Equations		
<i>P</i>	irradiance – power	
$I = \frac{1}{A}$	area	
$I_1d_1 = I_2d_2$	$irradiance_1 \times (distance_1)^2 = irradiance_2 \times (distance_2)^2$	
$I = \frac{k}{k}$	$irradiance(Wm^{-2}) \times distance^{2}(m^{2}) = constant value(W)$	
$\frac{d^2}{d^2}$		
$n_2 = \frac{\delta l n \theta_1}{l} = \frac{\lambda_1}{l} = \frac{1}{l}$	$\frac{2}{1}$ refractive index = $\frac{\sin\theta_1}{\cos\theta_1} = \frac{wavelength_1}{\cos\theta_1} = \frac{velocity_1}{\cos\theta_1}$	
λ_2 sin θ_2 λ_2 i	p_2 $sin\theta_2$ wavelength ₂ velocity ₂	
$n - \frac{\sin\theta_a}{\sin\theta_a}$	$refractive index of a material - \frac{sin\theta_{air}}{sin\theta_{air}}$	
$n_m - \overline{\sin\theta_m}$	$feffactive theory of a material = \frac{1}{\sin\theta_{material}}$	
1		
$sin\theta_c = -\frac{1}{n}$	$Sin\theta_{critical angle} = \frac{1}{refractive index}$	
E = hf	Energy of incident photon = Planck's constant × frequency	
$E = hf_0$	Work function = Planck's constant × threshold frequency	
$E_k = hf - hf_0$	Kinetic energy of photoelectron = energy of incident photo – Work function	
$v = f\lambda$	$speed = frequency \times wavelength$	
$E_2 - E_1 = hf$	$most excited energy - least excited energy = Planck's Constant \times frequency$	
path difference $= m\lambda$ or $\left(m + rac{1}{2} ight)$ where $m = 0, 1, 2,$		
$m\lambda$ gives constructive interference and $\left(m+rac{1}{2} ight)$ give destructive interference		
	Slit separation $ imes$ sin of angle from centre to the spot	
$d\sin\theta=m\lambda$	$= m \times a$ whole number of wavelengths	
	NB This equation is for constructive interference	
Key Number	Meaning	
6.63×10 ⁻³⁴ J s	Planck's Constant	

Key Words	Meaning
Irradiance	the power per unit area incident on a surface.
Inverse Square	irradiance is inversely proportional to the square of the distance from a point
Law	source. as distance increases by a factor of 2, irradiance decreases by a factor of 4.
Absolute Refractive Tells us how refractive a material is, the greater the <i>n</i> , the smaller the angle of	
Index (n)	refraction in the material, the greater is the reduction in v and λ .
Definition of n	The absolute refractive index of a material is the ratio speed of light in a vacuum
	to the speed of light in the material.
Critical Angle	critical angle as the angle of incidence which produces an angle of refraction of
	90°.
Coherent Source	A coherent source has a constant phase relationship. This means they will have
	the same frequency, wavelength, speed and be generated in phase.
Interference	Interference can occur when the waves from 2 or more coherent sources meet.
Constructive	This will occur when the waves meet in phase, this will cause the amplitude to
interference	increase.
Destructive	This will occur when the waves meet out of phase, this will cause the amplitude to
interference	decrease.
Maxima	maxima are produced when the path difference between waves is a whole number
	of wavelengths. Crest meets crest, constructive interference causes the amplitude
	to double to the sum of the two coherent sources at that point.
Minima	minima are produced when the path difference between waves is an odd number
	of half-wavelengths. Crest meets trough The point where destructive interference
	causes the amplitude to be 0, the sum of the two coherent sources at that point.
Path Difference	The different in the path travelled by each wave until the point of interference.
	This can be calculated by subtracting the length travelled by wave 2 from wave 1.
Diffraction	A material that has serval gaps and blocks in a short space. They are used to
Grating	demonstrate interference of light. They typically have 100s of lines in every mm.
Spectra	visible light split up into its component frequency's, can be absorption,
	continuous, emission or line emission.

1

R Stewart/ J A Hargreaves

Key Words	Meaning
Energy Levels	Electrons in an atom can be at discreet energy levels. They cannot exist in the spaces between these energy levels. Electrons can move between the levels by gaining or emitting energy.
ionisation	The E_1 , is the energy required to remove an electron from an atom in its
energy,	ground state to a free state in which it has no E_K i.e. its total energy is zero.
Excitation	is the energy required to promote an electron from one energy level to a
energy	higher energy state.
Ground state	The ground state is the lowest energy level where an electron can be found.
lonisation	process in which an electron is given enough energy to break away from an atom when the electron is just ionised it has zero potential energy.
Fraunhofer lines	The lines missing when looking at the emission spectrum from the sun. this is because gases in the atmosphere of the sun absorb certain frequencies of light.

R Stewart/ J A Hargreaves

2

3

Sorry I need to tidy up the image references!

ⁱ Particles and Waves Part 2 By J A Hargreaves

" https://en.wikipedia.org/wiki/Bohr_model

iii iii manuals, P. and SYSTEM, T., 2022. *PASCO TD-8555 THERMAL RADIATION SYSTEM - Manual (Page 13)*. [online] manualsdir.com. Available at: <a href="https://www.manualsdir.com/manuals/340664/pasco-td-8555-thermal-radiation-system-td-8554a-thermal-radiation-system-td-8554a-thermal-radiation-system-td-8555-radiation-system-td-8554a-radiation-sensor-td-8553-radiation-sensor-td-8554a-radiation-sensor-td-8553-radiation-sensor-td-8554a-radiation-sensor-td-8554

^{iv} https://www.schoolphysics.co.uk/age11-14/Light/text/Total_internal_reflection/index.html

^v https://physics.stackexchange.com/questions/65812/why-do-prisms-work-why-is-refraction-frequency-dependent

vi https://www.pinterest.co.uk/pin/764486105473144689/

vii https://en.wikipedia.org/wiki/Fraunhofer_lines

vii manuals, P. and SYSTEM, T., 2022. *PASCO TD-8555 THERMAL RADIATION SYSTEM - Manual (Page 13)*. [online] manualsdir.com. Available at: <a href="https://www.manualsdir.com/manuals/340664/pasco-td-8555-thermal-radiation-system-td-8554a-thermal-radiation-system-td-8555-radiation-system-td-8554a-thermal-radiation-system-td-8555-radiation-system-td-8554a-radiation-system-td-8554a-radiation-system-td-8554a-thermal-radiation-system-td-8554a-thermal-radiation-system-td-8554a-thermal-radiation-system-td-8554a-radiation-system-td-8554a-thermal-radiati