IOP Scotland Teacher Network

This event will start shortly Assignment Higher Physics Monday 4 September 2023 7:30 pm

Please complete this short evaluation form:

https://forms.office.com/e/UXY7uqKp uv

Completing this evaluation is important to help ensure continued support for IOP activities and to ensure they meet your needs.

Higher Assignment

- Complete recipe sheet or topic suggestions? cannot give too much assistance
- What is appropriate at Higher Level ?
- One or two experiments?
- Enough results to produce a good graph?
- Timings prelim time?

Still to come ..

- Possible topics
- Practice investigations

SQA Coursework Assessment Task – your first port of call!

Very detailed - since 2019 -Instructions for teachers and lecturers -Marking Instructions -Instructions for candidates

Instructions

Teachers and lecturers must exercise their professional respon report submitted is the candidate's own work.

It is recommended that no more than 8 hours is spent on the v

A maximum of 2 hours is allowed for the report stage.

Teachers and/or lecturers must ensure candidates understand task. The instructions for candidates outline the requirements teachers and/or lecturers must give these to candidates at the altered or supplemented by centre-devised materials.

It is not permitted at any stage to provide candidates with a t

Research stage

The research stage is conducted under some supervision and c assessment' section.

IOP Institute of Physics

Scotland

IOP Scotland Teacher Network

Programme:

- Potential experiments for assignments
- Some other points to note

The assignment has two stages:

- research
- report

8 hours of which a maximum of **2 hours** is allocated to the reporting stage

The assignment offers challenge by requiring candidates to apply skills, knowledge and understanding in a context that is one or more of the following:

✓ unfamiliar

familiar but investigated in greater depth

integrating a number of familiar contexts

So anything goes!

Probably best to stick to these as standards. If you notice several are the same expt but with different titles!

ODU	P&W	Electricity
Measuring g $s = \frac{1}{2}at^2$	Finding Planck's constant	EMF by different methods
		$E = V + Ir \text{ or } R = \frac{E}{I} - r$
Measuring g $v^2 = 2as$	λ By diffraction $d \sin \theta = m \lambda$	Switch on voltage
Measuring g $g \sin \theta = a$	Inverse Square law (lasers don't, lights do)	Thermistors (timing)
Veryfying Equations of motion, weighing the Earth	Finding refractive index or critical angle	Capacitors (C=Q/V)
	v sound by interference	AC v DC
	Wavelength of microwaves by interference	I & f in a capacitor circuit c.f. I & f in a resistor circuit

Practical Ideas- check out the SQA past papers!

ODU	P&W	Electricity
Measuring g pendulum (AH?)	Op amps in inverting mode	Capacitors Area of plates Distance between plates
	Op amps and bandwidth	
	F on a I carrying wire	
	Out-of-balance Wheatstonestone bridge as two potential divider circuits	
	Mosfet board	

https://physicsflashrepo.ovh/

H Experiments - Unit 1 - Mechanics and Properties of Matter

H Experime	ents - Unit 1 - Mec	chanics and Properties of Matter	ootential	H Experim	ents - Unit 2 - Electricit	y and Electronics
Click on Activity Below	Title	Aim of Experiment		Click on Activity		-
Activity 01	Measurement of Acceleration	To calculate the acceleration of a trolley moving down a slope		Below	Title	
Activity 02A	Measurement of Acceleration	To measure the acceleration of a trolley moving down a slope		Activity 01	Electric Field patterns	To investigate the e
Activity 02B	Measurement of Acceleration	To find the relationship between the angle of slope and acceleration	Idoae	Activity 02	The Cathode Ray Tube	To inve
Activity 03	Measurement of Acceleration	To measure the acceleration due to gravity	iueas:	A	e.m.f. and internal resistance with parallel	
Activity 04	Resultant of two forces	To compare the resultant of two forces with the single force which produces the same effect		Activity 03	circuits	
Activity 05A	Velocity – time graphs	To obtain the velocity – time graph for a ball thrown upwards and caught		Activity 04	Internal resistance of a cell	
Activity 05B	Velocity – time graphs	To obtain the velocity – time graph for a ball thrown upwards and allowed to bounce		Activity 05	The balanced Wheatstone Bridge	
Activity 06A	Velocity – time graphs	To obtain the velocity – time graph for a trolley pushed up a slope and allowed to roll back down		A attivity OR	The out of belance Wheatstens bridge	To investigate the relationship be
Activity 06B	Velocity – time graphs	To obtain the velocity – time graph for a trolley pushed up a slope, allowed to roll back down and bounce against a buffer		ACTIVITY 00	The out-of-balance wheatstone bridge	
Activity 07	Equations of motion	To calculate the acceleration due to gravity using $s = ut + 1/2 at^2$		Activity 07	The out-of-balance Wheatstone bridge –	To investigate severa
Activity 08	Projectiles	To find the horizontal speed of a projectile		Activity 08	Alternating current - peak and r m e values	To establish a rela
Activity 09	Lifts	To calculate the acceleration of a lift		Activity 00	Calibration of a signal generator	To measure th
Activity 10	Work done	To calculate the work done by the force of friction acting on a trolley moving down a slope		Activity 09	Calibration of a signal generator.	to measure t
Activity 11	Momentum (Inelastic collisions)	To compare the total momentum before and after a collision		Activity 10	charge and potential difference for a capacitor	To investigate the relations
Activity 12	Momentum (Elastic collisions)	To compare the total momentum before and after a collision		Activity 11	Charging and discharging characteristics for a capacitor	To observe the variation of the o
Activity 13	Explosions	To compare the total momentum before and after an explosion			Response of resistance in a variable	
Activity 14	Impulse	To calculate the average force exerted by a club on a golf ball		Activity 12	frequency a.c.circuit.	To establish a relationship
Activity 15	Impulse	To compare different times of contact for different balls bouncing on a hard surface		Activity 13	Current and frequency in a capacitive circuit.	To establish a relationship I
Activity 16	Impulse	To compare force – time graphs for different collisions		Activity 14	Uses of capacitors – a flashing neon lamp.	To s
Activity 17A	Densities of solids and liquids	To measure and compare the densities of solid and liquid substances		Activity 15	Uses of capacitors – d.c. power supply.	To show the effect of
Activity 17B	Density of air	To measure the density of air		Activity 16	Using a potentiometer	ie sher die eneer of
Activity 18A	Pressure and depth in fluids	To it Home N4 N5 H AH H Experiments - AH Experiments - Motion Grapher Ph	nysics 2.15 - Animations Int 1 👻 Int 2	Activity 17	The Inverting Amplifier	
Activity 18B	Pressure and depth in fluids	To in		Activity 18	Saturation	
		Manual Province Decision Alberta Alberta Manual Province Decision Decision			pannanon.	1

	Click on Activity Below	Title	Aim of Experiment
	Activity 01	Electric Field patterns	To investigate the electric field patterns around two point charges and two parallel plates.
	Activity 02	The Cathode Ray Tube	To investigate the path of the electron beam in a cathode ray tube.
	Activity 03	e.m.f. and internal resistance with parallel circuits	To determine the internal resistance of a battery
	Activity 04	Internal resistance of a cell	To determine the internal resistance of a cell.
	Activity 05	The balanced Wheatstone Bridge	To find the resistances of unknown resistors.
	Activity 06	The out-of-balance Wheatstone bridge	To investigate the relationship between the current through the limiting resistor and the change in resistance of one the resistors in the Wheatstone Bridge.
	Activity 07	The out-of-balance Wheatstone bridge – applications	To investigate several applications of the Wheatstone bridge in the out-of-balance condition.
	Activity 08	Alternating current – peak and r.m.s.values	To establish a relationship between peak and equivalent direct (r.m.s.) values of voltage.
	Activity 09	Calibration of a signal generator.	To measure the output frequency of a signal generator using an oscilloscope.
	Activity 10	Charge and potential difference for a capacitor	To investigate the relationship between the voltage across a capacitor and the charge stored on its plates.
	Activity 11	Charging and discharging characteristics for a capacitor	To observe the variation of the current through, and the p.d. across the capacitor during the charge and discharge cycles.
	Activity 12	Response of resistance in a variable frequency a.c.circuit.	To establish a relationship between the current through a resistor and the frequency of the a.c. supply.
	Activity 13	Current and frequency in a capacitive circuit.	To establish a relationship between the current in a capacitive circuit and the frequency of the a.c. supply.
	Activity 14	Uses of capacitors – a flashing neon lamp.	To show the principle of operation of a flashing neon lamp.
	Activity 15	Uses of capacitors – d.c. power supply.	To show the effect of capacitors in the production of a smooth d.c. supply from an a.c. supply.
	Activity 16	Using a potentiometer	To use a potentiometer to select a range of voltages
Int 2	Activity 17	The Inverting Amplifier	To investigate the Op-Amp in the inverting mode
	Activity 18	Saturation	To investigate the saturation voltage of the On-Amp

H Experiments - Unit 3 - Radiation and Matter

Click on Activity Below	Title	Aim of Experiment
Activity 01A	Interference of microwaves	To investigate a microwave interference pattern and to find the wavelength of microwaves.
Activity 01B	Interference of microwaves	To find the wavelength of microwaves from an interference pattern caused by reflected waves.
Activity 02	Interference of sound	To investigate an interference pattern produced by two sources of sound.
Activity 03A	Interference of laser light	To observe an interference pattern produced by laser light.
Activity 03B	Measurement of wavelength	To measure the wavelength of laser light from measurements taken from an interference pattern.
Activity 04	Comparison of white light spectra	To compare the spectra produced when white light passes through (a) a prism and (b) a grating.
Activity 05	Refractive index of a perspex block	To measure the refractive index n of a perspex block.
Activity 06	Critical angle of a perspex block	To measure the critical angle 8c of a perspex block.
Activity 07	Variation of light intensity with distance from a point source of light	To investigate the relationship between the intensity of light and the distance from the light source.
Activity 08	The photoelectric effect	To compare the effect of white light and u.v. radiation on charged electroscopes.
Activity 9	Emission spectra	To calculate the acceleration of a trolley moving down a slope
Activity 10	Laser beam diameter	To measure the beam diameter at various distances from a laser.
Activity 11	Forward and reverse-biased p-n junctions	To measure the variation of current with applied p.d. for a forward and reverse-biased p-n junction.
Activity 12	Photodiode – photovoltaic mode	To measure the frequency of an a.c. suppply using a photodiode in photovoltaic mode.
Activity 13	Forward and reverse-biased photodiode	To investigate the relationship between the current and applied p.d. for a forward and reverse-biased photodiode.
Activity 14	The switching action of an n-channel enhancement MOSFET	To investigate the relationship between the input p.d. and the output p.d. for a MOSFET, and to determine the switching p.d.
Activity 15	Half-value thickness	To measure the half-value thickness of lead for gamma rays

 A student carries out an investigation to determine the refractive index of a prism.

MARKS

1

1

A ray of monochromatic light passes through the prism as shown.

The angle of deviation ${\cal D}$ is the angle between the direction of the incident ray and the deviated ray.

The student varies the angle of incidence θ and measures the corresponding angles of deviation D.

The results are shown in the table.

Angle of incidence θ (°)	Angle of deviation D (°)
30-0	47.0
40-0	38.1
50-0	37.5
60-0	38.8
70-0	42.5

- (a) Using the square-ruled paper on Page thirty-five, draw a graph of D against θ .
- (b) Using your graph state the two values of θ that produce an angle of deviation of 41.0°.

2015 Q12

(c) Using your graph give an estimate of the minimum angle of deviation $D_{\rm m}.$

14. A student investigates the factors affecting the frequency of sound produced by a vibrating guitar string.

The guitar string is stretched over two supports and is made to vibrate as shown.

The frequency f of the sound produced by the vibrating string is given by the relationship

$$f = \frac{1}{2L} \sqrt{\frac{T}{\mu}}$$

- where T is the tension in the string L is the distance between the supports μ is the mass per unit length of the string.
- (a) The tension in the string is 49.0 N and the mass per unit $l_{\rm 0}$ string is 4.00 \times 10^{-4} kg m^{-1}.

The distance between the supports is 0.550 m. Calculate the frequency *f* of the sound produced. Space for working and answer

2016 Q14

A wire of length L and cross-sectional area A is shown.

The resistance R of the wire is given by the relationship

$$R = \frac{\rho L}{A}$$

where ρ is the resistivity of the wire in Ω m.

(a) The resistivity of aluminium is $2 \cdot 8 \times 10^{-8} \Omega$ m.

Calculate the resistance of an aluminium wire of length $0{\cdot}82\,m$ and cross-sectional area $4{\cdot}0\times 10^{-6}\,m^2.$

Space for working and answer

IOP Institute of Physics Scotland 2

13. A student sets up an experiment to investigate the pressure due to a liquid as shown.

The pressure due to a liquid is given by the relationship

 $p = \rho g h$

- where p is the pressure due to the liquid in pascals (Pa),
- g is the gravitational field strength in $N kg^{-1}$,

 ρ is the density of the liquid in kg m⁻³,

and h is the depth in the liquid in m.

(a) The student initially carries out the investigation using water. The density of water is 1.00×10^3 kg m⁻³.

Calculate the pressure due to the water at a depth of 0.35 m.

Space for working and answer

16. A group of students carries out an experiment to investigate the transmission of light through an optical fibre.

Red light is transmitted through a loop of optical fibre and detected by a photodiode connected to a voltmeter as shown.

The photodiode produces a voltage proportional to the irradiance of light incident on it.

The students vary the radius, r, of the loop of the optical fibre and measure the voltage produced by the photodiode.

The results are shown in the table.

Radius of loop (mm)	Voltage (V)
5	0.48
10	0.68
15	0.76
20	0.79
30	0.80
40	0.80

(a) Using the square-ruled paper provided on *page 38*, draw a graph of these results.

One experiment	Two experiments
Time to write up (max 2 hours)	Two attempts at graphing
Find additional DATA (table or graph)	You are the second source
Reduces stress on students	Less time searching the web, not limited by finding data
More able to write up	data from two related experiments must gather extracts for underlying physics
Only one chance to mess up!	You will be awarded the mark if one of the two descriptions is acceptable.

Gather extracts to support the candidate description of underlying physics

One experiment + data source or two experiments but must be the same aim U.S 2023 appear to push for two experiments but is this right for your students?

Scotland

Notes

RESEARCH

- 5 measurements, 5 repeats? Depends on the time to collect repeats ∆R for 6-12 readings **Remember** candidates should repeat measurements not take 5 sets of readings at once!
- Scale reading uncertainty for each measurement
- Data could be a table or a graph something that allows your aim to be verified.

REPORT

- Do not use ifs in your aim where your answer could be yes- see full MI
- Do not use or show a relationships in your aim where your answer might not be able to show a relationship
- An extract must be a direct copy, which can be a printout, photocopy or handwritten (word for word) and must not be annotated. There is no size limit on an extract, but it must be an extract and not the full document.
- Your extracts can include any formulae or relationships you may need but must not include sample calculations.
- During the report stage you will need to show your understanding by writing your description of the physics relevant to your aim using your own words.
- It is important that you record where you get your data or extracts from in enough detail IOP Institute of Physics

Scotland

Rules

RESEARCH

- Not sending students to websites, so print off the method sheets first
- No feedback to be given on their research, only for health and safety and protection of kit
- Research only from websites, journals and/or books. NOT student notes
- Research can be completed at home
- Individual

REPORT

- Almost exam conditions
- No feedback to be given
- 2 hours max (plus any additions in line with written paper)
- Research only from websites, journals and/or books. NOT student notes
- Research can be completed at home
- Individual

To take in

• This can be used to check off student work and make sure candidates are only taking in to the write-up what is allowed

https://www.mrsphysics.co.uk/higher/wpcontent/uploads/2023/12/H-What-I-can-take-in.docx

HIGHER PHYSICS ASSIGNMENT REPORTING STAGE

The reporting stage is conducted under tight conditions

- You should be able to be seen by your teacher
- display materials that might provide assistance are removed or covered
- You must have no access to email the internet or mobile phones
- You must work on your own and in silence
- Your teacher cannot provide assistance of any description

NAME:

The only materials you are allowed during the reporting stage are listed in the table.

Tick these off and place them in the polypocket.

This <u>polypocket</u> and its contents must stay with your teacher, it is not allowed home or out of class.

ltem	tick	
Instruction sheets for candidates which must not have been altered		
Experimental Method sheet		
Your raw data, (including any scale reading uncertainties), which may be tabulated; the table must not have additional blank or pre-populated columns for mean and derived values		
Numerical and/or graphical data from an internet/literature source, which must not include sample calculations		
a record of the source of data from the internet/literature (reference)		
extracts from internet/literature sources to support the description of the underlying physics, (this must not be a draft or include sample calculations)		

"Focus on What You Can Do in The Here And Now." "Stay calm" All the best from your teacher.

Higher Assignment - Useful Links

SQA Higher Physics Coursework Assessment Task https://www.sqa.org.uk/files_ccc/HigherCATPhysics.pd

https://www.understandingstandards.org.uk/Subjects/Physics/Higher/Assignment

Some ideas for practical work <u>https://www.mrsphysics.co.uk/higher/assignments-from-2018/</u>

https://www.youtube.com/watch?v=PAXVkcJLTKk&list=PLuzo1XZjZlcUkRFoPBx84W_RrJW3pj HnA&index=17

www.sserc.org.uk/wp-content/uploads/2017/07/Practical_physics_guide.pdf

Detailed marking can be shared in advance but not during report writing

Section	Max mark	Expected response and marking instructions	
7 Cond	clusion (1 r	nark)	
	1	A valid conclusion that relates to the aim and is supported by all the data in the report. Where no aim has been stated, do not award this mark.	
8 Eval	uation (3 n	narks)	
	 3 Evaluation of the investigation. Award 1 mark for each valid evaluative statement supported by appropriate justification, to a maximum of 3 marks. The evaluative statements could relate to experimental procedures, results, uncertainties or data from an internet/literature source. A maximum of 1 of these marks is available for an evaluation of data from an internet/literature source. 		
9 Struc	cture (1 m	ark)	
	1	A clear and concise report with an informative title. The structure of the report does not need to follow the structure suggested in the marking instructions or instructions for candidates, but should flow in a logical manner.	

https://www.sqa.org.uk/files_ccc/HigherCATPhysics.pdf

A scatter graph is the only appropriate format for presentation of data in this section. Graphs must be based on the candidate's experimental data.

Mark computer-generated graphs in the same way as hand-drawn graphs.

Graphs should be of *a size that allows the scaling and labelling of the axes,* and the accuracy of the plotting of the data points, to be readily checked.

It may not be possible to check the accuracy of plotting if data points are excessively large, minor gridlines are omitted or the candidate has not used graph paper.

Where a candidate has graphed data from two experiments, both graphs should be marked, and the mark associated with the higher-scoring graph awarded.

IOP Institute of Physics Scotland

https://www.sqa.org.uk/files_ccc/HigherCATPhysics.pdf

- Award 2 marks if the candidate includes <u>all</u> appropriate scale reading uncertainties and correctly calculates random uncertainties.
- Award 1 mark if the candidate includes <u>all</u> appropriate scale reading uncertainties *or* correctly calculates random uncertainties.

https://www.sqa.org.uk/files_ccc/HigherCATPhysics.pdf

References..

A citation and reference for a source of internet/literature data or information.

The candidate must cite the internet/literature source within the body of the report and give the reference later in the report.

Source	Reference	
Website	Full URL for the page(s) with date accessed	
	The URL "WWW.DDC.CO.UK (FeD 2018)" is not acceptable, but	
	inclps.//www.bbc.co.uk/education/guides/29499jo/Tevision (Feb 2018)	
	is acceptable.	
Journal	Title, author, journal title, volume and page number	
Book	Title, author, page number and either edition or ISBN	

If the candidate includes data from a single experiment, the reference must be to the source of the internet/literature data relevant to the experiment.

If the candidate includes data from two experiments, the reference must be to a source of information gathered to assist with the description of the underlying physics.

https://www.sqa.org.uk/files_ccc/HigherCATPhysics.pdf

Candidate Guide (pages 20 - 26) "Read it or greet!"

Report stage Producing the report	 You must include a reference to a source of data/information. If you carried out a single experiment, your reference must data obtained from the internet/literature, which is relevan data. If you carried out two experiments, your reference must be information gathered to support your description
 The report must be all your own work. When producing your report, you will be supervised at You have 2 hours to complete your report. 	 You must cite the internet/literature source within the body of t relevant data/information.
South	

-				
1		1		11
		,	14	
		1		

Section	Description		
Title and structure	An informative title and a structure that can	Marks	
Underlying physics	A description of the purpose of your investion	1	
Data collection and and	A description of the physics relevant to your aim, which shows your understanding.	1	
	experimental data. Sufficient raw data from your experimental	1	
	and/or other derived values, press	1	
	with headings and units presented in a table	1	

https://www.sqa.org.uk/files_ccc/HigherCATPhysics.pdf

Scotland

"Assignment

There is evidence that candidates who follow the 'instructions for candidates' section of the coursework assessment task manage to access the majority of available marks."

https://www.sqa.org.uk/files_ccc/2019HCourseReportPhysics.pdf

CAT change log pages....

Published:	June 2020 (version 3.0)		-
History	of changes		RECAD
Version	Description of change	Date	
2.0	'Instructions for teachers and lecturers' section:	September 2019	
	 'Instructions' sub-section: 		
	 — clarification that instructions for candidates must not be altered or supplemented by centre-devised materials 		
	 'Choosing the topic' sub-section: 		
	 information added that there must be a range of topics available for candidates to choose from and that teachers/lecturers must minimise the numbers investigating the same topic within a class 		<u>https://www.sqa.org.</u> <u>uk/files_ccc/HigherC</u> <u>ATPhysics.pdf</u>
	 'Experimental research' sub-section: candidates can be given only a basic list of instructions for the experimental procedure and must decide on range, interval and number of repeats for themselves 		IOP Institute of Physics

Course Report 2019

Assignment

The assignment performed in line with expectations.

https://www.sqa.org.uk/files_ccc/2019HCourseReportPhysics.pdf

Course Report 2019

Centres should continue to ensure that candidates have a choice of assignment and that if candidates are only performing one experiment, they have an opportunity to find data from literature sources. Whole classes or cohorts investigating the same topic is not acceptable. Centres are encouraged to give candidates opportunities to take part in a wide range of practical work before choosing a topic for investigation. Centres should ensure that candidates can cite and reference their sources correctly. While a formal citing and referencing system isn't required, candidates should be strongly encouraged to follow a system such as the Vancouver referencing system. Candidates should be made aware that they need to conclude all of their data, both practical and literature. Where a candidate's experimental data does not agree with their literature data, their conclusion should reflect this. Centres should ensure that candidates are provided with opportunities to develop the necessary skills to evaluate their data and experimental procedures.

Course Report 2019

When referencing their secondary data, many candidates did not cite their source as well as reference it. When candidates referenced an internet source, a number did not give the date when the site was accessed. Many candidates did not write a conclusion that referred to all of their data. Candidates were often only stating a conclusion about their own experimental data. Some candidates ignored their experimental data and concluded using only their literature source. In the evaluation section, candidates did not always supply a justification for their evaluation. For example, candidates should make it clear why a suggested experimental change would produce an improvement in their data. Some candidates are continuing to evaluate the reliability of their literature source. This does not gain any marks in the revision to the assignment. There is one mark available for evaluating the data from the literature source but not for evaluating the source itself.

https://www.sqa.org.uk/files_ccc/2019HCourseReportPhysics.pdf

Understanding Standards - updated

In this section Select a subject National 5 Higher Question pap Assignment Advanced Hig Presentations

sessions 2020-22

<u>Home</u> > <u>Subjects</u> > <u>Physics</u> > <u>Higher</u> > <u>Assignment</u> > Introduction

Home

Using the site

this section	Higher Physics - assignment					
elect a subject 🗸 🗸	Assignment 2023 (All links open as PDF files)					
National 5	Candidate 1: To determine Planck's Constant	Evidence				
Higher ▶ Question paper	Candidate 2: Determining Internal Resistance of an Electrical Supply	Evidence				
▶ Assignment	Candidate 3: To find out the relationship between the peak voltage of an A.C supply and its D.C equivalent voltage					
Advanced Higher	Candidate 4: The inverse square law of irradiance	Evidence				
Webinars	Candidate 5: Verifying the refractive index of water	Evidence				
Course Reports Additional resources for	Commentaries					

Events

Subjects

Updates

Contact

Assignment 2018 (All links to PDF files)		
Candidate 1 - Mass of the earth	Candidate evidence	<u>Commentary</u>
Candidate 2 - Batteries	Candidate evidence	Commentary (Revised March 2023)
Candidate 3 - Switch on Voltage	Candidate evidence	<u>Commentary</u> (Revised March 2023)
Candidate 4 - Thermistors	Candidate evidence	<u>Commentary</u>
Candidate 5 - Simple Pendulum	Candidate evidence	Commentary (Revised March 2023)
Candidate 6 - Verification of an Equation of Motion	Candidate evidence	<u>Commentary</u>
Candidate 7 - Measuring g	Candidate evidence	<u>Commentary</u>
1		Scotland

https://www.understandingstandards.org.uk/ Subjects/Physics/Higher/Assignment

hysics

Understanding Standards - candidate evidence

Candidate 6 evidence (Verification of an Equation of Motion)

Verfiction of our Epictuic of Meticn
An Jun going to verify the quation V²= v²+2as
PMINGs Acoulemention is the state of change of velocity so

$$a = V - u$$

t
A velocity time graph of an object with current velocity is
shown
N
V The orea under the graph is
the displacement of the object

https://www.understandingstandards.org.uk/Higher_images/physics/PhysicsHigherAssignment2018-19CandidateCpdf

Scotland

Understanding Standards - candidate evidence

Commentary on candidate 6 evidence (Verification of an Equation of Motion)

The evidence for this candidate has achieved the following marks for each section of this course assessment component.

Section	Expected response	Maximum mark	Mark awarded	Commentary	
1 Aim	An aim that describes clearly the purpose of the investigation.	1	1	The candidate's aim clearly describes the purpose of the investigation.	
2 Underlying physics	An account of physics relevant to the aim of the investigation.	3	2	The candidate has defined acceleration and has correctly derived the relationships $s = ut + \frac{1}{2}at^2$ and $v^2 = u^2 + 2as$ This is at an appropriate level. The symbols used are not defined but are standard symbols.	
CAP				To be a good account, the candidate could have described how the apparatus measures speed and acceleration, and compared $v^2 = 2as$ to the equation fo a straight line, highlighting the significance of the gradient and intercept	

Scotland

https://www.understandingstandards.org.uk/Higher images/physics/PhysicsHigherAssignment2018-19Commentary6.pdf

R

Possible investigations - Photos, no aims!

Possible Higher Assignment topics

LEDs. Wavelength of light emitted (Possible internet data?)

Background physics

Apparatus Planck's constant apparatus Voltmeter Ammeter Power supply

https://docs.google.com/document/d/1h7QbHqPmqXKRM1teDUmu6TIEUilhyWibhKv6aaxoRnQ/edit

Image searches - "all" vs "image search"

If time permits - practice assignment?

Slope force - two ways?

Higher Assignment preparation

All read instruction for candidates (10 mins)

Look at specimen reports from SQA

Give all class topic "Forces on a slope" and	а
protractor etc.	

Class to use textbook(page 28) or website ex

Carry out practical and obtain raw data.

Demonstrate second experiment using hanging mass.

With results

Allow class to discuss both experiments including possible evaluation points and uncertainties before report stage.

Write up report individually in test conditions on lined paper and graph paper with

- candidate guide,
- both sets of <u>raw data</u> and
- textbook page and website excerpts.
- Peer review sheet (not allowed in assessed write up)

https://docs.google.com/document/d/1X4SoI7RbQi1OUj5Jk4-VEKWDvwzflbQD9APUSj3uw-Q/edit

Slope force - Specimen results exemplify uncerts

А	В	с	D	Е	F	G	н	I	
Slope force	using hang	ging weight	results						
	Angle 1	Angle 2	Angle 3	Average angle			ARMU (unrounde d	ARMU	F
Mass (g)	(degrees)	(degrees)	(degrees)	(degrees)	Max	Min	(degrees))	(degrees)	ſ
100	11	12	11	11	12	11	0.33	0	
150	17	16	17	17	17	16	0.33	0	
200	24	25	23	24	25	23	0.67	1	
250	28	30	28	29	30	28	0.67	1	
300	34	36	35	35	36	34	0.67	1	
-350	47	44	42	44	47	42	1.67	2	
- R	XCA	P							

https://docs.google.com/spreadsheets/d/1PLqTGRVccGMFebCJp-2Ny9Nabgo8jVKfULMd3-Sn1zg/edit#gid=0

distance	Irradiance (units)								
(m)					average				
0.200	57.0	65.8	55.2	57.9	59.0				
0.250	38.2	36.4	39.7	38.4	38.2				
0.300	25.6	24.9	25.4	25.8	25.4				
0.400	14.9	15.5	15.5	16.2	15.5				
0.600	7.8	7.5	7.6	7.7	7.7				
0.800	5.3	5.2	5.3	5.0	5.2				
1.000	4.0	3.5	3.2	3.4	3.5				

Can't take calculated values in e.g. averages

distance	Irradiance (units)								
(m)									
0.200	57.0	65.8	55.2	57.9					
0.250	38.2	36.4	39.7	38.4					
0.300	25.6	24.9	25.4	25.8					
0.400	14.9	15.5	15.5	16.2					
0.600	7.8	7.5	7.6	7.7					
0.800	5.3	5.2	5.3	5.0					
1.000	4.0	3.5	3.2	3.4					

This is what can be taken in, notice there are no blank unpopulated tables

Students can have plotted a graph during the experimental phase, but this must not be taken in to the reporting stage. Good practice to do this for any experiment

Possible table (after write-up)

					dis	distance 1/d ²			Irradiance (lux)				ΔR	% unce	ertainty	
An ex	ample of a	a final	table b	out	((m)	(m ⁻²)					average	(lux)	(%)		
samp	le calculat	ions sl	hould	be	0.	.200	25.0	57.0	65.8	55.2	57.9	59.0	2.7	. ,	4	
aiven	in the ana	lvsis t	o shov	v	0.	.250	16.0	38.2	36.4	39.7	38.4	38.2	0.8		2	
how th	nese were	calcu	lated	-	0.	.300	11.1	25.6	24.9	25.4	25.8	25.4	0.2		1	
Contr	ol+tilda ac	cent a	irave (the	0.	.400	6.25	14.9	15.5	15.5	16.2	15.5	0.3		2	
kov al	hove the t	sh) rev	voale t	ho	0	.600	2.78	7.8	7.5	7.6	7.7	7.7	0.1		1	
formu	lo in a tab		veais i		0.	.800	1.56	5.3	5.2	5.3	5.0	5.2	0.1		1	
Ionnu	ia ili a lap	ie			1.	.000	1.00	4.0	3.5	3.2	3.4	3.5	0.2		6	
distance	1/d ²			Irradia	ance (lu	x)			ΔR				% unce	% uncertainty		
(m)	(m ⁻²)					a	iverage		(lux)			(%)	(%)			
0.2	=1/(A3*A3)	57	65.8	55.2	57.9	9 =AVERAGE(C3:F3)			=(MAX(C3:F3)-MIN(C3:F3))/COUNTA(C3:F3)) =H3/0			
0.25	=1/A4^2	38.2	36.4	39.7	38.4	=AVEF	RAGE(C4:F4	·) =(M/	=(MAX(C4:F4)-MIN(C4:F4))/COUNTA(C4:F4)) =H4/0				
0.3	=1/A5^2	25.6	24.9	25.4	25.8	3 =AVERAGE(C5:F5) =			=(MAX(C5:F5)-MIN(C5:F5))/COUNTA(C5:F5)) =H5/0				
0.4	=1/A6^2	14.9	15.5	15.5	16.2	=AVERAGE(C6:F6)			=(MAX(C6:F6)-MIN(C6:F6))/COUNTA(C6:F6)) =H6/0	G6*100			
0.6	=1/A7^2	7.8	7.5	7.6	7.7	=AVEF	RAGE(C7:F7	") =(M/	AX(C7:F7)	-MIN(C7:F	=7))/COU	NTA(C7:F7) =H7/0	G7*100		
0.8	=1/A8^2	5.3	5.2	5.3	5	=AVEF	RAGE(C8:F8	s) =(M/	AX(C8:F8)	-MIN(C8:F	=8))/COU	NTA(C8:F8) =H8/0	G8*100		
1	=1/A9^2	4	3.5	3.2	3.4	=AVEF	RAGE(C9:F9) =(M/	AX(C9:F9)	-MIN(C9:F	=9))/COU	NTA(C9:F9) =H9/0	9*100		

A graph to show the inverse square law for a point source

Using Excel for SQA work

- <u>https://www.mrsphysics.co.uk/advanced/proje</u>
 <u>ct-2019/</u>
- 2. <u>https://www.mrsphysics.co.uk/bge/using-</u> <u>excel/</u>
- 3. <u>https://www.mrsphysics.co.uk/advanced/wp-content/uploads/2020/06/Excel-Tables-Hookes-Law-AH-EXTENSION-2020.pdf</u> (last one goes up to AH, but parts are ok for higher)

Uncertainties

You must include scale reading uncertainties for all the measurements you have made in your experiment, and calculate the random uncertainty in your repeated measurements.

If you carried out two experiments, you should include the uncertainties in the measurements from both experiments. Both sets of uncertainties will be marked, and you will be awarded the mark for the better set.

Make sure the examples you use are for SQA at Higher Level. Other methods might be equally correct but won't get students the marks!

https://www.mrsphysics.co.uk/higher/uncertainties/ https://www.youtube.com/watch?v=5oH6qR5iFvA

Uncertainties

This was a great little table given in resources for the 2000 Higher Still Higher. I think this still works to show scale reading uncertainties Uncertainties must be stated for all the measuring instruments used. For most experiments a mean should also be calculated together with the approximate random uncertainty.

Please use the table below to help you record your uncertainties.

	Scale reading uncertainty	comment	% uncertainty [if needed]	random uncertainty [if needed]
(name of x)	± (value) unit	half smallest scale division		see readings table, <u>max - min_used</u> No. of readings
(name of y)	± (value) unit	one in last digit		Not done, only two readings taken

Some of the References I couldn't show you in the talk!

- John Sharkey waives his copyright on the swf files and content on the above conditions.
- · Freezeray swf files created by S. Wilkinson and are hosted with permission.

Diseas also note

- https://www.understandingstandards.org.uk/Subje cts/Physics/Higher/Assignment
- https://www.focuseducational.com/a-levelphysics-required-practicals/
- https://filestore.aga.org.uk/resources/physics/AQA -7407-7408-SUG-P2.PDF
- https://physicsflashrepo.ovh/ •
- https://www.mrsphysics.co.uk/higher/wp-۰ content/uploads/2023/09/A-GUIDE-TO-Assignments-2023.pdf

Please complete this short evaluation form:

https://forms.office.com/e/SauaTs3UAs

Completing this evaluation is important to help ensure continued support for IOP activities and to ensure they meet your needs.

IOP Scotland Teacher Network - Online

Early Career Teacher TeachMeet 19:30-20:30, Wednesday, 13 December 2023

Using AI in Physics Education 16:30-17:30, Wednesday, 17 January 2024

Alternative Pathways in Physics 19:30-20:30, Wednesday, 31 January 2024

49th Stirling Physics Teachers Meeting

23 May 2024 Stirling Court Hotel, Stirling, Scotland

IOP New Contact List

Register for our new email list:

www.iop.org/education/sign-up-learning-skills-community

Sign up to our learning and skills community

The Institute of Physics has worked for many years to support those involved with physics teaching.

Please complete the relevant form below sign up to our learning and skills community.

