How do you calculate the horizontal and vertical components of a vector?

1

What do we get if we calculate the gradient or area of a velocity time graph?

3

What do we mean by
> the phrase Conservation of Energy?

Write down the quantities and units
for the equations

$$
v=u+a t
$$

$$
s=u t+1 / 2 a t^{2}
$$

$$
v^{2}=u^{2}+2 a s
$$

State Newton's First, Second and Third Laws of Motion

How do you work out the component of weight acting down a slope?

What is meant by the terms elastic and inelastic collisions?

Explain the equation
$\mathrm{Ft}=\mathrm{mv}-\mathrm{mu}$
s is displacement (m) I
u is initial velocity $\left(\mathrm{ms}^{-1}\right)$ I
v is final velocity $\left(\mathrm{ms}^{-1}\right) \quad$ I
a is acceleration $\left(\mathrm{ms}^{-2}\right)$ I
\dagger is time (s)
$\mathrm{V}_{\mathrm{h}}=\mathrm{V} \cos \theta$
$\mathrm{V}_{\mathrm{v}}=\mathrm{V} \sin \theta$

NI - If the forces on an object are balanced the objects velocity remains constant.
NII - If there is an unbalanced force then the object accelerates.
NIII - For every action force there is an equal size but opposite direction force.

Component of weight down slope
$=m g \sin \theta$

Gradient calculates the acceleration. Area calculates the displacement.

Energy is not created or destroyed it changes from one form to another

In the absence of external forces the total momentum before a collision equals the total momentum after a collision.
$m_{1} u_{1}+m_{2} u_{2}=m_{1} v_{1}+m_{2} v_{2}$

Average force \times time
or
Area under a force
time graph
or
Change of momentum

They have a constant

$$
E_{w}=F d
$$

horizontal velocity (ignoring air resistance) and a constant vertical acceleration due to the force of gravity (weight).

$$
E_{k}=\frac{1}{2} m v^{2}
$$

$$
E_{p}=m g h
$$

$$
P=E / \dagger
$$

Satellites are in free fall around a planet or star. They have a constant horizontal velocity and a constant vertical acceleration.

Two observers moving at constant speed observe the SAME laws of Physics.

The speed of light (in a vacuum) is the same for all observers.

Moving objects appear
shortened (to an
outside observer).

$$
l^{\prime}=l \sqrt{1-\frac{v^{2}}{c^{2}}}
$$

Gamma

The time measured in a frame in which the clock is at rest relative to the event e.g. the clock actually on the spaceship. Time is always shorter in this frame.

The length measured in a frame in which the measurer is at rest relative to the event e.g. the length actually measured on the spaceship. Length is always longer in this frame.

$$
\dagger^{\prime}=\dagger \gamma
$$

Formula for the Doppler Effect for sound

31

Doppler Effect - if the source is approaching, do you add or subtract the source velocity in the divisor? Why?

What is a Z value?
How do you calculate a Z value? Give two methods

What is Blueshift?

35

Formula for Hubble's Law tell us about the

How is the mass of a galaxy estimated?

Subtract the source velocity. It makes the perceived frequency - - - higher. - - - -

$$
Z=\frac{\Delta \lambda}{\lambda_{r e s t}}=\frac{v}{c}
$$

Waves coming from a source moving towards an observer are measured to have a higher frequency (bluer) than the source

$$
\frac{d}{v}=\frac{1}{H_{0}}=\underset{\substack{\text { age of the } \\ \text { universe }}}{ }
$$

$f_{0}=f_{s}\left(\frac{v}{v \pm v s}\right)$
$V=$ Speed of sound Vs = Speed of source $f_{0}=$ Observed frequency $f_{s}=$ Source frequency

A measure of the redshift of an object, given as a fraction of the speed of light.

Waves coming from a source moving away from an observer are measured to have a lower frequency (redder) than the source

$V=H_{0} d$

$V=$ Recessional velocity of a galaxy $H_{0}=$ Hubble's constant d = distance to the galaxy

The universe is expanding
Give evidence for the
existence of dark
matter

The rate of expansion of the universe is increasing.

Stars in galaxies are orbitting faster than predicted.

Peak wavelength is shorter for hotter objects.
Hot objects emit more radiation per unit surface area per unit time.

Cosmic $\overline{M i c r o w a v e ~ B a c k g r o u n d ~}$ Radiation.
The abundance of hydrogen and helium.
The darkness of the sky (Olber's paradox).
Large number of galaxies showing redshift.

