

' F ' as in $F=m a$

force

-Newton
-N
vector

'd' as in $v=\frac{d}{t}$

distance
metre
m
scalar
/4
-Keeping you afleast with Physics

- Find him at
- https://mrsphysics.ca.u

' s ' as in $\mathrm{V}=\frac{s}{t}$

displacement
 - metre

m
vector

's' as in $s=u t+\frac{1}{2} a t{ }^{2}$

displacement - metre

m
vector

' u ' as in $v=u+$

> Initial velocity

-metres per second $\mathrm{ms}^{-1} \mathrm{or} \mathrm{m} / \mathrm{s}$
vector

'a' as in $a=\frac{v-u}{t}$ t

-Acceleration

metres per second squared ms^{-2} or $\mathrm{m} / \mathrm{s}^{2}$
vector

'g' as in $W=m g$

- Acceleration due to gravity/ gravitational field strength
-metres per second squared/ newtons per kilogram
$>\mathrm{ms}^{-2}$ or $\mathrm{m} / \mathrm{s}^{2}$ or $\mathrm{N} \mathrm{kg}^{-1}$
vector

'W'
 as in $W=m g$

- Weight
 - Newton
 - N
 vector

' E_{w} ' or W as in $E_{w}=r d$

Work done

> Joule

- J (must look like a capital)
scalar

' m ' as in $F=m a$

mass

-kilogram
-kg
scalar
/4

'h'
 as

>height
 - metre

-m
scalar

' E_{p} ' as in $E_{p}=m g h$

>(gravitational) potential Energy
 >Joule

> J (must look like a capital)
-scalar

' E_{k} ' as in $E_{k}=\frac{1}{2} m{ }^{2}$

- Kinetic Energy

- Joule

-J (must look like a capital)
>scalar

' P ' as in $P=\frac{E}{t}$

Power

- Watt (yes Watt is the unit of power)
-W
scalar

' F ' as in $F=G \frac{m_{l^{2}}}{r^{2}}$

-Gravitational force
 -Newton

- N or kgms^{-2}
vector

$$
{ }^{\prime} G \text { ' as in } F=G \frac{m_{1} n^{2}}{r^{2}}
$$

-Universal constant of Gravitation

- cubic metres per kilogram per second squared!
$-\mathrm{m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
Scalar
- equal to
$>6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$

'W' as in $W=Q V$

-Work done

> Joule

- J (must look like a capital)
>scalar

${ }^{\prime} \Delta p \prime$ as in $\Delta p=F l$

-Change in momentum or impulse

- Kilogram metre per second or Newton second
$-\mathrm{Kgms}^{-1}$ or Ns
- vector

${ }^{\prime} p '$ as in $p=m v$

-Momentum
Kilogram metre per second or Newton second
Kgms^{-1} or Ns
vector

' m ' as in $p=m v$

mass

-Kilogram
-Kg
scalar
/4
' $F t$ ' as in $F t=m v$ mu
-Impulse or change in momentum

- Newton second or kilogram metre per second
-Ns or kgms^{-1}
vector

$$
{ }^{\prime} t^{\prime \prime} \text { as in } t^{\prime}=\frac{t}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}
$$

Relativistic /Dilated time

- Units of time

s,d,h, yr
scalar
/4

dilated time

second (or years/days etc)
>s (yr/d/h)
scalar

${ }^{\prime} t^{\prime}$ as in $t^{\prime}=\frac{t}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}$

\Rightarrow Time in the same reference frame as the clock???
-Units of time
-s,d, h, yr
scalar

- Relatiuistic /contracted length

 - Units of length, metres- m
scalar

4^{\prime}
as in $l^{\prime}=l$
-Units of length, metres
m
scalar
/4

$$
\text { ' } f_{S}^{\prime} \text { as in } f_{o}=f_{s}\left(\frac{1}{v \pm v_{S}}\right)
$$

-Frequency of the source -Hertz

- Hz
scalar
/4

' v_{s} ' as in $f_{o}=f_{s}$

velocity of the source

- Metres per second ms^{-1} or m/s
vector

$$
\text { ' } f_{o}^{\prime} \text { as in } f_{o}=f_{s}\left(\frac{}{v \pm v_{s}}\right)
$$

>Observed frequency

-Hertz

- Hz
scalar
/4
- Keeping you afleast with Physics
- Ittpos://mrsphysics.ca.u

'c' as in $E=m c^{2}$

- Speed of light
metres per second
$>\mathrm{ms}^{-1}$ or m / s
- This is equal to
$+3.00 \times 10^{8} \mathrm{~ms}^{-1}$

contracted length

metre
m
scalar
/4

- Keeping you afleast with Physics
- Find him at
- Ihttps://mrsphysics.ca

' $\lambda_{\text {observed }}$ ' as in $z=\frac{\lambda_{\text {observe }}-\lambda_{\text {est }}}{\lambda_{\text {rest }}}$

- Observed wavelength the wavelength

 arriving at us after passing through space)
metre

m
 scalar

- Observed wavelength metre

m
scalar

$' V$ ' as in $z=\frac{v}{c}$

-Recessional velocity

 metres per second $\mathrm{ms}^{-1} \mathrm{or} \mathrm{m} / \mathrm{s}$vector

' z ' as in $z=\frac{v}{c}$ or $z=1 \xrightarrow{1-\lambda_{n-2 t}^{36}}$

redshift

- No unit

scalar

' $\lambda_{\text {rest }}{ }^{\prime}$ OS in $z=\frac{\lambda_{\text {observed }}}{\lambda_{\text {rest }}}$

rest wavelength
 metre

m
scalar
/4

' H_{0} ' as in $v=H_{o} d$

-Hubble's constant

Per Second or seconds to the minus 1
s^{-1}
Scalar. The value is equal to
$+2.3 \times 10^{-18} \mathrm{~s}^{-1}$

'd' as in $v=H_{o} d$

Distance from galaxy to the observer metre

m
Scalar.

' f_{o} ' $\mathrm{as} \operatorname{in} \mathrm{f}_{\mathrm{o}}=\mathrm{f}_{\mathrm{s}}\left(\frac{}{v \pm v_{s}}\right.$

-Observed frequency
 - Hertz

- Hz
scalar
/4
- Keeping you afleast with Physics
- Find him at
- Ittpos://inrsphysics.ca
' $\Delta \mathrm{V}^{\prime}$ as in $a=$
-Change in velocity
-Metres per second
ms^{-1} or m / s
vector

'A' as in $I=\frac{P}{A}$

- Area

-Square metres
m^{2} or m^{2}
scalar

'I' as in $I=\frac{P}{A}$

-irradiance

-Watts per square metre

- Wm^{-2} or $\mathrm{W} / \mathrm{m}^{2}$
>scalar

' ΔR ' as in $\Delta R=\frac{R_{\max }^{n}}{n}$

- Approximate random uncertainty
-The units of the quantity measured
-Scalar or vector

'f' as in $T=\frac{1}{f}$

frequency
 - Hertz

- Hz
scalar
/4

'T'
 as in $T=$
 $\frac{1}{f}$

period
 second

>
scalar
/4

- Kerging you aflast with Physics
- Find him at
- Ittpas://mrsphysics.ca.uh
' f_{s} ' as in $\mathrm{f}_{\mathrm{o}}=\mathrm{f}_{\mathrm{s}}\left(\frac{v}{v \pm v_{s}}\right)$

-Frequency of source - Hertz

- Hz
scalar

${ }^{\prime} E_{2}^{\prime}$ as in $E_{2}-E_{1}=h$

- Energy level

- Joule

-J (must look like a capital)
scalar

'E' as in $E=h f$

Energy of the photon

- Joule

- J (must look like a capital)
>scalar

$$
\text { 'hfo' as in } \boldsymbol{E}_{\boldsymbol{k}}=\boldsymbol{h} \boldsymbol{f}-\boldsymbol{h}
$$

Work function >Joule
 > J
 scalar

$$
\text { 'fo' as in } \boldsymbol{E}_{\boldsymbol{k}}=\boldsymbol{h} \boldsymbol{f}-\boldsymbol{h} \boldsymbol{f}
$$

- Threshold frequency
 - Hertz
 Hz
 >scalar

'h' as in $E=h f$

-Planck's constant - Joule second
-Js
-Scalar

- Equal to
$-6.63 \times 10^{-34} \mathrm{Js}$

-Angle

degrees
scalar
/4
-Keeging you afleast with Physics

- Find him at
- Ittpos://mrsphysics.ca.uk
' d' as in $d \sin \theta=\operatorname{m} \lambda$

-Slit separation

metre

- m
scalar
/4

$$
\text { ' } \mathrm{d}_{1}^{\prime} \text { as in } I_{1} d_{1}^{2}=I_{2} d^{2}
$$

Initial distance from the source

- metre
m
scalar

' k ' as in $I=\frac{k}{d^{2}}$

-Constant of proportionality

- Watt
-W
scalar

${ }^{\prime} \mathrm{I}_{1}{ }^{\prime}$ as in $I_{1} d_{1}^{2}=I_{2} d^{2}$

- Initial irradiance

-Watts per square metre

- Wm^{-2} or $\mathrm{W} / \mathrm{m}^{2}$
-scalar

${ }^{\prime} \theta_{c}$ ' as in n
-Critical angle

degrees

scalar

' n ' as in $n=\frac{\sin \theta}{\sin \theta_{2}}$

-Refractive index

No units

>scalar

' ${ }^{\prime}$
 v_{1}
 as in

- Speed of wave in vacuum / equates to air
- metres per second
ms^{-1} or m / s
- scalar
- This is likely to be equal to $>3.00 \times 10^{8} \mathrm{~ms}^{-1}$

'I peak' as in $I_{r m s}=$

>Peak current

- Ampere

- A
scalar

'I $I_{\text {rms }}$ ' as in $I_{r m s}=\frac{I_{p} \text { eak }}{\sqrt{2}}$

Root mean squared current

-Ampere

-A
scalar

' $V_{\text {peak }}$ ' as in $V_{r m s}=\frac{V_{\text {peak }}}{\sqrt{2}}$

>Peak voltage

 volt

' $\mathrm{V}_{\text {rms }}$ ' as in $V_{r m s}=\frac{V^{2}}{\sqrt{2}}$

-Root mean squared voltage

 volt

'T' as in $T=\frac{1}{f}$

period
 second

>
scalar
/4

- Keeping you aflast with Physics - Find him at
-https://mrsphysics.ca.uk

' A ' as in height of duwave

- amplitude
 metre

-m
scalar

'C' as in $E=\frac{1}{2} C V$ '
 2

> capacitance
 -Farad

- F (equal to CV^{-1})
scalar

' O ' as in $\mathrm{P}=\frac{F}{A}$

-pressure

- Newton per square metre or Pascal
-Pa
scalar

' Q ' as in $Q=I t$

charge
 coloumb
 -
 scalar

/4

' V ' as in $V=I R$

voltage
 volt

- V
scalar

'I' as in $V=I R$

current

>ampere

\rightarrow A
scalar
/4

${ }^{\prime} \mathrm{R}_{\mathrm{T}}$ ' as in $\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$

- Total resistance of resistors in parallel >ohm

Ω
scalar

' R^{\prime} as in $V=I R$

-resistance

ohm

- Ω
scalar

'R' as in $E=I(R+$,
- Total load resistance (total resistance in the external circuit)
>ohm
- Ω
scalar

>wavelength

metre

m
scalar

' A ' as in $\mathrm{p}=\frac{F}{A}$

-area

-Square metre
m^{2}
scalar

$$
\text { ' } r \text { ' as in } \varepsilon=V+\operatorname{Ir}
$$

- Internal resistance

ohm
> Ω
scalar
/4

-Electromotive force (e.m.f)
 - Voltage

- V
scalar

' Q ' as in $C=\frac{Q}{V}$

charge

coloumb
-
scalar
/4
-Charge stored on the capacitor coloumb
-C
scalar

' \dagger ' as in $a=\frac{v-u}{t}$ t

- Time for the change
 second

S
scalar
/4

- Keeping you afleast with Physics
- Find him at
- Ittpos://inrsphysics.ca.u

$\boldsymbol{R}_{\mathbf{2}}$ as in $V_{2}=\left(\frac{\boldsymbol{R}_{\mathbf{2}}}{\boldsymbol{R}_{\mathbf{1}}+\boldsymbol{R}_{\mathbf{2}}}\right)$

Resistance of resistor 2

ohm

- Ω
>scalar

$$
\boldsymbol{V}_{s} \text { as in } \boldsymbol{V}_{2}=\left(\frac{\boldsymbol{R}_{\mathbf{2}}}{\boldsymbol{R}_{\mathbf{1}}+\boldsymbol{R}_{\mathbf{2}}}\right)
$$

-Supply Voltage - Volt

 - Vscalar

>wavelength

metre

m
scalar
/4

- https://mrsphysics.ca.u

' m ' as in Path difference $=m,\left(m+\frac{1}{2}\right) \lambda$

- Integer (a whole number!)
 - No units

'I' as in $V=I R$

current

>ampere

- A
scalar
/4
\boldsymbol{V}_{2} as in $\left.\boldsymbol{V}_{2}=\left(\frac{\boldsymbol{R}_{\mathbf{2}}}{\boldsymbol{R}_{\mathbf{1}}+\boldsymbol{R}_{\mathbf{2}}}\right)\right)_{0}{ }^{87}$

- Voltage across resistor 2

 - Volt - Vscalar

' R_{T} ' as in $R_{T}=R_{1}+R_{2}+\cdots$

- Total resistance of resistors in series
 ohm

Ω
scalar

' Q ' as in $W=Q V$

charge
 coloumb
 -
 scalar

- Keeping you aflaat with Physics - Find him at
-https://mrsphysics.ca.uh

