Higher Physics

Knowledge Organiser

Equations					
W = QV	work done = charge \times potential difference				
$E = mc^2$	$energy = mass \times speed \ of \ light^2$				
E = hf	$energy = plank's \ constant \times frequency$				
hc	plank's constant imes speed of light				
$E = \frac{1}{\lambda}$	energy =	wavelength			
$E_k = hf - hf_0$	kinetic energy = $(plank's constant \times frequency) - work function$				
From N5:	$E_k = \frac{1}{2}mv^2$	$v = f\lambda$			

Key Number	Meaning	Key Number	Meaning
6.63×10 ⁻³⁴ J s	Plank's Constant	9.11×10 ⁻³¹ kg	Mass of an electron
+1.60×10 ⁻¹⁹ C	Charge Proton	1.675×10 ⁻²⁷ kg	Mass of a neutron
-1.60×10 ⁻¹⁹ C	Charge Electron	1.673×10 ⁻²⁷ kg	Mass of a proton
3.0 × 10 ⁸ ms ⁻¹	Speed of light	$9.0 \times 10^{16} \mathrm{m^2 s^{-2}}$	Speed of light squared

Key Words	Meaning
Electric field	Electric fields are regions in which a charge experiences a force. They exist around
	charged particles and plates. The direction and strength of the field be visualised by
Potontial	Detential difference is the work done in moving a unit charge between two points
Difference	1 Lis the work done moving a charge of 1C through a n d of 1V
Electronvolt	From the formula $F=OV$ if we accelerate an electron, which is electrically
	charged by a potential difference of one-volt it will gain an energy of
	1.6×10^{-19} J or 1 'electronyolt'. eV.
Standard Model	The standard model is the collection of the fundamental particles that make up
Standard Moder	everything. There are serval particles included in it.
Fermion	Fermions are matter particles, they consist of quarks and leptons.
Quark	There are 6 types (Up, Down, Charm, Strange, Top, Bottom). Each quark has a
	fraction of the magnitude charge of an electron.
Lepton	There are 6 types. The Electron, Muon, Tau each have a charge of -1. The Electron
	Neutrino, Muon Neutrino, Tau Neutrino each have a charge of 0
Hadron	The word comes from Greek meaning heavy. These are particles made up of Quarks.
Baryon	Made up of 3 Quarks, e.g., the proton and the neutron.
Meson	Made of a Quark and Anti-Quark pair. Very short lifespan.
Boson	The Force mediating Particles, consists of Photons, W and Z bosons and gluons.
Particle	Collisions of particles inside particle accelerators is evidence for the existence of
accelerator	quarks.
Anti-particle	Will have the same magnitude of charge as the corresponding particle, however the
	sign will be opposite. E.g., and up quark has a charge of 2/3e and an anti-up quark
	has a charge of -2/3e.
Annihilation	This occurs when a particle comes into contact with its corresponding antiparticle.
Pota docav	This produces energy which is evidence for antimatter.
Dela decay	decay. This particle is the neutring, and beta decay is used as evidence for the
	existence of the neutrino
Photoelectric	Photons incident on a metal can cause the metal to eject an electron. The photons
Fffect	must be of sufficient energy. This phenomenon is called photoemission and is
Encer	evidence for the particle model of light. The production of a photoelectron from
	the surface of a metal when electromagnetic radiation, of sufficiently high
	frequency is incident on it.
Threshold	The minimum frequency to allow photoemission to occur.
Frequency	
Work Function	The minimum energy to allow photoemission to occur.

ſ

1

 \mathbf{I}

2

Higher Physics		Knowledge Organiser			Particles	
$E_{K} = E_{w}$ by the electric field $E_{K} = QV$		cathode	a	node	1	
$E_{\rm K} = 1.60 \times 10^{-19} \times 200$	heater					
$E_{\rm K} = 3.20 \times 10^{-17} {\rm J}$			Ж (0		
$E_{K} = \frac{1}{2}mv^{2}$				$\mathbb{Z}_{\mathbf{A}}$	▶ ▶	
$3.20 \times 10^{-17} = 0.5 \times 9.11 \times 10^{-31}$	$\times V^2$	2 لح	ō ţ			
$V^2 = 7.025 \times 10^{13}$			5.0 kV	1		
V = 8.38 × 10 ⁶ m s ^{−1}					vacuum	
Nuclear reaction		·				
A nuclear fission reaction is sho	wn	${}^1_0n + {}^{235}_{92}U \rightarrow 2$	⁹⁸ Mo	$+ \frac{136}{54}Xe$	$e + 2^{1}_{0}n + 4^{0}_{-1}e$	
This releases energy.		Mass Before		Mass after		
Why is energy released during fus	ion	²³⁵ U 3.90088×10 ⁻²⁵ k	g	⁹⁸ Mo	1.6249×10 ⁻²⁵ kg	
and fission reactions?		$\frac{1}{10}$ 1.6740.10-27 kg		136	2 2556×10 ⁻²⁵ kg	
The mass of the products is le	SS	₀ /1 1.0/49×10 Kg	3	54 AE	2.2330×10 Kg	
than the mass of the reactant	s.	Total 3.917629×10 ⁻²⁵	kg	2 ₀ ¹n	3.3498×10 ⁻²⁷ kg	
I ne difference in mass is	to			4_⁰e	3.32×10 ⁻³⁰ kg	
$F=mc^2$	10			Total 3	<mark>3.914031×10⁻²⁵ kg</mark>	
Mass difference		Ene	rgy ec	juivaler	nce	
Mass Before	Ma	ss after	mass	change	e = mass before - mass	
$\frac{235}{2}$ 3 90088×10 ⁻²⁵ kg	98 /	<u>Πο 1 6249×10⁻²⁵ kg</u>	after	change		
920 3.70000×10 Kg	42	mass change = 3.917629×10^{-25} kg		e = 3.917629×10 ⁻²⁵ kg		
₀ ¹ n 1.6749×10 ⁻²⁷ kg	¹³⁶ 54	Ke 2.2556×10 ⁻²⁵ kg ma		$a_{1}^{2} = 3.914031 \times 10^{23} \text{ kg}$ mass change = $3.598 \times 10^{-28} \text{ kg}$ energy equivalence: $E = mc^{2}$		
Total 3.917629×10 ⁻²⁵ kg	2 ₀ ¹	2 ₀ ¹ n 3.3498×10 ⁻²⁷ kg				
	4 _1	₀e 3.32×10 ⁻³⁰ kg	$E = 3.598 \times 10^{-28} \times (3 \times 10^{6})^{2}$ $E = 3.598 \times 10^{-28} \times 9 \times 10^{16}$			
			E =	: 3.24 ×	$10^{-11} J$	
Usually the mass of the beta	Tot	tal 3.914031×10 ⁻²⁵ kg	T I		a the adversarial form	
particles are ignored as they			Ine s	same method works for		
play a minimal effect on the			IUSIO	react	IONS	
mass difference.						
Nuclear fusion reactors require	cha	rged particles at a very	/ high	temper	rature (plasma) which	
have to be contained by magne	tic f	fields.		cemper		
		Photo Electric effect	vii			
The photoelectric effect is		Positively or negatively charged zinc plate Post	rively charge	ő zinc plate	Negatively charged zinc plate	
evidence for the particle mode	l of					
light.						
Photons of sufficient energy (hi						
frequency) can eject electrons	Red laser light	4	Utira viole:	a light		
from the surface of materials		0 0 0	00		0 0	
(photoemission).						
minimum frequency of a photon						
required for photoemission.			V			
The work function, W or hf_0 of a			0		0	
material is the minimum energy	no eneci	no eneci		Leaf falls immediately		
of a photon required to cause						
photoemission.						

3

 \mathbf{f}

ſ

R Stewart / J A Hargreaves

4

i https://physics.stackexchange.com/questions/288172/why-is-electric-field-lines-away-from-and-toward
 ii https://commons.wikimedia.org/wiki/File:Field_lines_parallel_plates.svg
 iii https://courses.lumenlearning.com/boundless-physics/chapter/the-electric-field-revisited/
 iv http://hyperphysics.phy-astr.gsu.edu/hbase/NucEne/fusion.html
 v https://en.wikipedia.org/wiki/Discovery_of_nuclear_fission
 vi http://hyperphysics.phy-astr.gsu.edu/hbase/Chemical/atom.html
 viii http://schoolphysics.org/age16-19/quantum%20physics/text/Photoelectric_effect/index.html