

# 2022



## **CfE Outcomes**

NAME: \_\_\_\_\_\_

J. A. Hargreaves November 2022

#### DATA SHEET

#### COMMON PHYSICAL QUANTITIES

| Quantity                                  | Symbol | Value                                                                    | Quantity          | Symbol         | Value                        |
|-------------------------------------------|--------|--------------------------------------------------------------------------|-------------------|----------------|------------------------------|
| Speed of light in<br>vacuum               | с      | $3.00 \times 10^8 \mathrm{ms^{-1}}$                                      | Planck's constant | h              | 6∙63 × 10 <sup>-34</sup> J s |
| Magnitude of the<br>charge on an electron | е      | 1.60 × 10 <sup>-19</sup> C                                               | Mass of electron  | m <sub>e</sub> | 9·11 × 10 <sup>-31</sup> kg  |
| Universal Constant of<br>Gravitation      | G      | 6·67 × 10 <sup>-11</sup> m <sup>3</sup> kg <sup>-1</sup> s <sup>-2</sup> | Mass of neutron   | m <sub>n</sub> | 1∙675 × 10 <sup>-27</sup> kg |
| Gravitational<br>acceleration on Earth    | g      | 9∙8 m s <sup>-2</sup>                                                    | Mass of proton    | $m_{\rm p}$    | 1∙673 × 10 <sup>-27</sup> kg |
| Hubble's constant                         | $H_0$  | $2 \cdot 3 \times 10^{-18}  \text{s}^{-1}$                               |                   |                |                              |

#### REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength  $589\,\text{nm}$  and to substances at a temperature of  $273\,\text{K}$ .

| Substance   | Refractive index | Substance | Refractive index |
|-------------|------------------|-----------|------------------|
| Diamond     | 2.42             | Water     | 1.33             |
| Crown glass | 1.50             | Air       | 1.00             |

#### SPECTRAL LINES

| Element  | Wavelength/nm | Colour      | Element        | Wavelength/nm | Colour   |  |  |
|----------|---------------|-------------|----------------|---------------|----------|--|--|
| Hydrogen | 656           | Red         | Cadmium        | 644           | Red      |  |  |
|          | 486           | Blue-green  |                | 509           | Green    |  |  |
|          | 434           | Blue-violet |                | 480           | Blue     |  |  |
|          | 410 Violet    |             | Lasers         |               |          |  |  |
|          | 389           | Ultraviolet | Element        | Wavelength/nm | Colour   |  |  |
|          |               |             | Carbon dioxide | 9550 🍞        | Infrared |  |  |
| Sodium   | 589           | Yellow      |                | 10590 🖌       |          |  |  |
|          |               |             | Helium-neon    | 633           | Red      |  |  |

#### PROPERTIES OF SELECTED MATERIALS

| Substance | Density/kg m⁻³         | Melting Point/K | Boiling Point/K |
|-----------|------------------------|-----------------|-----------------|
| Aluminium | 2·70 × 10 <sup>3</sup> | 933             | 2623            |
| Copper    | 8·96 × 10 <sup>3</sup> | 1357            | 2853            |
| Ice       | 9·20 × 10 <sup>2</sup> | 273             |                 |
| Sea Water | 1.02 × 10 <sup>3</sup> | 264             | 377             |
| Water     | 1.00 × 10 <sup>3</sup> | 273             | 373             |
| Air       | 1.29                   |                 |                 |
| Hydrogen  | 9·0 × 10 <sup>-2</sup> | 14              | 20              |

The gas densities refer to a temperature of 273 K and a pressure of  $1.01 \times 10^5$  Pa.

#### RELATIONSHIPS REQUIRED FOR HIGHER PHYSICS

| $d = \overline{v}t$                                              | $z = \frac{v}{c}$                                                                       | $V_{rms} = \frac{V_{peak}}{\sqrt{2}}$                                |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| $s = \overline{v}t$                                              | $v = H_0 d$                                                                             | $I_{rms} = \frac{I_{peak}}{\sqrt{2}}$                                |
| v = u + at                                                       | W = QV                                                                                  | $T = \frac{1}{f}$                                                    |
| $s = ut + \frac{1}{2}at^2$                                       | $E = mc^2$                                                                              | V = IR                                                               |
| $v^2 = u^2 + 2as$                                                | $I = \frac{P}{A}$                                                                       | $P = IV = I^2 R = \frac{V^2}{R}$                                     |
| $s = \frac{1}{2} (u + v)t$                                       | $I = \frac{k}{d^2}$                                                                     | $R_T = R_1 + R_2 + \dots$                                            |
| W = mg                                                           | $I_1 d_1^2 = I_2 d_2^2$                                                                 | $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$              |
| F = ma                                                           | E = hf                                                                                  | $V_1 = \left(\frac{R_1}{R_1 + R_2}\right) V_S$                       |
| $E_w = Fd$                                                       | $E_{k} = hf - hf_{0}$                                                                   | $\frac{V_1}{V_2} = \frac{R_1}{R_2}$                                  |
| $E_p = mgh$                                                      | $v = f\lambda$                                                                          | E = V + Ir                                                           |
| $E_k = \frac{1}{2}mv^2$                                          | $E_2 - E_1 = hf$                                                                        | $C = \frac{Q}{V}$                                                    |
| $P = \frac{E}{t}$                                                | $dsin	heta=m\lambda$                                                                    | <i>Q=It</i>                                                          |
| p = mv                                                           | $n = \frac{\sin \theta_1}{\sin \theta_2}$                                               | $E = \frac{1}{2}QV = \frac{1}{2}CV^{2} = \frac{1}{2}\frac{Q^{2}}{C}$ |
| Ft = mv - mu                                                     |                                                                                         |                                                                      |
| $F = G \frac{m_1 m_2}{r^2}$                                      | $\frac{\sin\theta_1}{\sin\theta_2} = \frac{\lambda_1}{\lambda_2} = \frac{\nu_1}{\nu_2}$ |                                                                      |
| $t' = \frac{t}{\sqrt{1 - \frac{v^2}{c^2}}}$                      | $\sin \theta_c = \frac{1}{n}$                                                           |                                                                      |
| $l' = l\sqrt{1 - \left(\frac{v}{c}\right)^2}$                    | Path difference= m $\lambda$ or (m+ ½) $\lambda$ wh                                     | ere m = 0,1,2                                                        |
| $f_o = f_s \left( \frac{v}{v \pm v_s} \right)$                   | random uncertainty= $\frac{\text{max. value - mi}}{\text{number of value}}$             | n. value<br>Ilues                                                    |
| $z = \frac{\lambda_{observed} - \lambda_{rest}}{\lambda_{rest}}$ | $\Delta R = \frac{R_{max} - R_{min}}{n}$                                                |                                                                      |

#### COURSE OUTCOMES / SUCCESS CRITERIA

#### UNCERTAINTIES

| No | CONTENT                                                                                                                                                                                                                                                                                                               | √<br>x | Traffic<br>Light |         |                                               |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|---------|-----------------------------------------------|
| 1. | Uncertainties                                                                                                                                                                                                                                                                                                         |        |                  |         |                                               |
| eq | random uncertainty= $\frac{\text{max. value - min. value}}{\text{number of values}}$ or $\Delta R = \frac{R_{max} - R_{min}}{n}$                                                                                                                                                                                      |        | $\odot$          | :       | 8                                             |
| a) | I can identify that all measurements of physical quantities are liable to uncertainty which I can express in absolute or percentage form.                                                                                                                                                                             |        | $\odot$          |         | $\overline{\mbox{\scriptsize (s)}}$           |
| b) | I can quantify and recognise scale reading, random and systematic uncertainties in a measured quantity.                                                                                                                                                                                                               |        | $\odot$          |         | $\otimes$                                     |
| c) | I can express uncertainties in absolute or percentage form                                                                                                                                                                                                                                                            |        | $\odot$          | $\odot$ | $\overline{\mbox{\scriptsize (s)}}$           |
| d) | I know that random uncertainties arise when an experiment is repeated and slight variations occur.                                                                                                                                                                                                                    |        | $\odot$          |         | $\overline{\ensuremath{\mathfrak{S}}}$        |
| e) | I can explain that scale reading uncertainty is a measure of how well an instrument scale can be read.                                                                                                                                                                                                                |        | $\odot$          |         | $\otimes$                                     |
| f) | I know that scale reading uncertainty is an indication of how precisely a scale can be read.                                                                                                                                                                                                                          |        | $\odot$          |         | $\overline{\mbox{\scriptsize ($)}}$           |
| g) | I can state that random uncertainties can be reduced by taking repeated measurements.                                                                                                                                                                                                                                 |        | $\odot$          |         | $\overline{\mbox{\scriptsize (s)}}$           |
| h) | I can explain that systematic uncertainties occur when readings taken are either all too small or all too large.                                                                                                                                                                                                      |        | $\odot$          |         | $\overline{\mbox{\ensuremath{\mathfrak{S}}}}$ |
| i) | I can recognise that systematic uncertainties can arise due to measurement techniques or experimental design.                                                                                                                                                                                                         |        | $\odot$          |         | $\overline{\otimes}$                          |
| j) | I know the mean of a set of repeated measurements is the best<br>estimate of the 'true' value of the quantity being measured.                                                                                                                                                                                         |        | $\odot$          |         | $\overline{\ensuremath{\mathfrak{S}}}$        |
| k) | I know that when systematic uncertainties are present they offset the mean value                                                                                                                                                                                                                                      |        | $\odot$          |         | 8                                             |
| I) | I know when mean values are used, the approximate random uncertainty should be calculated.                                                                                                                                                                                                                            |        | $\odot$          |         | $\otimes$                                     |
| m) | I can correctly calculate, use and identify uncertainties during data analysis.                                                                                                                                                                                                                                       |        | $\odot$          |         | 8                                             |
| n) | I know that when an experiment is being undertaken and more<br>than one physical quantity is measured, the quantity with the<br>largest percentage uncertainty should be identified and this may<br>often be used as a good estimate of the percentage uncertainty in<br>the final numerical result of an experiment. |        | ٢                |         | 3                                             |
| o) | I can express the numerical result of an experiment in the form final value ±uncertainty.                                                                                                                                                                                                                             |        | $\odot$          |         | $\overline{\mathfrak{S}}$                     |

#### UNITS PREFIXES AND SCIENTIFIC NOTATION

| No | CONTENT                                                                                                                                                                                                                                                   | √ × | Traffic Light |   | ght                                 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|---|-------------------------------------|
| 2. | Units, prefixes and scientific notation                                                                                                                                                                                                                   |     |               |   |                                     |
| a) | I know the units for all of the physical quantities used in this unit.                                                                                                                                                                                    |     | $\odot$       |   | $\overline{\mbox{\scriptsize ($)}}$ |
| b) | I can use the prefixes: pico (p), nano (n), micro (μ), milli (m),<br>kilo (k), mega (M), giga (G) and tera (T).                                                                                                                                           |     | $\odot$       |   | $\overline{\mbox{\scriptsize (s)}}$ |
| c) | I can give an appropriate number of significant figures when<br>carrying out calculations. (This means that the final answer can<br>have no more significant figures than the value with least number<br>of significant figures used in the calculation). |     | $\odot$       |   | $\odot$                             |
| d) | I can use scientific notation when large and small numbers are used in calculations.                                                                                                                                                                      |     | $\odot$       | : | $\overline{\mbox{\scriptsize (s)}}$ |

#### OUR DYNAMIC UNIVERSE (START:\_\_\_\_\_END: \_\_\_\_\_)

| No | CONTENT                                                                                                                                                                                                     | √<br>× | Traffic Ligh |  | ght                                    |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|--|----------------------------------------|--|
| 3. | Equations of Motion                                                                                                                                                                                         |        |              |  |                                        |  |
| eq | $d = \overline{v}t, \ s = \overline{v}\overline{t}; \ s = \frac{1}{2}(u+v)t;$<br>$v = u + at \qquad s = ut + \frac{1}{2}at^2 \qquad v^2 = u^2 + 2as$                                                        |        | $\odot$      |  | $\overline{\mbox{\scriptsize (s)}}$    |  |
| a) | I can use the equations of motion to find distance, displacement, speed, velocity, and acceleration for objects with constant acceleration in a straight line.                                              |        | $\odot$      |  | $\overline{\mathbf{S}}$                |  |
| b) | I can interpret and draw motion-time graphs for motion with constant acceleration in a straight line, including graphs for bouncing objects and objects thrown vertically upwards.                          |        | $\odot$      |  | $\overline{\mathbf{i}}$                |  |
| c) | I know the interrelationship of displacement-time, velocity-time and acceleration- time graphs.                                                                                                             |        | $\odot$      |  | $\odot$                                |  |
| d) | I can calculate distance, displacement, speed, velocity, and<br>acceleration from appropriate graphs (graphs restricted to<br>constant acceleration in one dimension, inclusive of change of<br>direction). |        |              |  | $\overline{\mathbf{i}}$                |  |
| e) | I can give a description of an experiment to measure the acceleration of an object down a slope                                                                                                             |        | $\odot$      |  | $\overline{\ensuremath{\mathfrak{S}}}$ |  |

| 4. | Forces, er                       | nergy and     | power                         |          |         |                |         |
|----|----------------------------------|---------------|-------------------------------|----------|---------|----------------|---------|
| eq | $W = mg$ $Ek = \frac{1}{2} mv^2$ | F = ma<br>E = | $E_W \text{ or } W = Fd$ $Pt$ | Ep = mgh | $\odot$ | $(\mathbf{i})$ | $\odot$ |

| No | CONTENT                                                                                                                                                                        | √<br>× | Traffic Ligh |         |                                        |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|---------|----------------------------------------|
| a) | I can use vector addition and appropriate relationships to solve<br>problems involving balanced and unbalanced forces, mass,<br>acceleration and gravitational field strength. |        | $\odot$      |         | $\overline{\mathfrak{S}}$              |
| b) | I know the effects of friction on a moving object (static and dynamic friction are not required)                                                                               |        | $\odot$      |         | $\overline{\mbox{\scriptsize (s)}}$    |
| c) | I can identify and explain the effects of friction on moving objects. I do not need to use reference to static and dynamic friction.                                           |        | $\odot$      |         | $\odot$                                |
| d) | I can identify and explain, in terms of forces an object moving with terminal velocity                                                                                         |        | $\odot$      |         | $\odot$                                |
| e) | I can interpret and produce velocity-time graphs for a falling object when air resistance is taken into account.                                                               |        | $\odot$      |         | $\odot$                                |
| f) | I can analyse motion using Newton's first and second laws.                                                                                                                     |        | $\odot$      | $\odot$ | $\overline{\mbox{\scriptsize (s)}}$    |
| g) | I can use free body diagrams and appropriate relationships to solve problems involving friction and tension.                                                                   |        | $\odot$      |         | $\odot$                                |
| h) | I can resolve a vector into two perpendicular components.                                                                                                                      |        | $\odot$      | $\odot$ | $\odot$                                |
| i) | I can resolve the weight of an object on a slope into a component<br>acting parallel (down the slope) and a component acting normal<br>to the slope.                           |        | $\odot$      |         | $\overline{\mbox{\scriptsize (s)}}$    |
| j) | I can use the principle of conservation of energy and appropriate relationships to solve problems involving work done, potential energy, kinetic energy and power.             |        | $\odot$      |         | $\overline{\ensuremath{\mathfrak{S}}}$ |

| 5. | Collisions and explosions                                                                                                                                                                         |         |        |                         |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|-------------------------|
| eq | $p = mv \qquad Ft = mv - mu \qquad E_k = \frac{1}{2}mv^2$                                                                                                                                         | $\odot$ |        | $\overline{\mathbf{S}}$ |
| a) | I can use the principle of conservation of momentum and an<br>appropriate relationship to solve problems involving the<br>momentum, mass and velocity of objects interacting in one<br>dimension. | ٢       |        | $\overline{\mathbf{i}}$ |
| b) | I can explain the role in kinetic energy in determining whether a collision is described as elastic and inelastic collisions or in explosions.                                                    | $\odot$ | :<br>: | $\odot$                 |
| c) | I can use appropriate relationships to solve problems involving the total kinetic energy of systems of interacting objects.                                                                       | $\odot$ |        | $\odot$                 |
| d) | I can use Newton's third law to explain the motion of objects involved in interactions.                                                                                                           | $\odot$ |        | $\odot$                 |
| e) | I can draw and interpret force-time graphs involving interacting objects.                                                                                                                         | $\odot$ |        | $\overline{\mathbf{O}}$ |
| f) | I know that the impulse of a force is equal to the area under a force-time graph and is equal to the change in momentum of an object involved in the interaction.                                 | $\odot$ |        | $\overline{\mathbf{i}}$ |
| g) | I can use data from a force-time graph to solve problems<br>involving the impulse of a force, the average force and its<br>duration.                                                              | $\odot$ |        | $\overline{\mathbf{i}}$ |
| h) | I can use appropriate relationships to solve problems involving<br>mass, change in velocity, average force and duration of the force<br>for an object involved in an interaction.                 | $\odot$ |        | $\overline{\mathbf{i}}$ |

#### No CONTENT

Traffic Light

√ x

| 6. | Gravitation                                                                                                                                                                          |         |                |            |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|------------|
| eq | $d = \overline{v}t, \ s = \overline{v}t; \ s = \frac{1}{2}(u+v)t;$<br>$v = u + at \qquad s = ut + \frac{1}{2}at^{2} \qquad v^{2} = u^{2} + 2as \qquad F = \frac{Gm_{1}m_{2}}{r^{2}}$ | $\odot$ | :              | ( <u>)</u> |
| a) | I can use the equation $F = \frac{Gm_1m_2}{r^2}$                                                                                                                                     | $\odot$ | :              | $\odot$    |
| b) | <i>I can give a description of an experiment</i> to measure the acceleration of a falling object.                                                                                    | $\odot$ | :              | $\odot$    |
| c) | I know that the horizontal motion and the vertical motion of a projectile are independent of each other.                                                                             | $\odot$ |                | $\odot$    |
| d) | I know that satellites are in free fall around a planet/star.                                                                                                                        | $\odot$ | (:)            | $\odot$    |
| e) | I can resolve the initial velocity of a projectile into horizontal and vertical components and their use in calculations.                                                            | $\odot$ | :              | $\odot$    |
| f) | I can use resolution of vectors, vector addition, and appropriate relationships to solve problems involving projectiles.                                                             | 3       | $(\mathbf{i})$ | $\odot$    |
| g) | I can use Newton's Law of Universal Gravitation to solve problems<br>involving force, masses and their separation.                                                                   | $\odot$ | $\bigcirc$     | $\odot$    |

| 7. | Special relativity                                                                                                                                                                       |         |                         |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------|
| eq | $t' = \frac{t}{\sqrt{1 - \frac{v^2}{c^2}}} \qquad l' = l\sqrt{1 - \frac{v^2}{c^2}}$                                                                                                      | $\odot$ | $\odot$                 |
| a) | I know that the speed of light in a vacuum is the same for all observers.                                                                                                                | $\odot$ | $\odot$                 |
| b) | I know that measurements of space, time and distance for a moving observer are changed relative to those for a stationary observer, giving rise to time dilation and length contraction. | $\odot$ | $\overline{\mathbf{i}}$ |
| c) | I can use appropriate relationships to solve problems involving time dilation, length contraction and speed.                                                                             | $\odot$ | $\odot$                 |

| 8. | The expanding Universe                                                                                                                                          |         |                        |         |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------|---------|
|    | $f_o = f_s \left( \frac{v}{v \pm v_s} \right) \qquad f_{observed} = f_{source} \frac{v}{\left[ v + v_{source} \right]} \qquad v = H_o d \qquad z = \frac{v}{c}$ |         |                        | (       |
| eq |                                                                                                                                                                 | $\odot$ | $\underline{\bigcirc}$ | $\odot$ |
|    | $z = \frac{\lambda_{observed} - \lambda_{rest}}{\lambda_{rest}}$                                                                                                |         |                        |         |
| a) | I know that the Doppler effect causes shifts in wavelengths of sound and light.                                                                                 | $\odot$ | $\bigcirc$             | $\odot$ |
| b) | I can use appropriate relationship to solve problems involving the observed frequency, source frequency, source speed and wave speed.                           | $\odot$ | :                      | $\odot$ |
| c) | I know that the light from objects moving away from us is shifted to longer wavelengths (redshift).                                                             | $\odot$ | :                      | $\odot$ |

| No | CONTENT                                                                                                                                                                                                                                                                                                              | √<br>x | Traffic Light |  |                         |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|--|-------------------------|
| d) | I know that the redshift of a galaxy is the change in wavelength<br>divided by the emitted wavelength. For slowly moving galaxies,<br>redshift is the ratio of the recessional velocity of the galaxy to<br>the velocity of light.                                                                                   |        | :             |  | 3                       |
| e) | I can use appropriate relationships to solve problems involving redshift, observed wavelength, emitted wavelength, and recessional velocity                                                                                                                                                                          |        | $\odot$       |  | $\odot$                 |
| f) | I can use appropriate relationship to solve problems involving the<br>Hubble constant, the recessional velocity of a galaxy and its<br>distance from us.                                                                                                                                                             |        | $\odot$       |  | $\overline{\mathbf{S}}$ |
| g) | I know that Hubble's law allows us to estimate the age of the Universe.                                                                                                                                                                                                                                              |        | $\odot$       |  | $\odot$                 |
| h) | I know that measurements of the velocities of galaxies and their distance from us lead to the theory of the expanding Universe.                                                                                                                                                                                      |        | $\odot$       |  | $\odot$                 |
| i) | I know that the mass of a galaxy can be estimated by the orbital speed of stars within it.                                                                                                                                                                                                                           |        | $\odot$       |  | $\odot$                 |
| j) | I know that evidence supporting the existence of dark matter comes from estimations of the mass of galaxies.                                                                                                                                                                                                         |        | $\odot$       |  | $\odot$                 |
| k) | I know that evidence supporting the existence of dark energy comes from the accelerating rate of expansion of the Universe.                                                                                                                                                                                          |        | $\odot$       |  | $\odot$                 |
| l) | I know that the temperature of stellar objects is related to the distribution of emitted radiation over a wide range of wavelengths.                                                                                                                                                                                 |        | $\odot$       |  | $\odot$                 |
| m) | I know that the peak wavelength of this distribution is shorter for hotter objects than for cooler objects.                                                                                                                                                                                                          |        | $\odot$       |  | $\odot$                 |
| n) | I know that hotter objects emit more radiation per unit surface area per unit time than cooler objects.                                                                                                                                                                                                              |        | $\odot$       |  | $\odot$                 |
| 0) | I know of evidence supporting the big bang theory and subsequent<br>expansion of the Universe: cosmic microwave background<br>radiation, the abundance of the elements hydrogen and helium,<br>the darkness of the sky (Olbers' paradox) and the large number of<br>galaxies showing redshift rather than blueshift. |        | $\odot$       |  | $\odot$                 |

## PARTICLES AND WAVES (START:\_\_\_\_\_END: \_\_\_\_\_)

| No | CONTENT                                                                                                                                                         | √x | Traffic Light |     |                                     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------|-----|-------------------------------------|
| 9. | Forces on charged particles                                                                                                                                     |    |               |     |                                     |
| eq | $W = QV \qquad E_k = \frac{1}{2}mv^2$                                                                                                                           |    | $\odot$       | (:) | $\overline{\mbox{\scriptsize ($)}}$ |
| a) | I know that charged particles experience a force in an electric field.                                                                                          |    | $\odot$       | (;) | $\overline{\mathbf{O}}$             |
| b) | I know that electric fields exist around charged particles and between charged parallel plates.                                                                 |    | $\odot$       | (:) | $\overline{\mathbf{S}}$             |
| c) | I can sketch electric field patterns for single-point charges,<br>systems of two-point charges and between two charged<br>parallel plates (ignore end effects). |    | $\odot$       | :   | $\overline{\mathbf{i}}$             |

| No | CONTENT                                                                                                                                                                                                             | √x | Traffic Light |            |                |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------|------------|----------------|
| d) | I can determine the direction of movement of charged particles in an electric field.                                                                                                                                |    | $\odot$       |            | $\odot$        |
| e) | I can define voltage (potential difference) as the work done moving unit charge between two points                                                                                                                  |    | $\odot$       | :          | $(\mathbf{i})$ |
| f) | I can solve problems involving the charge, mass, speed, and<br>energy of a charged particle in an electric field and the<br>potential difference through which it moves.                                            |    | $\odot$       | :          | $\odot$        |
| g) | I know that a moving charge produces a magnetic field.                                                                                                                                                              |    | $\odot$       | $\bigcirc$ | $\odot$        |
| h) | I can determine the direction of the force on a charged particle moving in a magnetic field for negative and positive charges using the slap rule or other method.                                                  |    | $\odot$       | :          | $\odot$        |
| i) | I know the basic operation of particle accelerators in terms of<br>acceleration by electric fields, deflection by magnetic fields<br>and high-energy collisions of charged particles to produce<br>other particles. |    | $\odot$       | <b>:</b>   | $\odot$        |

| 10. | Standard Model                                                                                                                                                                                         |             |            |                                          |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|------------------------------------------|
| a)  | I know that the Standard Model is a model of fundamental particles and interactions.                                                                                                                   | $\odot$     |            | $\overline{\mathbf{i}}$                  |
| b)  | I can describe the Standard Model in terms of types of particles and groups                                                                                                                            | $\odot$     |            | $\odot$                                  |
| c)  | I can use orders of magnitude and am aware of the range of<br>orders of magnitude of length from the very small (sub-<br>nuclear) to the very large (distance to furthest known celestial<br>objects). | $\odot$     |            | $\odot$                                  |
| d)  | I know that evidence for the existence of quarks comes from<br>high-energy collisions between electrons and nucleons, carried<br>out in particle accelerators.                                         | $\odot$     |            | $\odot$                                  |
| e)  | I know that in the Standard Model, every particle has an antiparticle.                                                                                                                                 | $\odot$     |            | $\odot$                                  |
| f)  | I know that the production of energy in the annihilation of particles is evidence for the existence of antimatter                                                                                      | $\odot$     |            | $\odot$                                  |
| g)  | I know that beta decay was the first evidence for the neutrino.                                                                                                                                        | $\odot$     | $\bigcirc$ | $\overline{\mbox{\ensuremath{\otimes}}}$ |
| h)  | I know the equation for $\beta$ - decay above (B+ decay not required) ${}_{0}^{1}n \rightarrow {}_{1}^{1}p + {}_{-1}^{0}e + \overline{\nu_{e}}$                                                        | $\odot$     |            | $\odot$                                  |
| i)  | I know that fermions, the matter particles, consist of quarks<br>(six types: up, down, strange, charm, top, bottom) and leptons<br>(electron, muon and tau, together with their neutrinos).            | $\odot$     |            | $\odot$                                  |
| j)  | I know that hadrons are composite particles made of quarks.                                                                                                                                            | $\odot$     | $\bigcirc$ | $\otimes$                                |
| k)  | I know that baryons are made of three quarks.                                                                                                                                                          | $\odot$     |            | $\odot$                                  |
| l)  | I know that mesons are made of quark-antiquark pairs.                                                                                                                                                  | <br>$\odot$ | $\bigcirc$ | $\overline{\mathbf{i}}$                  |
| m)  | I know that the force-mediating particles are bosons: photons (electromagnetic force), W- and Z-bosons (weak force), and gluons (strong force).                                                        | <br>$\odot$ |            | $\overline{\mathbf{i}}$                  |

| No  | CONTENT                                                                                                                                                | √x | Traffic Light |            |         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------|------------|---------|
| 11. | Nuclear reactions                                                                                                                                      |    |               |            |         |
| eq  | $E = mc^2$                                                                                                                                             |    | $\odot$       | $\bigcirc$ | $\odot$ |
| a)  | I can use nuclear equations to describe radioactive decay,<br>fission (spontaneous and induced), with reference to mass and<br>energy equivalence.     |    | $\odot$       | :          | $\odot$ |
| b)  | I can use nuclear equations to describe fusion reactions, with reference to mass and energy equivalence.                                               |    | $\odot$       | <b>:</b>   | $\odot$ |
| c)  | Use of an appropriate relationship to solve problems involving the mass loss and the energy released by a nuclear reaction.<br>$E = mc^2$              |    | $\odot$       | :          | $\odot$ |
| d)  | I know that nuclear fusion reactors require charged particles at<br>a very high temperature (plasma) which have to be contained<br>by magnetic fields. |    | $\odot$       | :          | $\odot$ |

| 12. | Inverse square law                                                                                                                                         |         |           |                |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|----------------|
| eq  | $I = \frac{P}{A}$ $I = \frac{k}{d^2}$ $I_1 d_1^2 = I_2 d_2^2$                                                                                              | $\odot$ |           | $(\mathbf{i})$ |
| a)  | I know that irradiance is the power per unit area incident on a surface.                                                                                   | $\odot$ |           | $(\mathbf{i})$ |
| b)  | I can use the equation $I = \frac{P}{A}$ to solve problems involving irradiance, the power of radiation incident on a surface and the area of the surface. | $\odot$ | <b>::</b> | $\odot$        |
| c)  | I know that irradiance is inversely proportional to the square of the distance from a point source.                                                        | $\odot$ |           | $\odot$        |
| d)  | I can describe an experiment to verify the inverse square law for a point source of light                                                                  | $\odot$ |           | $\odot$        |
| e)  | I can use $I = \frac{k}{d^2}$ and $I_1 d_1^2 = I_2 d_2^2$ to solve problems involving irradiance and distance from a point source of light.                | $\odot$ |           | $\odot$        |

| 13. | Wave Particle Duality                                                                                                         |         |                |         |
|-----|-------------------------------------------------------------------------------------------------------------------------------|---------|----------------|---------|
| eq  | $E = hf$ $E = \frac{hc}{\lambda}$ $E_k = hf - hf_0$ $E_k = \frac{1}{2}mv^2$ and $v = f\lambda$                                | $\odot$ | (;)            | $\odot$ |
| a)  | I know that the photoelectric effect is evidence for the particle model of light.                                             | $\odot$ | (;)            | $\odot$ |
| b)  | I know that photons of sufficient energy can eject electrons from the surface of materials (photoemission).                   | $\odot$ | :              | $\odot$ |
| c)  | I can use $E = hf$ and $E = \frac{hc}{\lambda}$ to solve problems involving the frequency and energy of a photon.             | $\odot$ | (;)            | $\odot$ |
| d)  | I know that the threshold frequency, $f_0$ is the minimum frequency of a photon required for photoemission.                   | $\odot$ | :              | $\odot$ |
| e)  | I know that the work function, $W$ or $hf_0$ of a material is the minimum energy of a photon required to cause photoemission. | $\odot$ | $(\mathbf{i})$ | $\odot$ |

| No | CONTENT                                                                                                                                                                                                                                                             | √x | Traf | fic Li | ght      |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|--------|----------|
| f) | I can use $E_k = hf - hf_0$ $E_k = \frac{1}{2}mv^2$ and $v = f\lambda$ to solve<br>problems involving the mass, maximum kinetic energy and<br>speed of photoelectrons, the threshold frequency of the<br>material, and the frequency and wavelength of the photons. |    | :    | :      | ()<br>() |

| 14. | Interference                                                                                                                                                                                        |         |         |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|
| eq  | path difference = $m\lambda$ or $(m + \frac{1}{2})\lambda$ where $m = 0, 1, 2$ .<br>d $sin\theta = m\lambda$                                                                                        | $\odot$ | $\odot$ |
| a)  | I know that interference is evidence for the wave model of light.                                                                                                                                   | $\odot$ | $\odot$ |
| b)  | I know that coherent waves have a constant phase relationship.                                                                                                                                      | $\odot$ | $\odot$ |
| c)  | I can describe of the conditions for constructive and destructive interference in terms of the phase difference between two waves.                                                                  | $\odot$ | $\odot$ |
| d)  | I know that maxima are produced when the path difference between waves is a whole number of wavelengths                                                                                             | $\odot$ | $\odot$ |
| e)  | I know that minima are produced when the path difference<br>between waves is an odd number of half-wavelengths<br>respectively.                                                                     | $\odot$ | $\odot$ |
| f)  | I can use <i>path difference</i> = $m\lambda$ or $(m + \frac{1}{2})\lambda$ where <i>m</i> =0,1,2<br>to solve problems involving the path difference between<br>waves, wavelength and order number. | $\odot$ | $\odot$ |
| g)  | I can use $d \sin\theta = m\lambda$ to solve problems involving grating spacing, wavelength, order number and angle to the maximum.                                                                 | $\odot$ | $\odot$ |

| 15. | Spectra                                                                                                                                                              |         |           |                         |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-------------------------|
| eq  | $E_2 - E_1 = hf$ and $E = hf$                                                                                                                                        | $\odot$ |           | $\odot$                 |
| a)  | I have knowledge of the Bohr model of the atom.                                                                                                                      | $\odot$ |           | $\odot$                 |
| b)  | I can explain the Bohr model of the atom using the terms ground state, energy levels, ionisation and zero potential energy.                                          | $\odot$ | ::        | $\odot$                 |
| c)  | I know the mechanism of production of line emission spectra,<br>continuous emission spectra and absorption spectra in terms of<br>electron energy level transitions. | $\odot$ | :         | $\odot$                 |
| d)  | I can use $E_2 - E_1 = hf$ and $E = hf$ to solve problems involving<br>energy levels and the frequency of the radiation<br>emitted/absorbed.                         | $\odot$ | <b>::</b> | $\odot$                 |
| e)  | I know that the absorption lines (Fraunhofer lines) in the spectrum of sunlight provide evidence for the composition of the Sun's outer atmosphere.                  | $\odot$ |           | $\overline{\mathbf{S}}$ |

| 16. | Refraction                                                                                                                                     |         |                                     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------|
| eq  | $n = \frac{\sin \theta_1}{\sin \theta_2} = \frac{\lambda_1}{\lambda_2} = \frac{v_1}{v_2}$ and $v = f\lambda$ and $\sin \theta_c = \frac{1}{n}$ | $\odot$ | $\overline{\mbox{\scriptsize (S)}}$ |

| No | CONTENT                                                                                                                                                                                                                                                                                                                                                                                   | √x | Traffic Light |  |                                        |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------|--|----------------------------------------|--|
| a) | I can define absolute refractive index of a medium as the ratio<br>of the speed of light in a vacuum to the speed of light in the<br>medium.                                                                                                                                                                                                                                              |    | $\odot$       |  | $\odot$                                |  |
| b) | I can use $n = \frac{\sin \theta_1}{\sin \theta_2}$ to solve problems involving absolute refractive index, the angle of incidence and the angle of refraction.                                                                                                                                                                                                                            |    | $\odot$       |  | $\odot$                                |  |
| c) | I can describe an experiment to determine the refractive index of a medium.                                                                                                                                                                                                                                                                                                               |    | $\odot$       |  | $\overline{\mathbf{S}}$                |  |
| d) | I can use $\frac{\sin \theta_1}{\sin \theta_2} = \frac{\lambda_1}{\lambda_2} = \frac{v_1}{v_2}$ and $v = f\lambda$ to solve problems<br>involving the angles of incidence and refraction, the<br>wavelength of light in each medium, the speed of light in each<br>medium, and the frequency, including situations where light is<br>travelling from a more dense to a less dense medium. |    | ☺             |  | 8                                      |  |
| e) | I know that the refractive index of a medium increases as the frequency of incident radiation increases.                                                                                                                                                                                                                                                                                  |    | $\odot$       |  | $\odot$                                |  |
| f) | I can define critical angle as the angle of incidence which produces an angle of refraction of 90°.                                                                                                                                                                                                                                                                                       |    | $\odot$       |  | $\odot$                                |  |
| g) | I know that total internal reflection occurs when the angle of incidence is greater than the critical angle.                                                                                                                                                                                                                                                                              |    | $\odot$       |  | $\overline{\mathbf{S}}$                |  |
| h) | I can use $\sin \theta_c = \frac{1}{n}$ to solve problems involving critical angle and absolute refractive index.                                                                                                                                                                                                                                                                         |    | $\odot$       |  | $\overline{\ensuremath{\mathfrak{S}}}$ |  |

#### ELECTRICITY (START:\_\_\_\_\_END: \_\_\_\_

| No  | CONTENT                                                                                                                                   | √<br>x | Traffic Light |  |                                     |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|--|-------------------------------------|--|
| 17. | Monitoring and Measuring A.C.                                                                                                             |        |               |  |                                     |  |
| eq  | $T = \frac{1}{f}  V_{rms} = \frac{V_{peak}}{\sqrt{2}} \qquad I_{rms} = \frac{I_{peak}}{\sqrt{2}}$                                         |        | $\odot$       |  | $\odot$                             |  |
| a)  | I know that an A.C. is a current which changes direction and instantaneous value with time.                                               |        | $\odot$       |  | $\odot$                             |  |
| b)  | I can use $V_{rms} = \frac{V_{peak}}{\sqrt{2}}$ $I_{rms} = \frac{I_{peak}}{\sqrt{2}}$ to solve problems involving peak and r.m.s. values. |        | $\odot$       |  | $\overline{\mbox{\scriptsize ($)}}$ |  |
| c)  | I can determine the frequency, peak voltage and r.m.s. values from graphical data.                                                        |        | $\odot$       |  | $\overline{\mbox{\scriptsize (s)}}$ |  |
| d)  | I can use $T = \frac{1}{f}$ to determine the frequency.                                                                                   |        | $\odot$       |  | $\odot$                             |  |

|     |                                                                                                                                                                                                 |        | 1             |  |                                        |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|--|----------------------------------------|--|--|
| No  | CONTENT                                                                                                                                                                                         | √<br>× | Traffic Light |  |                                        |  |  |
| 18. | Current, potential difference, power and resistance                                                                                                                                             |        |               |  |                                        |  |  |
| eq  | $V = IR$ $P = IV = I^2 R = \frac{V^2}{R}$ $R_T = R_1 + R_2 +$                                                                                                                                   |        | $\odot$       |  | $\odot$                                |  |  |
| Eq  | $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \dots \qquad V_2 = \left(\frac{R_2}{R_1 + R_2}\right) V_S \qquad \frac{V_1}{V_2} = \frac{R_1}{R_2}$                                            |        | 0             |  | $\overline{\mbox{\scriptsize (s)}}$    |  |  |
| a)  | I can use relationships involving potential difference, current, resistance and power to analyse circuits even those that may involve several steps in the calculations.                        |        | $\odot$       |  | $\odot$                                |  |  |
| b)  | I can correctly use calculations involving potential dividers circuits.                                                                                                                         |        | $\odot$       |  | $\overline{\ensuremath{\mathfrak{S}}}$ |  |  |
| 19. | Electrical sources and internal resistance                                                                                                                                                      |        |               |  |                                        |  |  |
| eq  | E = V + Ir $V = IR$                                                                                                                                                                             |        | $\odot$       |  | $\overline{\mbox{\scriptsize (s)}}$    |  |  |
| a)  | I can correctly use and explain the terms electromotive force (E.M.F), internal resistance, lost volts, terminal potential difference (t.p.d) ideal supplies, short circuits and open circuits. |        | :<br>:        |  | $\overline{\mbox{\scriptsize (s)}}$    |  |  |
| b)  | I can use $E = V + Ir$ and $V = IR$ to solve problems involving EMF, lost volts, t.p.d., current, external resistance, and internal resistance.                                                 |        | 0             |  | $\overline{\mbox{\scriptsize (s)}}$    |  |  |
| c)  | I can describe of an experiment to measure the EMF and internal resistance of a cell.                                                                                                           |        | $\odot$       |  | $\overline{\ensuremath{\mathfrak{S}}}$ |  |  |
| d)  | I can determine electromotive force, internal resistance and short circuit current using graphical analysis.                                                                                    |        | $\odot$       |  | $\overline{\mbox{\scriptsize ($)}}$    |  |  |

| 20. | Capacitors                                                                                                                                                         |         |                |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|
| eq  | $C = \frac{Q}{V} \qquad Q = It \qquad E = \frac{1}{2}QV = \frac{1}{2}CV^{2} = \frac{1}{2}\frac{Q^{2}}{C}$                                                          | $\odot$ | $(\mathbf{i})$ |
| a)  | I know that a capacitor of 1 farad will store 1 coulomb of charge when the potential difference across it is 1 volt.                                               | $\odot$ | $\odot$        |
| b)  | I can use the equation C=Q/V to solve problems involving capacitance, charge and potential difference.                                                             | $\odot$ | $\odot$        |
| c)  | I can use the equation $Q = It$ to determine the charge stored<br>on a capacitor for a constant charging current.                                                  | $\odot$ | $\odot$        |
| d)  | I know the total energy stored in a charged capacitor is equal to the area under a charge-potential difference graph.                                              | $\odot$ | $\odot$        |
| e)  | I can use $E = \frac{1}{2}QV = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{c}$ to solve problems involving energy, charge, capacitance, and potential difference.      | $\odot$ | $\odot$        |
| f)  | I know the variation of <b>current</b> with time for both charging<br>and discharging cycles of a capacitor in an RC circuit<br>(charging and discharging curves). | $\odot$ | $\odot$        |

| No  | CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | √<br>x | Traffic Light |   |                                        |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|---|----------------------------------------|
| g)  | I know the variation of <b>potential difference</b> with time for<br>both charging and discharging cycles of a capacitor in an RC<br>circuit (charging and discharging curves).                                                                                                                                                                                                                                                                                                                                  |        | $\odot$       |   | $\odot$                                |
| h)  | I know the effect of resistance and capacitance on charging and discharging curves in an RC circuit.                                                                                                                                                                                                                                                                                                                                                                                                             |        | $\odot$       |   | $\overline{\times}$                    |
| i)  | I can describe experiments to investigate the variation of<br>current in a capacitor and voltage across a capacitor with<br>time, for the charging and discharging of capacitors                                                                                                                                                                                                                                                                                                                                 |        | ٢             |   | $\overline{\mbox{\scriptsize (s)}}$    |
| 21. | Semiconductors and p-n junctions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |               |   |                                        |
| a)  | I know and can explain the terms conduction band and valence band.                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | $\odot$       |   | $\overline{\ensuremath{\mathfrak{S}}}$ |
| b)  | I know that solids can be categorised into conductors,<br>semiconductors or insulators by their band structure and their<br>ability to conduct electricity. Every solid has its own<br>characteristic energy band structure. For a solid to be<br>conductive, both free electrons and accessible empty states<br>must be available.                                                                                                                                                                              |        | ٢             | : | 3                                      |
| C)  | I can explain qualitatively the electrical properties of<br>conductors, insulators and semiconductors using the electron<br>population of the conduction and valence bands and the<br>energy difference between the conduction and valence<br>bands. (Reference to Fermi levels is not required.)                                                                                                                                                                                                                |        | ٢             |   | $\overline{\mathbf{S}}$                |
| d)  | I know that the electrons in atoms are contained in energy<br>levels. When the atoms come together to form solids, the<br>electrons then become contained in energy bands separated<br>by gaps.                                                                                                                                                                                                                                                                                                                  |        | $\odot$       |   | $\overline{\mathbf{O}}$                |
| e)  | I know that for metals we have the situation where one or more bands are partially filled.                                                                                                                                                                                                                                                                                                                                                                                                                       |        | $\odot$       |   | $\odot$                                |
| f)  | I know that some metals have free electrons and partially filled valence bands, therefore they are highly conductive.                                                                                                                                                                                                                                                                                                                                                                                            |        | $\odot$       |   | $\odot$                                |
| g)  | I know that some metals have overlapping valence and conduction bands. Each band is partially filled and therefore they are conductive.                                                                                                                                                                                                                                                                                                                                                                          |        | 0             |   | $\odot$                                |
| h)  | I know that in an insulator, the highest occupied band (called<br>the valence band) is full. The first unfilled band above the<br>valence band is the conduction band. For an insulator, the<br>gap between the valence band and the conduction band is<br>large and at room temperature there is not enough energy<br>available to move electrons from the valence band into the<br>conduction band where they would be able to contribute to<br>conduction. There is no electrical conduction in an insulator. |        | $\odot$       |   |                                        |

| No | CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | √<br>x | Traffic Light |   |                                        |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|---|----------------------------------------|--|
| i) | I know that in a semiconductor, the gap between the valence<br>band and conduction band is smaller and at room<br>temperature there is sufficient energy available to move<br>some electrons from the valence band into the conduction<br>band allowing some conduction to take place. An increase in<br>temperature increases the conductivity of a semiconductor.                                                                                                                             |        | ٢             | : | 3                                      |  |
| j) | I know that, during manufacture, semiconductors may be<br>doped with specific impurities to increase their conductivity,<br>resulting in two types of semiconductor: p-type and n-type.                                                                                                                                                                                                                                                                                                         |        | $\odot$       |   | $\overline{\mathbf{S}}$                |  |
| k) | I know that, when a semiconductor contains the two types of<br>doping (p-type and n- type) in adjacent layers, a p-n junction<br>is formed. There is an electric field in the p-n junction. The<br>electrical properties of this p-n junction are used in a number<br>of devices.                                                                                                                                                                                                               |        | $\odot$       |   | $\odot$                                |  |
| l) | I know and can explain the terms forward bias and reverse<br>bias. Forward bias reduces the electric field; reverse bias<br>increases the electric field in the p-n junction.                                                                                                                                                                                                                                                                                                                   |        | $\odot$       |   | $\overline{\ensuremath{\mathfrak{S}}}$ |  |
| m) | I know that LEDs are forward biased p-n junction diodes that<br>emit photons. The forward bias potential difference across<br>the junction causes electrons to move from the conduction<br>band of the n-type semiconductor towards the conduction<br>band of the p- type semiconductor. Photons are emitted<br>when electrons 'fall' from the conduction band into the<br>valence band either side of the junction                                                                             |        | ٢             | : | 3                                      |  |
| n) | I know that solar cells are p-n junctions designed so that a<br>potential difference is produced when photons are absorbed.<br>(This is known as the photovoltaic effect.) The absorption of<br>photons provides energy to 'raise' electrons from the valence<br>band of the semiconductor to the conduction band. The p-n<br>junction causes the electrons in the conduction band to move<br>towards the n-type semiconductor and a potential difference<br>is produced across the solar cell. |        | ١             |   | 3                                      |  |

#### PRESCRIBED PRACTICAL EXPERIMENTS

One example of a method has been exemplified for each practical. Many more alternatives are available and just as good.



