Define Electric field	Define Voltage (potential difference) 2
Right hand rule for finding the direction of the force on charged particles moving in a magnetic field.	Orders of Magnitude
Beta Decay	Hadron
Baryons	Mesons 8
Fermions	Bosons 10

I

V = W / Q	A region where a
Work done per	charged particle
coulomb of charge.	experiences a force.
1x10 ³ is 3 orders of magnitude smaller than 2.4x10 ⁶	First finger = Direction of magnetic field (N to S) Middle finger = direction of electron current. Thumb = direction of the force on the particle.
Composite particle	$\begin{array}{c} & & & p \\ & & & e^{-} \\ n & & & \bar{\nu}_{e} \end{array}$
consisting of quarks.	This was the first evidence for the neutrino
Hadrons consisting of quark – anti-quark pairs	Hadrons consisting of 3 quarks
These are the force mediating	These are the matter particles.
particles. Photons	Consisting of quarks (Six types:
(electromagnetic force), W	up, down, charm, strange, top,
and Z bosons (weak nuclear	bottom) and leptons (electron,
force), gluons (strong nuclear	muon and tau, together with
force) & Higgs boson.	their neutrinos).

	E = mc ²	Nuclear fusion reactors
11		
13	Irradiance	Point source of light 14
15	Photoelectric effect	Threshold frequency
17	Work function	E _k = hf - hf _o 18
19	Interference	Coherent waves 20

Require charged particles at very high temperature (plasma) which have to be contained by magnetic fields.	In nuclear fission and fusion reactions mass is lost. This lost mass is converted into energy
A source of light coming from a single point and giving off light in all directions e.g. small light bulb or a distant star. I = k/d ² for a point source. $I_1 d_1^2 = I_2 d_2^2$	Power per unit area I = P / A
Minimum frequency of	This is evidence for the particle model of light. Photons of a sufficient energy can eject electrons from the surface of a material (photoemission).
Electron kinetic energy = energy of photon - work function	Minimum energy of photon required for photoemission.
Waves that have the same frequency and constant phase difference	This is evidence for the wave model of light

	Constructive Interference	Destructive interference
21		22
23	Diffraction grating formula mλ = d sin θ	Bohr model of the atom - Ground state 24
25	Bohr model of the atom – Ionisation level	Emission spectrum 26
27	Absorption spectrum	Fraunhofer lines 28
29	Absolute Refractive Index	Snell's Law 30

Occurs when 2 waves with a phase difference of an integer multiple of ½ wavelengths meet and combine. Path difference = (m+1/2)λ	Occurs when 2 waves with a phase difference of an integer multiple of wavelengths meet and combine. Path difference = m λ
The lowest energy level an electron can be in. This corresponds to the level closest to the nucleus.	m = order of maximum λ = wavelength of source d = distance between slits Θ = angle from the central (zero order) maximum
Range of frequencies emitted when electrons fall to lower energy levels. Each element has a unique emission spectrum.	The energy level an electron is in when it has zero potential energy and can escape from the atom.
Absorption lines in the spectrum of sunlight. These give evidence for the composition of the sun's outer atmosphere	Range of frequencies absorbed when electrons rise to higher energy levels. Each element has a unique absorption spectrum.
$\frac{\sin \theta_1}{\sin \theta_2} = \frac{\lambda_1}{\lambda_2} = \frac{v_1}{v_2}$ $n = \frac{\sin \theta_1}{\sin \theta_2}$	The ratio of the speed of light in a vacuum to the speed of light in a medium.

	Refractive index and frequency relationship	Critical Angle
31		32 — — — — — — — — — — — — — —
33	Total internal reflection	Relationship between refractive index and critical angle 34
35	Electric field patterns for single point charges.	Electric field patterns for pairs of point charges. 36
37	Electric field pattern between two charged parallel plates.	38
39		40

