2012 Physics

Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2012
The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Scottish Qualifications Authority

Marking Instructions - Higher Physics

1. General Marking Instructions

SQA published Physics General Marking Instructions in July 1999. Please refer to this publication when interpreting the detailed Marking Instructions.

2. Recording of marks

The following additional advice was given to markers regarding the recording of marks on candidate scripts.
(a) The total mark awarded for each question should be recorded in the outer margin. The inner margin should be used to record the mark for each part of a question as indicated in the detailed Marking Instructions.
(b) The fine divisions of marks shown in the detailed Marking Instructions may be recorded within the body of the script beside the candidate's response. Where such marks are shown they must total to the mark in the inner margin.
(c) Numbers recorded on candidate scripts should always be the marks being awarded. Negative marks or marks to be subtracted should not be recorded on scripts.
(d) The number out of which a mark is scored should never be recorded as a denominator. ($1 / 2$ mark will always mean one half mark and never 1 out of 2)
(e) Where square ruled paper is enclosed inside answer books it should be clearly indicated that this item has been considered by the marker. The mark awarded should be transferred to the script booklet inner margin and marked G.
(f) The mark awarded for each question should be transferred to the grid on the back of the script. When the marker has completed marking the candidate's response to all questions, the marks for individual questions are added to give the total script mark.
(g) The total mark awarded for an individual question may include an odd half mark $-1 / 2$. If there is an odd half mark in the total script mark, this is rounded up to the next whole number when transferred to the box on the front of the script.

3. Other Marking Symbols which may be used

TICK	-	Correct point as detailed in scheme, includes data entry
SCORE THROUGH	-	Any part of answer which is wrong. (For a block of wrong answers indicate zero marks.)
INVERTED VEE	-	A point omitted which has led to a loss of marks.
WAVY LINE	-	Under an answer worth marks which is wrong only because a wrong answer has been carried forward from
"G"	a previous part.	
Reference to a graph on separate paper. You MUST show a mark on the graph paper and the SAME mark on the script.		

4. Marking Symbols which may NOT be used.

"WP"	$-\quad$Marks not awarded because an apparently correct answer was due to the use of "wrong physics".	
"ARITH"	-	Candidate has made an arithmetic mistake.
"SIG FIGS" or "SF"	Candidate has made a mistake in the number of significant figures for a final answer.	

Physics - Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

	Answers
1. \quad	$V=I R$
$7 \cdot 5=1 \cdot 5 R$	
	$R=5 \cdot 0 \Omega$

2. $5 \cdot 0 \Omega$
3. $5 \cdot 0$
4. $4 \cdot 0 \Omega$
5. \qquad Ω
6. $R=\frac{V}{I}=\frac{7.5}{1.5}=4 \cdot 0 \Omega$
7. $R=\frac{V}{I}=4 \cdot 0 \Omega$
8. $R=\frac{V}{I}=$ \qquad Ω
9. $R=\frac{V}{I}=\frac{7.5}{1.5}=\square \Omega$
10. $R=\frac{V}{I}=\frac{7.5}{1.5}=4 \cdot 0$
(1) Formula + substitution
11. $R=\frac{V}{I}=\frac{1.5}{7.5}=5.0 \Omega$
(1⁄2) Formula but wrong substitution
12. $R=\frac{V}{I}=\frac{75}{1.5}=5 \cdot 0 \Omega$
(1/2) Formula but wrong substitution
13. $R=\frac{I}{V}=\frac{7.5}{1.5}=5.0 \Omega$
(0) Wrong formula
14. $V=I R \quad 7 \cdot 5=1 \cdot 5 \times R \quad R=0 \cdot 2 \Omega$
(11/2) Arithmetic error
15. $V=I R$
$R=\frac{I}{V}=\frac{1 \cdot 5}{7 \cdot 5}=0.2 \Omega$
(1⁄2) Formula only
GMI 20

2012 Physics Higher

Marking scheme

Section A

1. E 11. B
2. A $12 . \quad$ E

3
4.

C
14. E
5.

C
15. D
6.

D
16.

A
7. $\mathrm{B} \quad 17 . \quad \mathrm{A}$

8
D
$18 . \quad$ D
9.

B
19.

B
10.

C
20.

B

2012 Physics - Higher		Inner Margin	
Sample Answer and Mark Allocation			Outer Margin
21. (a) (i) Scale: 1 cm equiv to 1 km (for example) By scale diagram (1/2) for correct diagram to scale, length and angle ($1 / 2$) for adding correctly showing resultant direction (arrow needed) $\begin{array}{r} \text { displacement }=15 \cdot 7 \pm 0.3 \mathrm{~km} \\ \text { bearing }=154 \pm 2\left(26^{\circ} \mathrm{E} \text { of S}\right) \tag{1/2}\\ \left(64^{\circ} \mathrm{S} \text { of } \mathrm{W}\right) \end{array}$ (tolerances are for scale diagrams only)	If East \& West 'swapped', zero. Alternative method: $\begin{align*} a^{2} & =b^{2}+c^{2}-2 b c \cos A \\ & =12^{2}+15^{2}-2 \times 12 \times 15 \cos 70^{\circ}(1 / 2) \\ & =15 \cdot 7 \mathrm{~km}(15 \cdot 68) \tag{1/2} \end{align*}$ $\begin{align*} & \frac{a}{\sin A}=\frac{b}{\sin B} \\ & \frac{15 \cdot 7}{\sin 70^{\circ}}=\frac{15}{\sin \theta} \tag{1/2}\\ & \left(\theta=64^{\circ}\right) \text { bearing }=154 \end{align*}$	2	8
$\text { (ii) } \begin{aligned} v & =\frac{s}{t} \\ & =\frac{15 \cdot 7}{1 \cdot 25} \quad \text { (112) } \\ & =12 \cdot 6 \mathrm{~km} \mathrm{~h}^{-1}(1) \text { at } 154(1 / 2) \end{aligned}$	or consistent with displacement from (a) (i) Deduct ($1 / 2$) for wrong/missing unit Alternative: $15.7 \mathrm{~km} \text { gives } 3.49 \mathrm{~m} \mathrm{~s}^{-1}$	2	
(b) (i) $15.7 \mathrm{~km}(1 / 2)$ on a bearing of $154 \quad$ (1/2)	or consistent with (a) (i) Must be numbers, not "same as (a) (i)"	$1 \bullet$	
(ii) $\begin{align*} & t=\frac{d}{v} \\ &=\frac{33}{22} \tag{1/2}\\ &=1 \cdot 5 \text { (hours) } \tag{1/2}\\ & v=\frac{s}{t} \\ &=\frac{15 \cdot 7}{1 \cdot 5} \tag{1/2}\\ &=10 \cdot 5 \mathrm{~km} \mathrm{~h}^{-1}(1) \text { on a bearing } \\ & \text { of } 154 \end{align*}$	Alternative: $2.9 \mathrm{~m} \mathrm{~s}^{-1}$ on a bearing of 154	$3+$	

2012 Physics - Higher				
Sample Answer and Mark Allocation		Notes	Inner Margin	Outer Margin
$\text { 23. (a) (i) } \begin{aligned} E_{w} & =Q V \\ & =1.6 \times 10^{-19} \times 1220 \\ & =1.95 \times 10^{-16}(\mathrm{~J}) \end{aligned}$	(1/2) (1/2)	Must start with equation as this is a 'show' question. Deduct $1 / 2$ if final line not shown	1	7
(ii) $\mathrm{QV} /$ work done $=1 / 2 m v^{2}$ $\begin{aligned} 1.95 \times 10^{-16} & =1 / 2 \times 2.18 \times 10^{-25} \times v^{2} \\ v & =4.23 \times 10^{4} \mathrm{~ms}^{-1} \end{aligned}$	(1/2) (1/2) (1)	If wrong substitution here, stop marking	$2 \bullet$	
(b) $\begin{aligned} F t & =\Delta m v \\ 0.07 \times 60 & =750 \times \Delta v \\ \Delta v & =5.6 \times 10^{-3} \mathrm{~ms}^{-1} \end{aligned}$	$(1 / 2)$ (1/2) (1)		2	
(c) Force from Xenon engine greater Change in momentum of the Xenon ions would be greater (than Krypton ions) Impulse from Xenon ions would be greater	(1) (1/2) (1/2)	Must have force from Xenon engine greater or zero marks Must name the engine, ie not "the first engine". Alternative: force from Xenon ion engine greater (1) E_{k} of xenon ions greater (than krypton ions) (1/2) more work done $\left(E_{w}=F d\right)(1 / 2)$	$2+$	

2012 Physics - Higher						
Sample Answer and Mark Allocation				Notes	Inner Margin	Outer Margin
26. (c)		Initial current only depends values of the e.m.f. of the su and resistor R which do not change.	(1)	Both e.m.f. and resistance are required If miss out "which do not change" zero marks	$1 \bullet$	
		Smaller Capacitor takes less time to discharge	(1) (1)	Must attempt an explanation Correct conclusion 1 mark, so long as not followed by wrong physics. "Graph falls faster than before" not precise enough for second mark. If answer only says it is a "smaller capacitor" - this gets zero (as this means the physical size of the capacitor)	$2+$	

2012 Physics - Higher					
Sample Answer and Mark Allocation			Notes	Inner Margin	Outer Margin
29. (a)	$\begin{aligned} d \sin \theta & =n \lambda \\ d \times \sin 35.3 & =3 \times 633 \times 10^{-9} \\ d & =\mathbf{3 . 2 9} \times \mathbf{1 0}^{-6} \mathbf{m} \end{aligned}$	(1/2) (1/2) (1)	$\begin{array}{ll} \text { Accept: } & 3 \cdot 2863 \times 10^{-6} \\ & 3 \cdot 286 \times 10^{-6} \\ & 3 \cdot 29 \times 10^{-6} \\ & 3 \cdot 3 \times 10^{-6} \end{array}$	2	5
(b)	$\begin{aligned} \begin{array}{l} \text { Number of lines } \\ \text { per metre } \end{array} & =\frac{1}{3.29 \times 10^{-6}} \\ & =\mathbf{3 . 0 4} \times \mathbf{1 0}^{5} \end{aligned}$	$(1 / 2)$ $(1 / 2)$	$\begin{array}{ll} \text { Accept: } & 3.0395 \times 10^{5} \\ & 3.040 \times 10^{5} \\ & 3.04 \times 10^{5} \\ & 3.0 \times 10^{5} \\ \text { but } & 3 \times 10^{5}-(1 / 2) \mathrm{off} \end{array}$	$1 \bullet$	
(c)	$\begin{aligned} \text { Difference } & =\left(\sqrt{(3.04-3.00) \times 10^{5}}\right. \\ & =0.04 \times 10^{5} \\ \begin{aligned} \text { Percentage } \\ \text { difference } \end{aligned} & =\frac{0.04 \times 10^{5}}{3.00 \times 10^{5}} \times 100 \\ & =1.33 \% \end{aligned}$ Technician's value does agree	(1/2) (1/2) (1/2) (1/2)	The substitution here must be to at least 3 significant figures. If answer to (b) is wrong, but answer to (c) is consistent - full marks Must show a calculation for the justification, otherwise zero marks. Could answer question by calculating 2% of 3.00×10^{5} and comparing Arithmetic mistake - ($1 / 2$) off	2+	

2012 Physics - Higher					
Sample Answer and Mark Allocation			Notes	Inner	Oute
30. (a)	Decreases	(1)		1	6
(b) (i)	Photoconductive mode	(1)		1	
(ii)	Current increases more photons of light arrive at the junction more free charge carriers produced per second (could be linked to either photons or charge carriers)	(1/2) (1/2) (1/2) (1/2)	Any wrong physics in the explanation $\rightarrow \quad \max (1 / 2)$ (for 'current increases')	2	
(c)	$\begin{aligned} I_{1} d_{1}^{2} & =I_{2} d_{2}^{2} \\ 3.0 \times 10^{-6} \times 1 \cdot 2^{2} & =I_{2} \times 0.8^{2} \\ I_{2} & =6.75 \mu \mathrm{~A} \end{aligned}$	(1/2) (1/2) (1)	Irradiance is directly proportional to current so ok to use this formula. Must show squaring in second line, otherwise stop marking. $6 \cdot 8 \mu \mathrm{~A}$ is ok. $6.7 \mu \mathrm{~A}$ loses (1/2) (wrong rounding)	$2 \bullet$	

[END OF MARKING INSTRUCTIONS]

