|   | Equations (Also need Equations of motion from ODU 1) |                                                                                                                                                                                   |  |  |  |
|---|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1 | $F = \frac{GMm}{r^2}$                                | Force = Universal Constant of gravitation $\frac{mass\ object1 \times\ mass\ object2}{radius\ or\ distance\ between^2}$<br>Measure distance between centre and centre of planets! |  |  |  |
| 2 | $t' = \frac{t}{\sqrt{1 - \frac{v^2}{c^2}}}$          | $mesured time (larger) = \frac{proper time (smaller)}{\sqrt{1 - \frac{speed^2}{speed of \ light^2}}}$                                                                             |  |  |  |
| 3 | $l' = l \sqrt{1 - \frac{v^2}{c^2}}$                  | $mesured \ length \ (shorter) = properlength \ (longer) \sqrt{1 - \frac{speed^2}{speed \ of \ light^2}}$                                                                          |  |  |  |
| 4 | $f_o = f_s \left( \frac{v}{v \pm v_s} \right)$       | $observed\ frequency = frequency\ of\ the\ source\left(\frac{speed}{speed\ \pm\ speed\ of\ sound}\right)$                                                                         |  |  |  |
| 5 | $v = H_o d$                                          | $velocity = Hubble's comstant \times distance$                                                                                                                                    |  |  |  |
| 6 | $z = \frac{v}{c}$                                    | $redshift (no units) = \frac{speed}{speed of \ light}$                                                                                                                            |  |  |  |
| 7 | $z = \frac{\lambda_o - \lambda_r}{1}$                | $redshift (no units) = \frac{observed \ wavelength - emmitted \ wavlength}{redshift (no units)}$                                                                                  |  |  |  |
|   | $\lambda_r$                                          | emmited wavlength                                                                                                                                                                 |  |  |  |

| Key Number                                                           | Meaning                          | Key Number                            | Meaning           |
|----------------------------------------------------------------------|----------------------------------|---------------------------------------|-------------------|
| $6.67 \times 10^{-11} \mathrm{m}^3 \mathrm{kg}^{-1} \mathrm{s}^{-2}$ | Universal gravitational constant | 2.3×10 <sup>-18</sup> s <sup>-1</sup> | Hubble's Constant |

| Key Words       | Meaning                                                                                                                                            |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Projectile      | An object with a constant horizontal velocity and constant vertical acceleration                                                                   |
|                 | (provided air resistance is zero). It will follow a curved path. At Higher it may be                                                               |
|                 | launched at an angle.                                                                                                                              |
| Horizontal      | When a projectile is launched at an angle you must first use SOHCAHTOA to calculate                                                                |
| and Vertical    | the vertical and horizontal components of the initial velocity. Use components in                                                                  |
|                 | equations. If the final velocity is required, combine the 2 components.                                                                            |
| Gravitational   | Any object of mass will feel a force of attraction in a gravitational field. The force of                                                          |
| Field           | attraction can be calculated using Newton's Universal law of gravitation (1st Equation)                                                            |
| Satellites      | Satellites are objects which orbit a planet. They are in constant freefall towards the                                                             |
| Consider        | planet. Newton's Cannon is the thought experiment used to explain satellite motion.                                                                |
| Special         | When an object is travelling close to the speed of light, it will experience relativistic                                                          |
| Relativity Time | effects as noted by an observer. (time dilates, length contracts)  Time dilation is the increase in an observed time interval for an object moving |
| Dilatation      | relative to an observer, compared to that measured when they are in the stationary                                                                 |
| Dilatation      | frame of reference.                                                                                                                                |
| Length          | Length contraction is the shortening of the measured length of an object moving                                                                    |
| Contraction     | relative to the observer's frame.                                                                                                                  |
| Inertial frame  | An inertial frame of reference is one in which Newton's first law of motion holds, i.e                                                             |
| of Reference    | you are travelling at constant velocity or are at rest, relative to another object.                                                                |
| Doppler         | The Doppler Effect is the apparent change in frequency of a wave when the source                                                                   |
| effect          | and observer are moving relative to each other.                                                                                                    |
| Red Shift       | Redshift, z, of a galaxy is defined as the change in wavelength divided by the original                                                            |
| (definition 1)  | wavelength, and given the symbol z.                                                                                                                |
| Redshift        | For galaxies: Redshift is the ratio of the recessional velocity of the galaxy to the                                                               |
| (definition 2)  | velocity of light.                                                                                                                                 |
| Recessional     | The velocity at which galaxies moves away from its observer (normally on Earth)                                                                    |
| velocity        |                                                                                                                                                    |
| Hubble's Law    | Hubble's law states that a galaxies recessional velocity can be calculated by                                                                      |
|                 | multiplying the distance away from earth by Hubble's constant. This means that the                                                                 |
|                 | universe is constantly expanding in all directions.                                                                                                |
| Expanding       | Redshift and Hubble's law are proof for the expanding universe.                                                                                    |
| Universe        |                                                                                                                                                    |
| Dark Matter     | Evidence supporting the existence of dark matter comes from estimations of the mass                                                                |
|                 | of galaxies. Dark matter cannot yet be observed. Explain why some galaxy's planets                                                                 |



https://www.researchgate.net/figure/A-schematic-Hubble-plot-for-a-universe-with-a-constant-Hubble-parameter\_fig1\_258606466

ii John Sharkey Flashlearning

iii https://en.wikipedia.org/wiki/Black\_body

iv https://en.wikipedia.org/wiki/Black\_body

https://www.physicsclassroom.com/class/sound/Lesson-3/The-Doppler-Effect-and-Shock-Waves

vi http://voyages.sdss.org/preflight/light/redshift/