

s is displacement (m) u is initial velocity (ms ⁻¹) v is final velocity (ms ⁻¹) a is acceleration (ms ⁻²) t is time (s)	V _h = V cos θ V _v = V sin θ
NI - If the forces on an object are balanced the objects velocity remains constant. NII - If there is an unbalanced force then the object accelerates. NIII - For every action force there is an equal size but opposite direction force.	Gradient calculates the acceleration. Area calculates the displacement.
Component of weight down slope = mg sin θ	Energy is not created or destroyed it changes from one form to another
In an elastic collision both momentum and energy are conserved. In an inelastic collision only momentum is conserved	In the absence of external forces the total momentum before a collision equals the total momentum after a collision. m ₁ u ₁ + m ₂ u ₂ = m ₁ v ₁ + m ₂ v ₂
Ft is the impulse mv - mu is the change in momentum	Average force x time or Area under a force time graph or Change of momentum

11	Recognise the formulae for work done, kinetic energy, gravitational potential energy and power	Describe why projectiles follow a curved path 12
	Describe & explain the motion of a satellite.	Newton's law of gravitation.
13		14
15	State the first basic postulate of Special Relativity.	State the second basic postulate of Special Relativity. 16
17	State the formula for Time Dilation	Give one example showing Time Dilation 18
	What (simply put) is Time Dilation?	Give a second example showing Time Dilation 20

They have a constant horizontal velocity (ignoring air resistance) and a constant vertical acceleration due to the force of gravity (weight).

The speed of light (in a vacuum) is the same for all observers.

Fast moving cosmic muons reach the Earth's surface when, without Time Dilation, they would decay in the upper atmosphere.

Clocks on satellites e.g. GPS, run slow. Systems must take this into account if they wish to calculate an accurate position. E_w = Fd E_k = ½ mv² E_p = mgh P = E/t

Satellites are in free fall around a planet or star. They have a constant horizontal velocity and a constant vertical acceleration.

Two observers moving at constant speed observe the SAME laws of Physics.

 $t' = \frac{\iota}{\left|1 - \frac{v^2}{a^2}\right|}$

Moving clocks appear to run slow (to an outside observer).

	State the formula for Length Contraction	What (simply put) is Length Contraction?
21		22
23	What is the Lorentz Factor?	Which Greek letter represents the Lorentz Factor? 24
	What is the Time Dilation formula in terms of the Lorentz Factor?	What is Proper Time, t?
25		26
	What is Dilated Time, t' ?	What is Proper Length, I ?
27		28
	What is Dilated Length, l' ?	What is the Doppler Effect?
29		30

Moving objects appear shortened (to an outside observer).

$$l' = l \sqrt{1 - \frac{v^2}{c^2}}$$

Gamma

γ

The time measured in a frame in which the clock is at rest relative to the event e.g. the clock actually on the spaceship. Time is always shorter in this frame.

The length measured in a frame in which the measurer is at rest relative to the event e.g. the length actually measured on the spaceship. Length is always longer in this frame. Observed change in frequency of a wave when the source is moving relative to the observer.

 $1-\frac{v^2}{c^2}$

t' = t γ

The time measured in a frame where you are observing the event from the outside e.g. on the planet watching the spaceship fly past. Time passes faster here. The moving clock seems to be running slow. The length measured in a frame where you are observing the event from the outside e.g. on the planet watching the spaceship fly past. The moving object length is shorter.

Formula for the Doppler Effect for sound 31	Doppler Effect - if the source is approaching, do you add or subtract the source velocity in 32 the divisor? Why?
What is a Z value?	How do you calculate a Z value? Give two methods 34
What is Redshift? 35	What is Blueshift? 36
Formula for Hubble's Law	How is the age of the universe estimated from Hubble's Law? 38
What do measurements of galaxy velocities and their distance from us tell us about the universe?	How is the mass of a galaxy estimated? 40

Subtract the source velocity. It makes the perceived frequency <u>higher.</u>	$f_{0} = f_{s} \left(\frac{v}{v \pm vs} \right)$ $V = \text{Speed of sound}$ $Vs = \text{Speed of source}$ $f_{0} = \text{Observed frequency}$ $f_{s} = \text{Source frequency}$
$Z = \frac{\Delta \lambda}{\lambda_{rest}} = \frac{v}{c}$	A measure of the red- shift of an object, given as a fraction of the speed of light.
Waves coming from a source moving towards an observer are measured to have a higher frequency (bluer) than the source	Waves coming from a source moving away from an observer are measured to have a lower frequency (redder) than the source
$\frac{d}{v} = \frac{1}{H_0} = \text{age of the}$ universe	V = H ₀ d V = Recessional velocity of a galaxy H _o = Hubble's constant d = distance to the galaxy
By measuring the orbital speed of stars within the galaxy	The universe is expanding

The rate of expansion	Stars in galaxies are
of the universe is	orbitting faster than
increasing.	predicted.
Cosmic Microwave Background Radiation . The abundance of hydrogen and helium. The darkness of the sky (Olber's paradox). Large number of galaxies showing redshift.	Peak wavelength is shorter for hotter objects. Hot objects emit more radiation per unit surface area per unit time.