

Momentum (formula)
And impulse

Newton's Third Law

- For every action there is an equal but opposite reaction!
- $F_{1}=-F_{2}$
- We know $F=m a$ therefore
${ }^{\circ} m_{1} a_{1}=-m_{2} a_{2}$
- But $a=\frac{v-u}{t}$ so substituting
- $m_{1} \frac{v_{1}-u_{1}}{t_{1}}=-m_{2} \frac{v_{2}-u_{2}}{t_{2}}$
${ }^{\circ}$ Now the time of contact is the same so t cancels giving
${ }^{\circ} m_{1}\left(v_{1}-u_{1}\right)=-m_{2}\left(v_{2}-u_{2}\right)$
$m_{1}\left(v_{1}-u_{1}\right)=-m_{2}\left(v_{2}-u_{2}\right)$
- Expand the brackets
${ }^{\circ} m_{1} v_{1}-m_{1} u_{1}=-m_{2} v_{2}+m_{2} u_{2}$
Rearrange
${ }^{\circ} m_{1} v_{1}-m_{1} u_{1}=m_{2} u_{2}-m_{2} v_{2}$
${ }^{\circ}$ Now lets look what this means and rearrange it
$m_{1} v_{1}-m_{1} u_{1}=m_{2} u_{2}-m_{2} v_{2}$
${ }^{\circ} m_{1} v_{1}-m_{1} u_{1}$ is the change in momentum of object 1
${ }^{\circ} m_{2} u_{2}-m_{2} v_{2}$ is the change in momentum of object 2
- So this says
- The change in momentum of object 1 is equal to the change in momentum of object 2. (notice that if object 1 gains momentum, object 2 loses momentum)
- Isn't this another way of saying "In the absence of external forces momentum is conserved"
$m_{1} v_{1}-m_{1} u_{1}=m_{2} u_{2}-m_{2} v_{2}$
${ }^{\circ} \Delta$ momentum or $\Delta \mathrm{p}$ is called IMPULSE
$\circ F_{1}=m_{1} \frac{v_{1}-u_{1}}{t}=F_{2}=-m_{2} \frac{v_{2}-u_{2}}{t}$
${ }^{\circ}$ Impulse must also equal
${ }^{\circ} F_{1} t=m_{1}\left(v_{1}-u_{1}\right)$ so also has units Ns

Force time graphs

- Impulse or change in momentum must also be equal to the AREA under an F-t graph

Force time graphs
For force-time graphs: area under graph
= Ft
$=\Delta \mathrm{p}$ (change in momentum)
= impulse Impulse $=$ area under the graph
$=1 / 2 \times 12 \times 5=30 \mathrm{Ns}$.

Impuise = areaunder the graph $=(1 \times 5)+(1 \times 10)+(1 \times 15)+(1 \times 10)+(1 \times 3)$
$=43 \mathrm{Ns}$

$$
\text { F } \begin{aligned}
& \text { Impulse }=\text { areaunder the graph } \\
&=1 / 2 b h+b h+1 / 2 b h+1 / 2 b h \\
&=(1 / 2 \times 1 \times 3)+(1 \times 3)+(12 \times 1 \times 5)+(1 / 2 \times 3 \times 8) \\
&=19 \mathrm{Ns} \\
& 8 \\
& \text { Impulse }=\text { areaunder thegraph } \\
&=\mathrm{Ft}+\mathrm{Ft}+\mathrm{Ft} \\
&=(1 / 2 \times 1)+(51 / 2 \times 1)+(4 \times 3) \\
& 0=19 \mathrm{Ns}
\end{aligned}
$$

