 \cdot 5}=0 \cdot 2 \Omega$	(1/2) Formula only	GMI 20

2011 Physics Higher

Marking scheme

Section A

1.

C

11.

B
2.

E
12.

A
3.

C
13.

D
4.

A
14. E
5.

C
15. D
6.

D
16. B
7.

A
17.

D
8.

E
18.

A
9.

C
19.

B
10.

B
20.

A

2011 Physics - Higher			
Sample Answer and Mark Allocation	Notes	Inner Margin	Outer Margin
23. (a) $\text { (i) } \quad \begin{aligned} m & =111.49-111.26 \\ & =0.23 \mathrm{~g} \\ \rho & =m / V \\ & =0.23 \times 10^{-3} / 2.0 \times 10^{-4} \\ & =\mathbf{1 . 1 5} \mathrm{kg} \mathrm{~m}^{-3} \end{aligned}$	If calculate two densities and subtract - no penalty $1 / 2$ off for each unit error	2	7
(ii) $\left.\begin{array}{l}\text { Not all the air will be evacuated } \\ \text { from jar } \\ \text { OR } \\ \text { It is impossible to get a (perfect) } \\ \text { vacuum } \\ \text { OR } \\ \text { Some air has leaked back in }\end{array}\right\} 1$		$1 \bullet$	
(b) (i) $\begin{array}{rlr} P_{1} V_{1} & =P_{2} V_{2} & 1 / 2 \\ 1.01 \times 10^{5} \times 200 & =P_{2} \times 250 \\ P_{2} & =\mathbf{8} \cdot \mathbf{1} \times \mathbf{1 0}^{4} \mathrm{~Pa} & 1 / 2 \end{array}$	Accept: $\begin{aligned} & P_{2}=8,8 \cdot 1,8 \cdot 08,8 \cdot 080 \times 10^{4} \mathrm{~Pa} \\ & \text { OR } \\ & 80000,81000,80800 \mathrm{~Pa} \end{aligned}$	2 -	
(ii) Particles collide with walls of jar Number of collisions on walls of jar is less frequent/less often Average force (on walls) decreases $1 / 2$ Pressure on walls of jar decreases $1 / 2$	Look for this description first it is needed before any other marks can be given For 'particles' accept 'molecules' Must be frequency, not just "less collisions" Any mention of E_{k} or speed of particles changing - max $1 / 2$ mark	2	

2011 Physics - Higher					
Sample Answer and Mark Allocation			Notes		Outer
25. (a)	$200 \mu \mathrm{C}$ of charge increases voltage across plates by 1 volt OR $200 \mu \mathrm{C}$ per volt OR One volt across the plates of the capacitor causes $200 \mu \mathrm{C}$ of charge to be stored			1	10
	(i) $\begin{aligned} I= & E / R \\ = & 12 / 1400 \\ = & \mathbf{0 . 0 0 8 6} \mathrm{A} \\ & (\mathbf{8 . 6} \mathbf{~ m A}) \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 \end{aligned}$		2	
	(ii) $E=1 / 2 C V^{2}$ initial stored energy $\begin{aligned} & =1 / 2 \times\left(200 \times 10^{-6}\right) \times 12^{2} \\ & =0.0144 \mathrm{~J} \end{aligned}$ final stored energy $\begin{aligned} & =1 / 2 \times\left(200 \times 10^{-6}\right) \times 4^{2} \\ & =0.0016 \mathrm{~J} \end{aligned}$ Difference $=0 \cdot 0144-0 \cdot 0016$ decrease in stored energy $=0.0128 \mathrm{~J}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ 1	If this number is rounded off (eg to $0 \cdot 014$) - deduct $1 / 2$ Deduct $1 / 2$ if missing or wrong unit	$3 \bullet$	

2011 Physics - Higher			
Sample Answer and Mark Allocation	Notes	Inner Margin	Outer Margin
(b) No OR "it is totally internally reflected"n depends on frequency OR $n_{\text {blue }}>n_{\text {red }}$ OR blue refracts more than red$\} \quad 1 / 2$ $\left.\begin{array}{l}\text { (critical angle }^{)_{\text {blue }}<(\text { critical angle })_{\text {red }}} \\ \text { OR } \\ \text { the angle of incidence has increased }\end{array}\right\}$ angle of incidence of blue light on face PQ is greater than the critical angle	Look for "No" first before progressing Must be totally internally reflected, not just internally reflected	$2+$	

2011 Physics - Higher						
Sample Answer and Mark Allocation				Notes	Inner	Outer
30. (a)	(i)	(Nuclear) Fusion	1	"Fussion" gets 0 marks	1	8
		Total mass before $\begin{aligned} & =3.342 \times 10^{-27}+5.0 \\ & =\quad 8.347 \times 10^{-27}(\mathrm{~kg}) \end{aligned}$ Total mass after $\begin{aligned} & =6.642 \times 10^{-27}+1.6 \\ & =8.317 \times 10^{-27}(\mathrm{~kg}) \end{aligned}$ Loss in mass $=0.030$ Energy released $=m$ $\begin{aligned} & =\quad 0.030 \times 10^{-27} \times(3 .(\\ & =\quad \mathbf{2 . 7} \times \mathbf{1 0}^{-12} \mathrm{~J} \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ 1	If one mass is rounded, max 1 If both rounded, $\max 1 / 2$ (formula)	$3 \cdot$	
(b)	(i)	Energy absorbed	$1 / 2$ $1 / 2$	If subtraction results in a negative energy - only formulae marks	3+	
	(ii)	"Blue" OR "blue-green NOT "green"		or consistent with (b)(i) as long as in the visible spectrum	$1 \bullet$	

