1	Define Electric field	I I I I I ${ }^{2}$	Define Voltage (potential difference)
3	Right hand rule for finding the direction of the force on charged particles moving in a magnetic field.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 14 \end{aligned}$	Orders of Magnitude
	Beta Decay		Hadron
7	Baryons	$\begin{aligned} & I \\ & I_{1} \\ & I^{2} \end{aligned}$	Mesons
9	Fermions	I I I I 10	Bosons

$$
\begin{gathered}
V=W / Q \\
\text { Work done per } \\
\text { coulomb of charge. }
\end{gathered}
$$

1×10^{3} is 3 orders of magnitude smaller than 2.4×10^{6}

A region where a charged particle experiences a force.

First finger $=$ Direction of magnetic field (N to S) Middle finger $=$ direction of electron current.
Thumb $=$ direction of the force on the particle.

This was the first
evidence for the neutrino

> Hadrons consisting of 3 quarks

These are the matter particles. Consisting of quarks (Six types: up, down, charm, strange, top, bottom) and leptons (electron, muon and tau, together with their neutrinos).

Waves that have the same frequency and constant phase difference

Require charged particles at very high temperature
(plasma) which have to be contained by magnetic fields.

A source of light coming from a single point and giving off light in all directions e.g. small light bulb or a distant star.
$I=k / d^{2}$ for a point source.
$\mathrm{I}_{1} \mathrm{~d}_{1}^{2}=\underline{I}_{2} \underline{d}_{2}^{2}$
Power per unit area

$$
I=P / A
$$

This is evidence for the particle model of light.
Photons of a sufficient energy can eject electrons from the surface of a material
(photoemission).

Minimum energy of photon required for photoemission.
In nuclear fission and fusion reactions mass is lost. This lost mass is converted into energy

Minimum frequency of a photon required for photoemission.

Electron kinetic energy = energy of photon - work function

This is evidence for the wave model of light

Occurs when 2 waves with a phase difference of an integer multiple of wavelengths meet and combine. Path difference $=m \lambda$
$m=$ order of maximum $\lambda=$ wavelength of source $d=$ distance between slits
$\theta=$ angle from the central
(zero order) maximum

> Occurs when 2 waves with a phase difference of an integer multiple of $\frac{1}{2}$ wavelengths meet and combine.
> Path difference $=(m+1 / 2) \lambda$

Range of frequencies emitted when electrons fall to lower energy levels. Each element has a unique emission spectrum.

Absorption lines in the
spectrum of sunlight.
These give evidence
for the composition of
Absorption lines in the
spectrum of sunlight.
These give evidence
for the composition of
Absorption lines in the
spectrum of sunlight.
These give evidence
for the composition of
Absorption lines in the
spectrum of sunlight.
These give evidence
for the composition of the sun's outer atmosphere $\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{\lambda_{1}}{\lambda_{2}}=\frac{v_{1}}{v_{2}}$ $n=\frac{\sin \theta_{1}}{\sin \theta_{2}}$

The lowest energy level an electron can be in. This corresponds to the level closest to the nucleus. $--\quad-$

The energy level an electron is in when it has zero potential energy and can escape from the atom.

Range of frequencies absorbed when electrons rise to higher energy levels. Each element has a unique absorption spectrum.

The ratio of the speed of light in a vacuum to the speed of light in a medium.

