H Physics Quantity, Symbol, Unit, Unit Symbol

**REVISION GAME** 

d°=1[a0]

FOR EACH EQUATION NOTE THE QUANTITY HIGHLIGHTED, STATE ITS UNIT AND UNIT SYMBOL AND WHETHER IT IS A SCALAR OR VECTOR QUANTITY. UP TO 4 MARKS PER QUESTION, KEEP YOUR SCORE. HOW MANY CARDS CAN YOU COMPLETE BEFORE MAKING A MISTAKE OR FORGETTING ONE?



arcsin(2)

XnH =



### force

#### Newton

### N







### **distance**

#### **metre**

### m







# displacement metre m vector





# displacement metre m vector



### 'u' as in v = u + at

Initial velocity
 metres per second
 ms<sup>-1</sup>or m/s
 vector



6



### Acceleration

## metres per second squared ms<sup>-2</sup> or m/s<sup>2</sup> vector





- per kilogram
- ► ms<sup>-2</sup> or m/s<sup>2</sup> or N kg<sup>-1</sup>

**vector** 





## WeightNewton

### Nvector



## 'E<sub>w</sub>' or W as in $E_w = Fd$ <sup>10</sup>

### Work done

### Joule

### J (must look like a capital) J (scalar

•Find him at •https://mrsphysics.co.uk



# mass kilogram kg scalar





### height metre







### (gravitational) potential EnergyJoule

J (must look like a capital)scalar





### Kinetic Energy

### Joule

### J (must look like a capital) scalar

Keeping you afloat with Physics
 Find him at
 https://mrsphysics.co.uk



# Power Watt (yes Watt is the unit of power) W scalar





### Gravitational force

### Newton

N or kgms<sup>-2</sup>

**vector** 





#### Universal constant of Gravitation

- cubic metres per kilogram per second squared!
   m<sup>3</sup>kg<sup>-1</sup>s<sup>-2</sup>
- Scalar
- equal to
- $6.67 \times 10^{-11} \text{ m}^3\text{kg}^{-1}\text{s}^{-2}$





### Work done

### Joule

### J (must look like a capital) scalar



## ' $\Delta p$ ' as in $\Delta p = Ft$

Change in momentum or impulse
 Kilogram metre per second or Newton second

Kgms<sup>-1</sup> or Ns
vector





### Momentum

### Kilogram metre per second or Newton second

Kgms<sup>-1</sup> or Ns
vector



## 'm' as in p = mv

#### mass

### KilogramKg





### 'Ft' as in Ft = mv - mu

Impulse or change in momentum
 Newton second or kilogram metre per second

►Ns or kgms<sup>-1</sup>

vector



22



### Relativistic /Dilated time

Units of time

s,d, h, yrscalar





### dilated time

## second (or years/days etc) s (yr/d/h) scalar





# Time in the same reference frame as the clock??? Units of time s,d, h, yr scalar





## Relativistic /contracted length Units of length, metres









# original length Units of length, metres m scalar





# Frequency of the source Hertz Hz scalar





# velocity of the source Metres per second ms<sup>-1</sup> or m/s vector





### Observed frequency

### Hertz

### Hz







Speed of light
metres per second
ms<sup>-1</sup> or m/s
This is equal to
3.00 × 10<sup>8</sup> ms<sup>-1</sup>





### contracted length

### **metre**









### **Observed wavelength** (the wavelength

arriving at us after passing through space)











### Observed wavelength

### **metre**









Recessional velocity
 metres per second
 ms<sup>-1</sup>or m/s
 vector





### **redshift**

### No unit






### rest wavelength

### **metre**







# ${}^{\rm 38}$

# Hubble's constant Per Second or seconds to the minus 1 s<sup>-1</sup> Scalar. The value is equal to $2.3 \times 10^{-18} \, \text{s}^{-1}$



## 'd' as in $v = H_o d$

### Distance from galaxy to the observer

### metre









### Observed frequency

### Hertz

Hz







Change in velocity
 Metres per second
 ms<sup>-1</sup>or m/s
 vector







# Square metres m<sup>2</sup> or m<sup>2</sup> scalar





### irradiance

# Watts per square metre Wm<sup>-2</sup> or W/m<sup>2</sup> scalar





### Approximate random uncertainty The units of the quantity measured







# frequency Hertz Hz scalar





### periodsecond

sscalar





# Frequency of source Hertz Hz scalar





Energy level
Joule
J (must look like a capital)
scalar





•Find him at •https://mrsphysics.co.uk

## Energy of the photonJoule

J (must look like a capital) Scalar /4



# Work function Joule J scalar





### Threshold frequency Hertz

Hzscalar



## 'h' as in E = hf 52

Planck's constant Joule second JS ► Scalar Equal to ► 6.63 × 10<sup>-34</sup> Js



### ' $\theta$ ' as in $d \sin\theta = m\lambda$

## Angledegrees







53

## 'd' as in $d \sin\theta = m \lambda$

### Slit separation

### **metre**

### > m > scalar





### Initial distance from the source

#### **b**metre









### Constant of proportionality

Watt









### Initial irradiance

# Watts per square metre Wm<sup>-2</sup> or W/m<sup>2</sup> scalar





### Critical angle

### **b**degrees









### Refractive index

### No units







Speed of wave in vacuum / equates to air
metres per second
ms<sup>-1</sup> or m/s
scalar
This is likely to be equal to /5
3.00 × 10<sup>8</sup> ms<sup>-1</sup>





### Peak current

### **Ampere**









### Root mean squared current

### **Ampere**









# Peak voltage volt V scalar





### Root mean squared voltage volt







### periodsecond

sscalar



### 'A' as in height of a wave

### amplitude

#### **metre**

### m





66



# capacitance Farad F (equal to CV<sup>-1</sup>) scalar





### pressure Newton per square metre or Pascal

Pascalar





## chargecoloumb

Cscalar





# voltage volt v V scalar





#### current

#### **b**ampere

Ascalar



## 'R<sub>T</sub>' as in $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$ <sup>72</sup>

### Total resistance of resistors in parallel

### **bohm**








#### **resistance**

#### **b**ohm

 $\triangleright \Omega$ 







### Fotal load resistance (total resistance in the external circuit)









## ' $\lambda$ ' as in v=f $\lambda$

#### wavelength

#### **metre**

#### m









## Square metre m<sup>2</sup> scalar



## 'r' as in $\varepsilon = V + Ir$

#### Internal resistance

#### **b**ohm







#### ' $\varepsilon$ or E' as in $\varepsilon = V + Ir$

#### Electromotive force (e.m.f)

#### V scalar

► Voltage



78



## chargecoloumb

Cscalar



## Q'as in $E = \frac{1}{2}QV = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C}$ 80

## Charge stored on the capacitorcoloumb

Cscalar





#### Time for the change

#### **b**second









#### Resistance of resistor 2

#### **b**ohm









# Supply Voltage Volt V scalar





#### wavelength

#### **metre**

#### m





#### 'm'as in Path difference = $m\lambda$ or $\left(m + \frac{1}{2}\right)\lambda$

### Integer (a whole number!)No units



85



#### current

#### **b**ampere

Ascalar





## Voltage across resistor 2 Volt V scalar



## 'R<sub>T</sub>' as in $R_T = R_1 + R_2 + \cdots$

#### Total resistance of resistors in series

#### **bohm**









## chargecoloumb

Cscalar









