					K&U	PS	C
NATIONAL Q	UALIFICA	TIOI	NS 2012				
PHYSICS							
STANDARI Credit Level) GRAD	E			* 3 2	2 2 0 3	

MONDAY, 30 APRIL

10.50 AM - 12.35 PM

Full name of centre			Town			
Forename(s)	S	Surname			Number of	of seat
Date of birth Day Month	Year	Scottish ca	ndidate num	ber		

Reference may be made to the Physics Data Booklet.

- 1 All questions should be answered.
- 2 The questions may be answered in any order but all answers must be written clearly and legibly in this book.
- 3 Write your answer where indicated by the question or in the space provided after the question.
- 4 If you change your mind about your answer you may score it out and rewrite it in the space provided at the end of the answer book.
- 5 If you use the additional space at the end of the answer book for answering any questions, you must write the correct question number beside each answer.
- 6 Before leaving the examination room you must give this book to the Invigilator. If you do not, you may lose all the marks for this paper.
- 7 Any necessary data will be found in the **data sheet** on page three.
- 8 Care should be taken to give an appropriate number of significant figures in the final answers to questions.

Use blue or black ink. Pencil may be used for graphs and diagrams only.

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

[3220/31/01]

Page two

DATA SHEET

Speed of light in materials

Material	Speed in m/s
Air	$3 \cdot 0 \times 10^8$
Carbon dioxide	$3 \cdot 0 \times 10^8$
Diamond	1.2×10^{8}
Glass	2.0×10^{8}
Glycerol	$2 \cdot 1 \times 10^{8}$
Water	$2 \cdot 3 \times 10^8$

Gravitational field strengths

	Gravitational field strength on the surface in N/kg
Earth	10
Jupiter	26
Mars	4
Mercury	4
Moon	1.6
Neptune	12
Saturn	11
Sun	270
Venus	9

Specific latent heat of fusion of materials

Material	Specific latent heat of fusion in J/kg
Alcohol	0.99×10^{5}
Aluminium	3.95×10^5
Carbon dioxide	1.80×10^5
Copper	2.05×10^5
Glycerol	1.81×10^5
Lead	0.25×10^5
Water	$3 \cdot 34 \times 10^5$

Specific latent heat of vaporisation of materials

Material	Specific latent heat of vaporisation in J/kg
Alcohol	11.2×10^{5}
Carbon dioxide	3.77×10^5
Glycerol	$8 \cdot 30 \times 10^5$
Turpentine	2.90×10^5
Water	22.6×10^5

Speed of sound in materials

Material	Speed in m/s
Aluminium	5200
Air	340
Bone	4100
Carbon dioxide	270
Glycerol	1900
Muscle	1600
Steel	5200
Tissue	1500
Water	1500

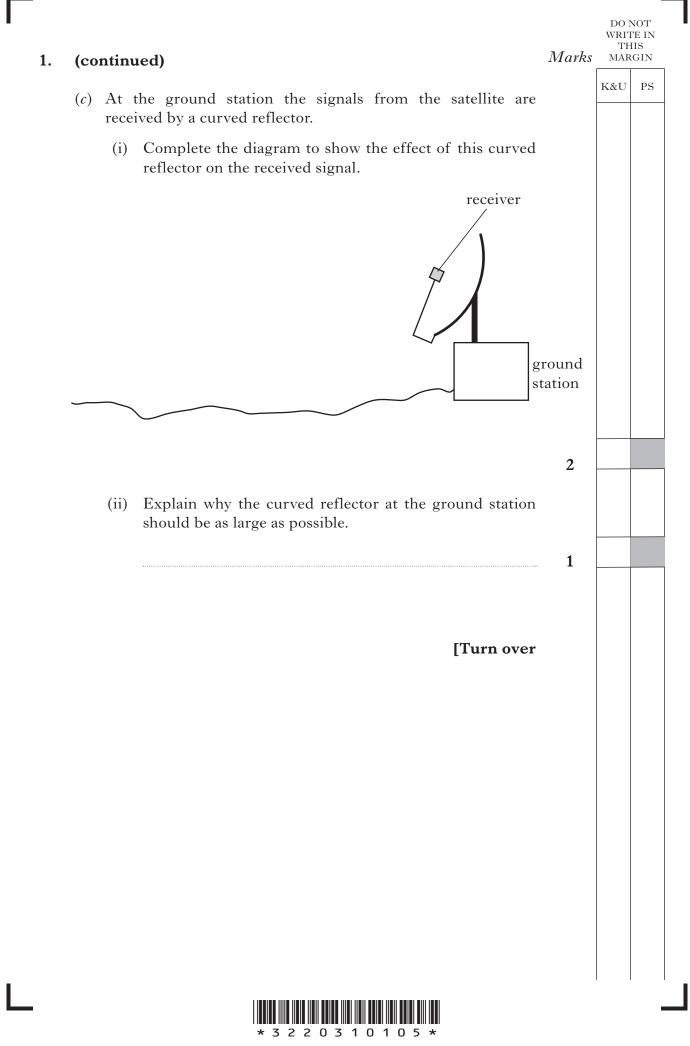
Specific heat capacity of materials

Material	Specific heat capacity in J/kg °C
Alcohol	2350
Aluminium	902
Copper	386
Glass	500
Glycerol	2400
Ice	2100
Lead	128
Silica	1033
Water	4180

Melting and boiling points of materials

Material	Melting point in °C	Boiling point in °C
Alcohol	-98	65
Aluminium	660	2470
Copper	1077	2567
Glycerol	18	290
Lead	328	1737
Turpentine	-10	156

SI Prefixes and Multiplication Factors


Prefix	Symbol	Factor	
giga	G	1 000 000 000	$= 10^{9}$
mega	Μ	1 000 000	$= 10^{6}$
kilo	k	1000	$=10^{3}$
milli	m	0.001	$= 10^{-3}$
micro	μ	0.000001	$= 10^{-6}$
nano	n	0.000000001	$= 10^{-9}$

* 3 2 2 0 3 1 0 1 0 3 *

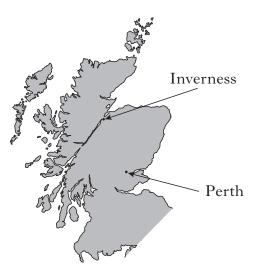
Page three

Th	is sun	nmer the Olympic Games will be held in London.	Marks	TH MAF
Te	levisio ndon	on pictures of the Games will be transmitted from to Washington via a satellite, which is in a geostationary		K&U
Te	levisio	on signals are transmitted using microwaves.		
to 1	the sa	gram shows the signals being transmitted from London tellite. This satellite transmits these signals to a ground a Washington.		
	Wasl	hington London satellite		
(<i>a</i>)	State	e what is meant by a geostationary orbit.		
			1	
(<i>b</i>)		frequency of the microwaves being used for transmission GHz.		
	(i)	What is the speed of microwaves?		
	(ii)	Calculate the wavelength of these microwaves.	1	
		Space for working and answer		

Page four

Page five

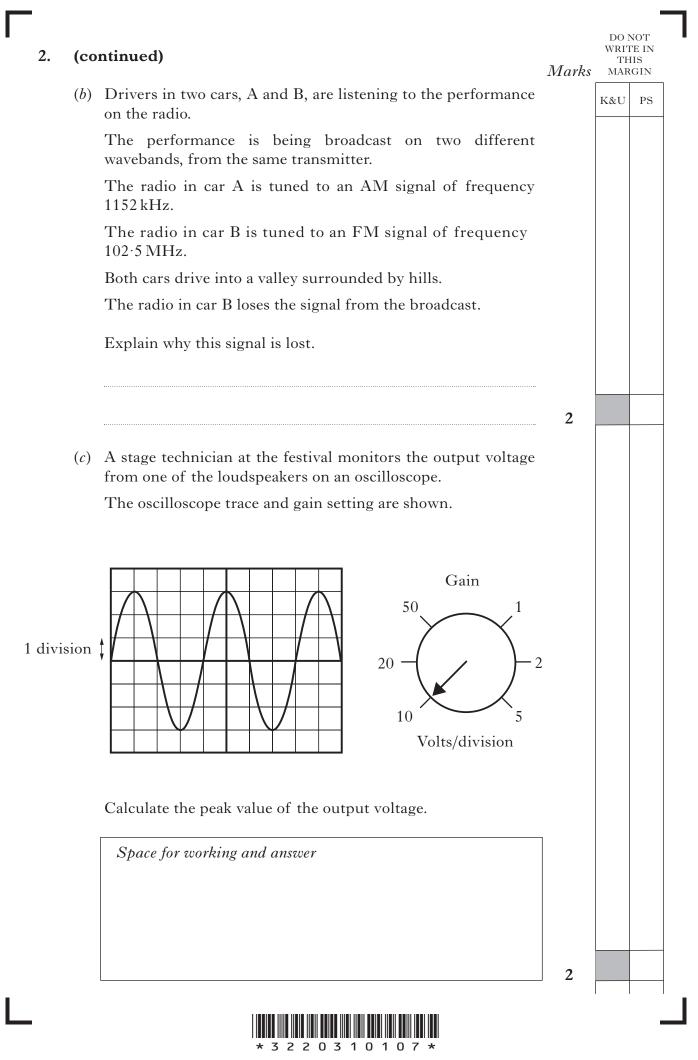
K&U


 \mathbf{PS}

2. At an outdoor music festival in Perthshire, a member of the audience is standing 200 m in front of the main stage loudspeakers listening to a band performing.

The festival is also being broadcast live on radio.

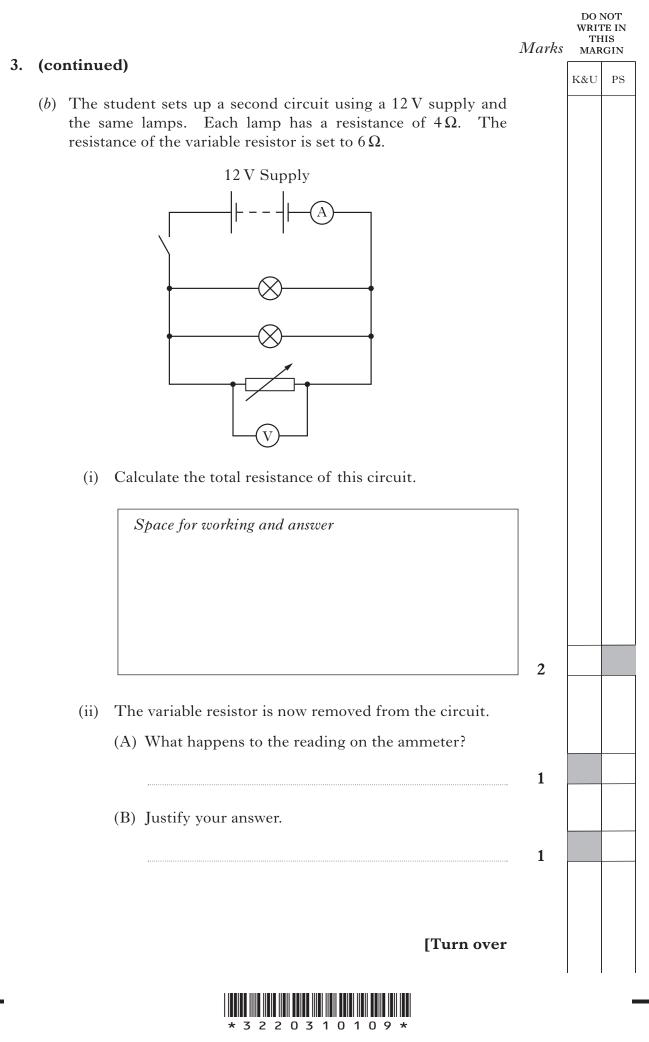
A person in Inverness is listening to the broadcast on the radio.



(a) Explain why this person hears the performance before the member of the audience.

1

Page six



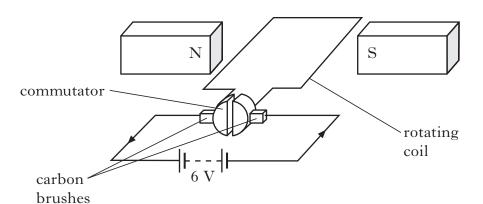
Page seven

[Turn over

2		Marks	DO N WRIT TH MAR	TE IN IIS
	nt sets up a circuit to operate two identical 12 V, 36 W om a 48 V supply.		K&U	PS
	48 V Supply			
	en the switch is closed, the lamps operate at their correct er rating.			
Calc	ulate:			
(i)	the reading on the ammeter;			
	Space for working and answer			
(ii)	the reading on the voltmeter;	2		
	Space for working and answer			
(iii)	the resistance of the variable resistor.	1		
	Space for working and answer			
	* 3 2 2 0 3 1 0 1 0 8 *	2		_

Page eight

Page nine


K&U

PS

4. A toy helicopter is operated using an infrared signal from a *Marks* remote control. The helicopter has a receiver that can detect infrared radiation.

- (a) State a suitable detector of infrared radiation.
- (b) The helicopter contains two d.c. electric motors.A simple electric motor is shown below.

- (i) What is the purpose of the brushes in a simple electric motor?
- (ii) State two ways in which the direction of rotation of the motor could be reversed.

1

1

1

[3220/31/01]

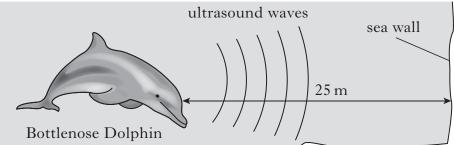
Page ten

4.	<i>(b)</i>	(continued)	Marks	DO I WRIT TH MAR	re in HS
4.	(0)	(continued)		K&U	PS
		(iii) The helicopter uses commercial electric motors.			
		A commercial electric motor is shown below.			
		 (A) State one difference between a simple d.c. motor and a commercial motor. (D) D. Lin Lin Lin G. Lin Ling 	1		
		(B) Explain the reason for this difference.	1		
		[Turn over			

Page eleven

DO NOT WRITE IN THIS

K&U


MARGIN

 \mathbf{PS}

5. Bottlenose dolphins produce sounds in the frequency range Marks 200 Hz - 150 kHz.

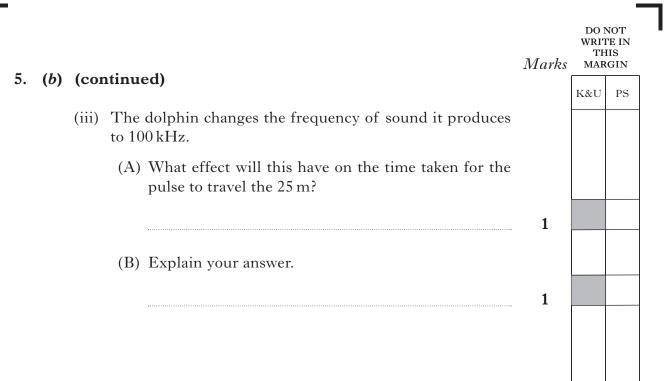
Echolocation is the location of objects by using reflected sound. Bottlenose dolphins use ultrasounds for echolocation.

- (a) State what is meant by ultrasound.
- (b) A sound of frequency 120 kHz is transmitted through the water by a bottlenose dolphin.
 - (i) Use the data sheet to find the speed of sound waves in water.
 - (ii) When the dolphin is 25 m from the sea wall, it emits a pulse of ultrasound.

Calculate the time taken for this pulse to return to the dolphin.

Space for working and answer

3


1

1

[3220/31/01]

Page twelve

[Turn over

[3220/31/01]

Page thirteen

	regularly for cracks and out these checks.	L I	WIAN	GI
to carry o	out these checks.		K&U	I
	radioactive			
	source			

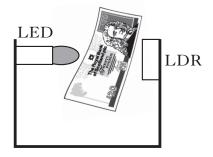
****	\sim V $_{\sim}$			
ed regular to comple ources are	-	. 1		
f-Life	Radiation Emitted			
years	Alpha			
lours	Beta			
	Gamma			
	vears	ours Gamma		iours Gamma

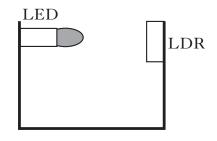
Page fourteen

			Marks	DO I WRIT TH MAR	TE IN IIS
6. (<i>b</i>) (cor	ntinued)	1.10/103	K&U	PS
	(ii)	Explain which source would be most suitable for the purpose of detecting cracks in the aircraft.			
			2		
(4		lead shield is used as a safety precaution to prevent ters being exposed to a large dose of radiation.			
		e one other safety precaution that is necessary when sing with radioactive sources.			
			1		
(4		fferent radioactive source has a half life of 12 hours.			
		source has an initial activity of 128 MBq. ulate its activity after 2 days.			
	Sţ	bace for working and answer			
			2		
		[Turn over			
•		* 3 2 2 0 3 1 0 1 1 5 *			

Page fifteen

7. A bank has an alarm system which can be triggered by the cashiers who work behind the counter.



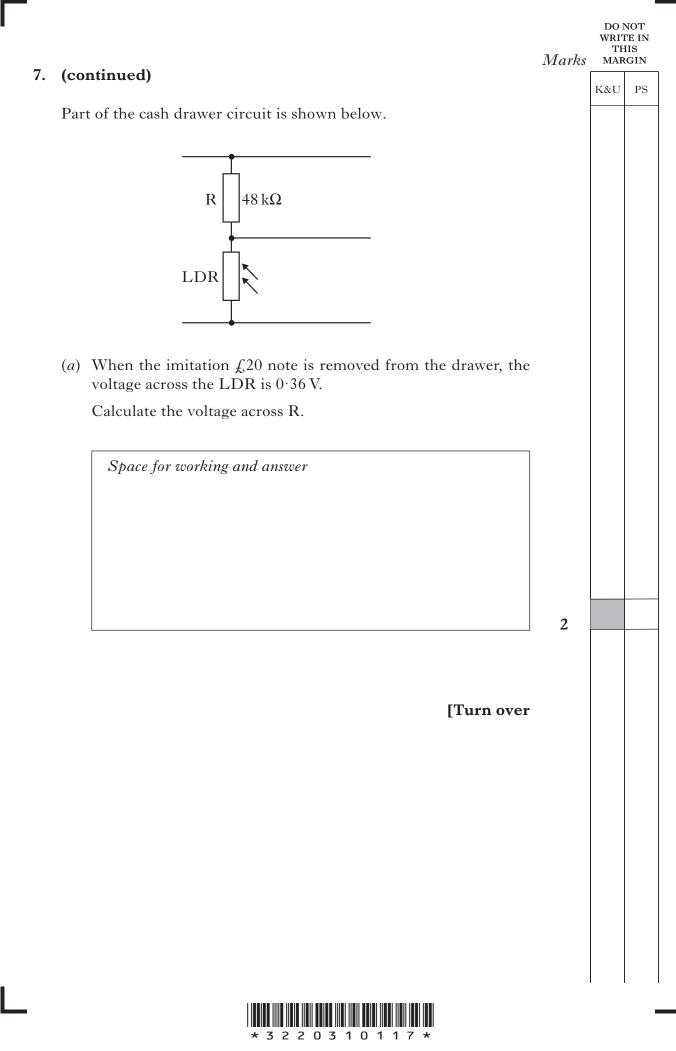

The alarm can be triggered by two methods.

Method 1 – The cashier presses a foot switch.

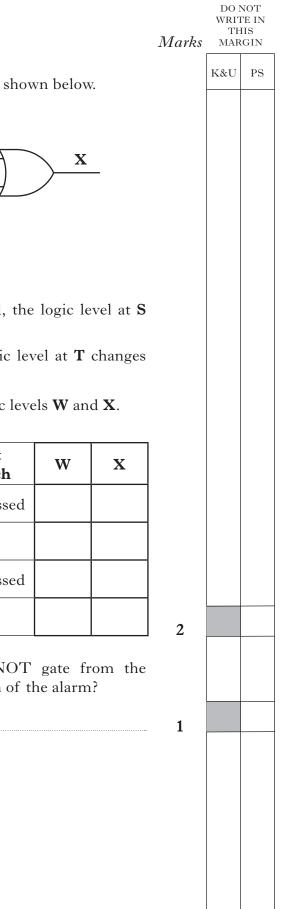
Method 2 – The cashier removes an imitation $\pounds 20$ note from a cash drawer.

A circuit, inside the cash drawer, contains an LED which is directed at an LDR as shown. When the cashier removes the imitation $\pounds 20$ note the alarm is triggered.

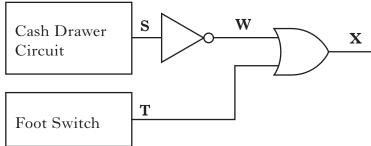
Imitation note present


Imitation note removed

The table shows the resistance of the LDR in different light conditions.


Imitation £,20 note	$\begin{array}{c} Resistance \\ (k\Omega) \end{array}$
present	24
removed	2

Page sixteen



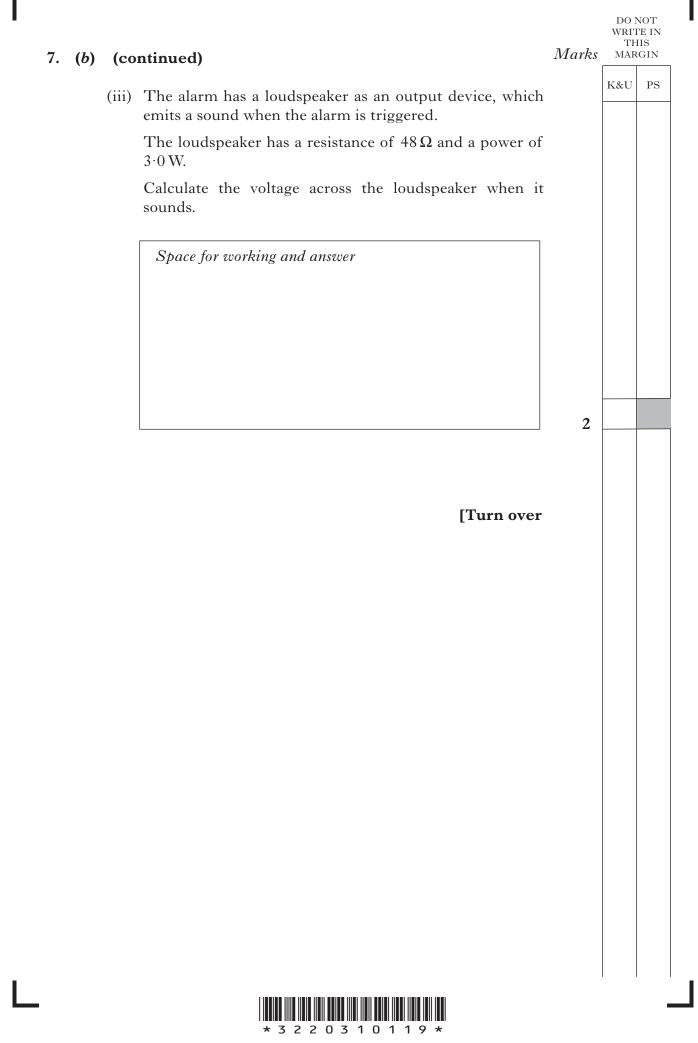
Page seventeen

7. (continued)

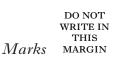
(b) Part of the control system for the alarm is shown below.

When the imitation $\pounds 20$ note is removed, the logic level at **S** changes from logic **1** to logic **0**.

When the foot switch is pressed, the logic level at \mathbf{T} changes from logic $\mathbf{0}$ to logic $\mathbf{1}$.


(i) Complete the truth table for the logic levels **W** and **X**.

Cash Drawer Circuit	Foot Switch	W	X
Imitation £20 Removed	Not Pressed		
Imitation £20 Removed	Pressed		
Imitation £20 Present	Not Pressed		
Imitation £20 Present	Pressed		


(ii) What effect does removing the NOT gate from the control system have on the operation of the alarm?

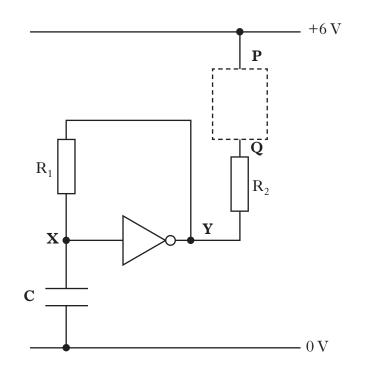
* 3 2 2 0 3 1 0 1 1 8 *

Page eighteen

Page nineteen

K&U

1

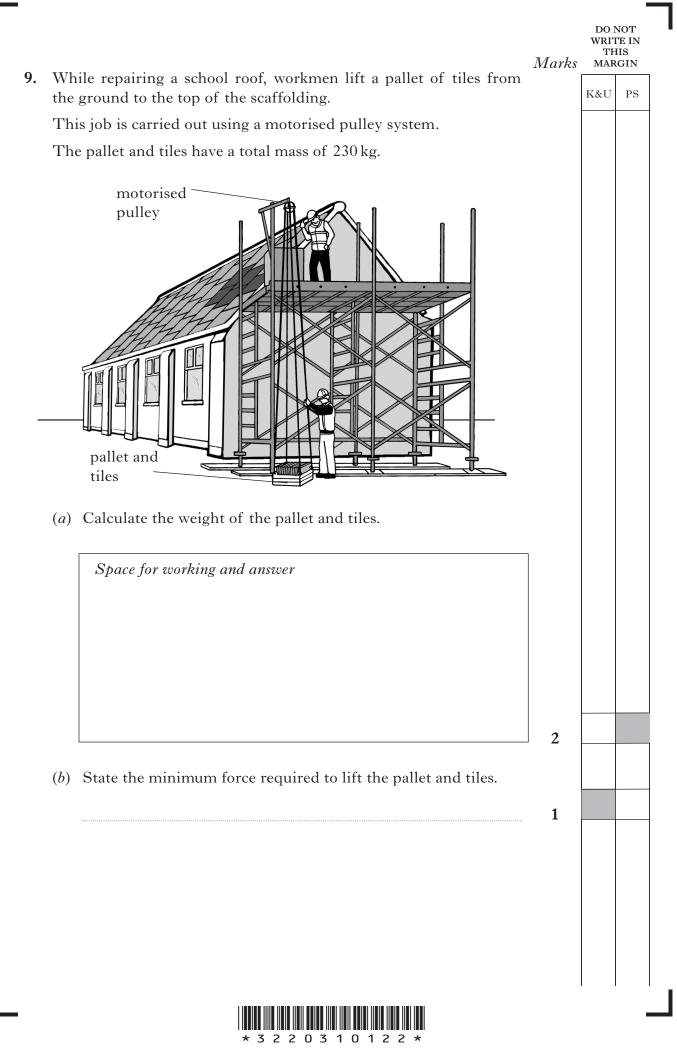

1

 \mathbf{PS}

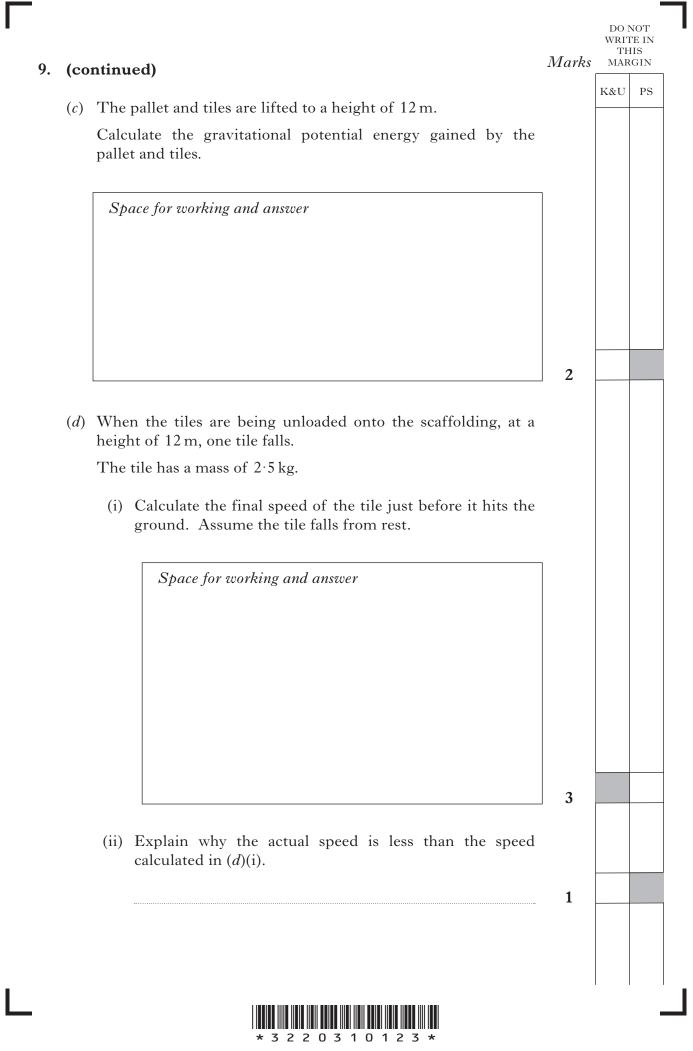
8. A laptop is plugged into the mains to charge. A blue LED flashes to indicate that the laptop is charging.

The LED is connected to a pulse generator. The circuit diagram for the pulse generator is shown.

- (*a*) (i) Complete the diagram to show the LED correctly connected between **P** and **Q**.
 - (ii) State the purpose of resistor $\rm R_2$ connected in series with the LED.

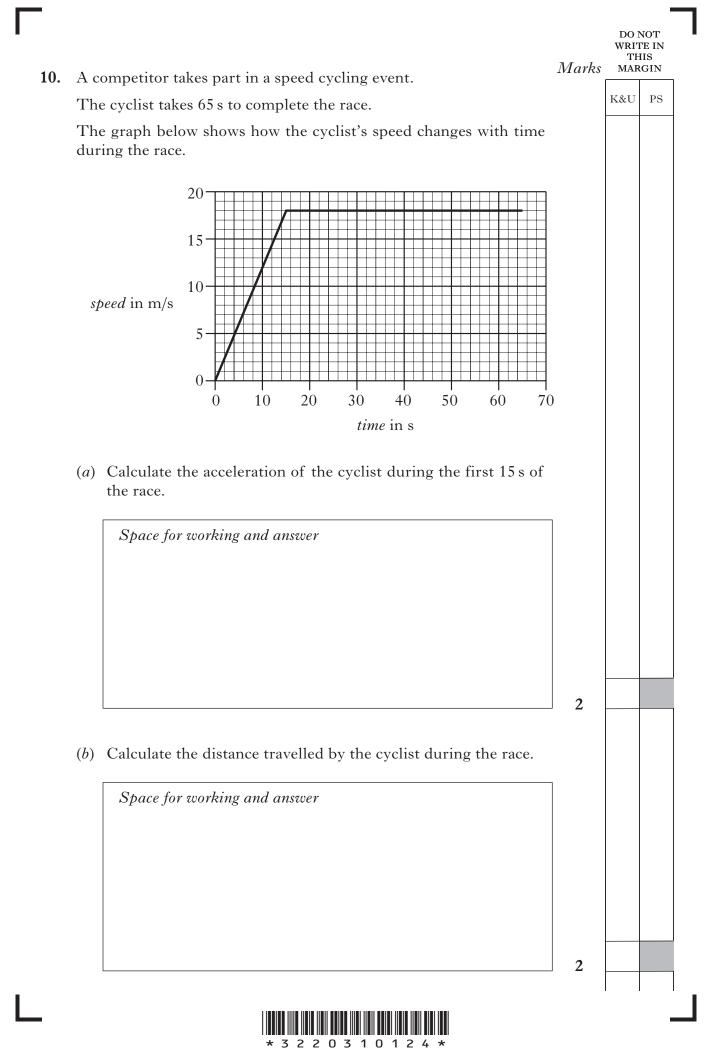


[3220/31/01]

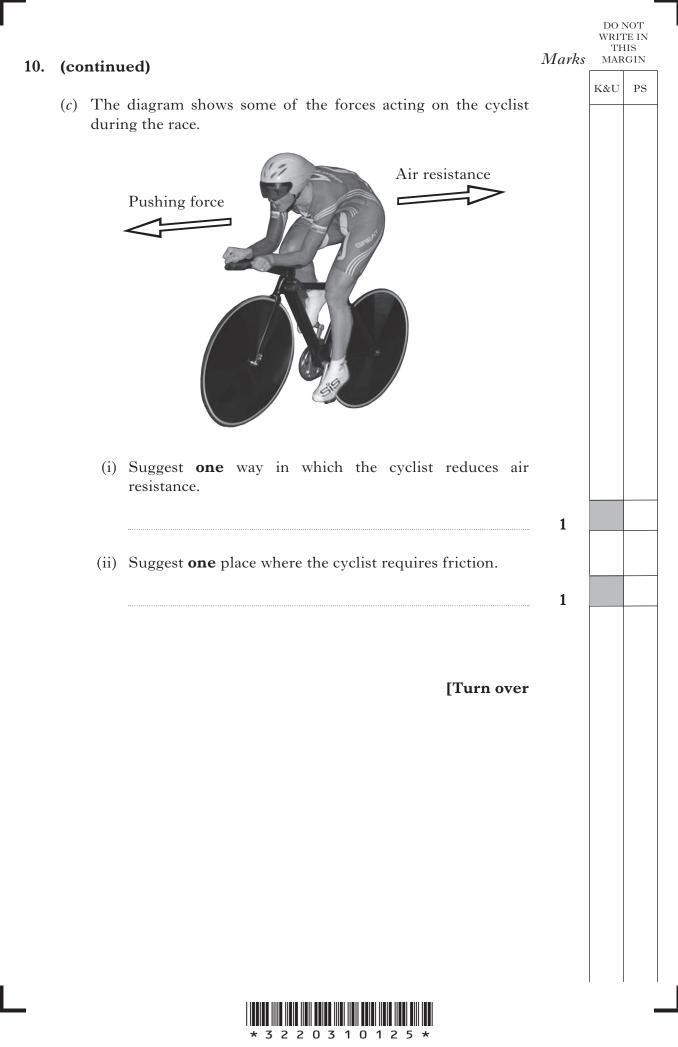

Page twenty

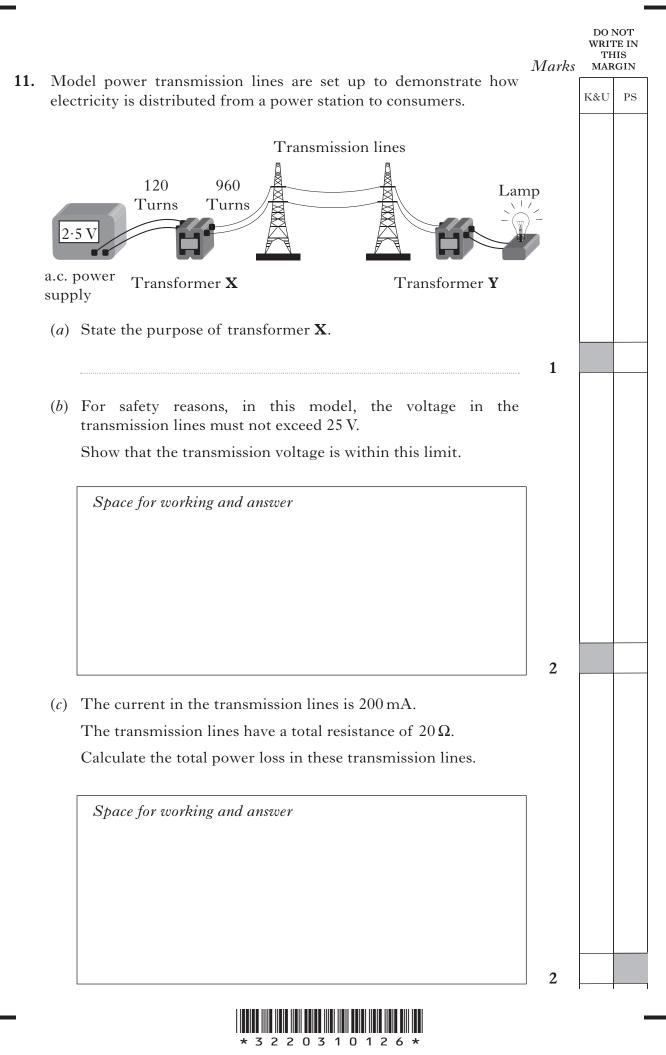
(a)	(continued)	Marks	TH MAR	
	(iii) When lit, the current in the LED is 15 mA and the voltage across it is 1.2 V .		K&U	PS
	Calculate the value of resistor R_2 in series with the LED.			
	Space for working and answer			
		3		
		3		
(<i>b</i>)	Capacitor C is initially uncharged. Explain how the series of flashes is produced by referring to points X and Y in the circuit.			
		2		
(<i>c</i>)	The pulse generator produces an output of 5 pulses per second.			
	State one change that could be made to the circuit to produce an output of lower frequency.			
		1		
	[Turn over			

Page twenty-one



Page twenty-two




Page twenty-three

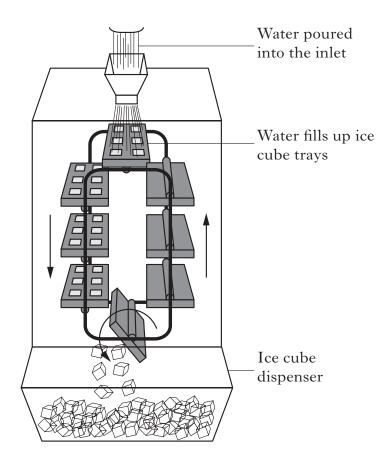
[Turn over

Page twenty-four

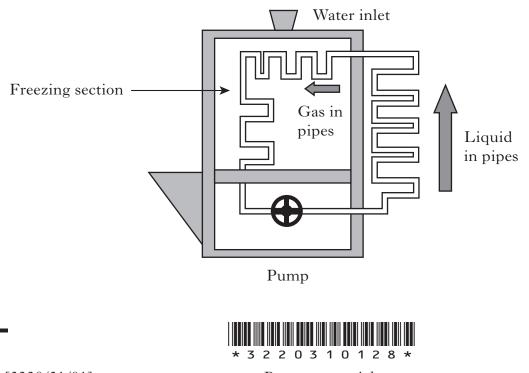
Page twenty-six

[Turn over for Question 12 on Page twenty-eight

DO NOT WRITE ON THIS PAGE


[3220/31/01]

Page twenty-seven


12. A restaurant has an ice-making machine.

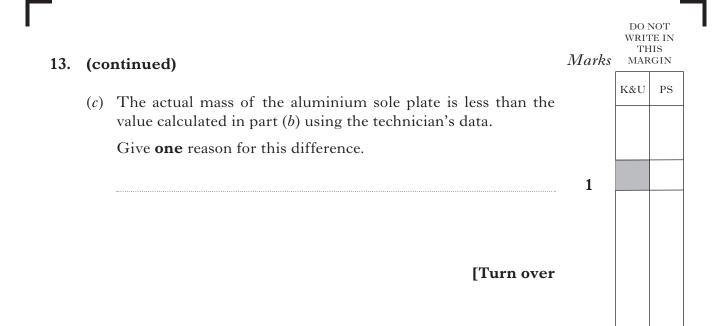
Water is poured into ice trays through an inlet at the top of the machine.

The trays rotate inside the machine towards a dispenser where they are tipped and ice cubes fall out into the dispenser.

A simplified diagram of the machine showing the freezing operation is shown.

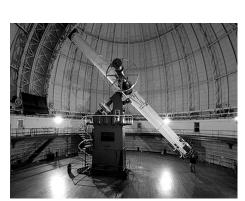
[3220/31/01]

Page twenty-eight


12.	(co	ntinu	ued)	Marks	DO I WRIT TH MAR	ΓE HIS
	A sı	ubstai	nce called a coolant is circulated in the pipes by the pump.		K&U]
	(<i>a</i>)		What is the change in state of the coolant in the freezing section?			
		(ii)	Explain why this change in state of the coolant keeps the freezing section cold.	1		
				1		
	(<i>b</i>)	ice c	n water is poured in at the top of the machine it fills up ube trays. The water is cooled to 0 °C and then freezes.			
		Calc	hour, 1.5 kg of water at $0 ^{\circ}\text{C}$ turns into ice. ulate how much heat energy is given out by the water h it freezes.			
		Sp	ace for working and answer			
				3		
			[Turn over			

3.	1			DO NOT WRITE IN THIS Marks Margin		FE IN IIS
э.		hanufacturer has developed an iron with an alu e. A technician has been asked to test the iron.	ininium sole		K&U	$_{\rm PS}$
		Sole plate				
	Th iror	e technician obtains the following data for one son.	etting of the			
		Starting temperature of sole plate:	24 °C			
		Operating temperature of the sole plate:	200 °C			
	i	Time for iron to reach the operating temperature:	35 s			
		Power rating of the iron:	$1.5 \mathrm{kW}$			
		Operating voltage:	230 V			
		Specific Heat Capacity of Aluminium:	$902 \text{ J/kg} ^{\circ}\text{C}$			
		Calculate how much electrical energy is supplied this time.	to the iron in			
		Space for working and answer				
				2		
	(<i>b</i>)	Calculate the mass of the aluminium sole plate.				
		Space for working and answer				
				2		
	L			2		

Page thirty


Page thirty-one

K&U

 \mathbf{PS}

 The Mills Observatory in Dundee and the Yerkes Observatory in Wisconsin, USA both have refracting telescopes.

Mills Observatory Telescope

Yerkes Observatory Telescope

Astronomers in both observatories are studying the Andromeda galaxy which is approximately 2.2 million light years away.

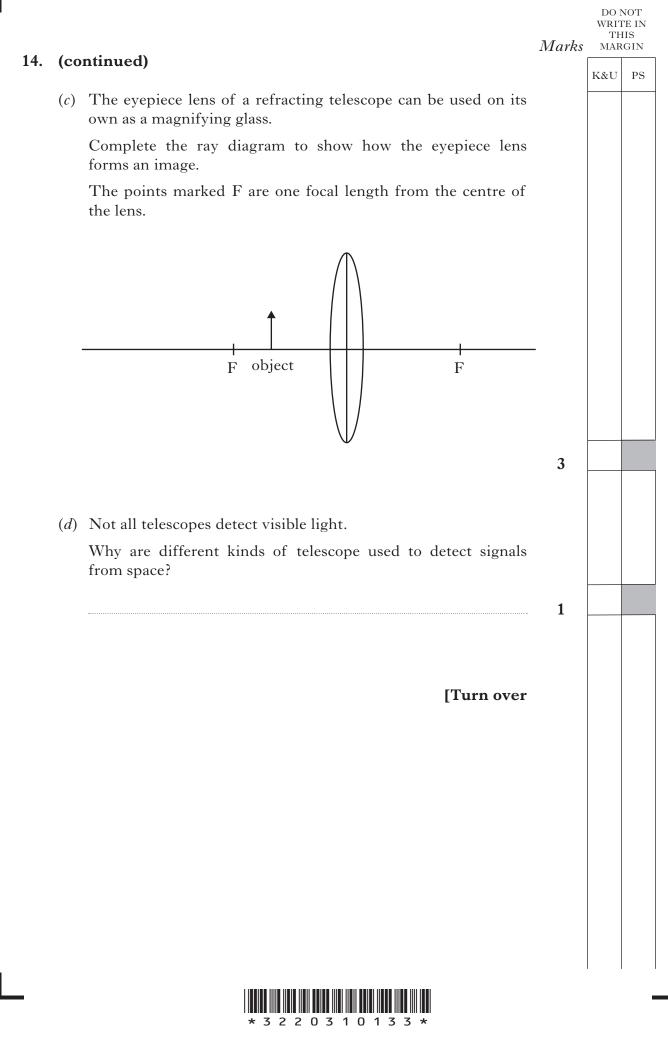
The diameters of the objective lens in the telescopes are given in the table.

Observatory	Objective Lens Diameter (m)
Mills	0.25
Yerkes	1.02

(a) Both telescopes produce an image of the Andromeda Galaxy.State the difference between the two images.

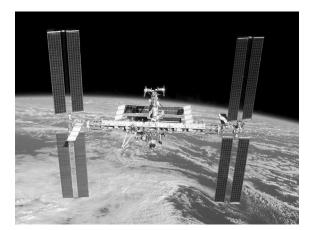
1

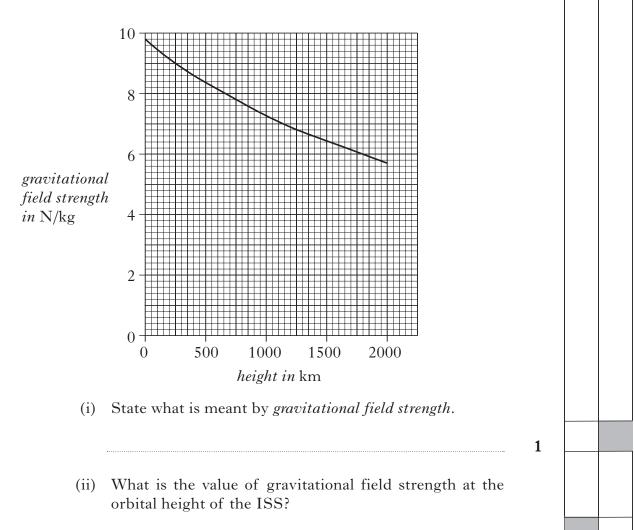
(b) A light year is defined as "the distance that light travels in one year".


Show by calculation that 1 light year = 9.4608×10^{15} m.

Space for working

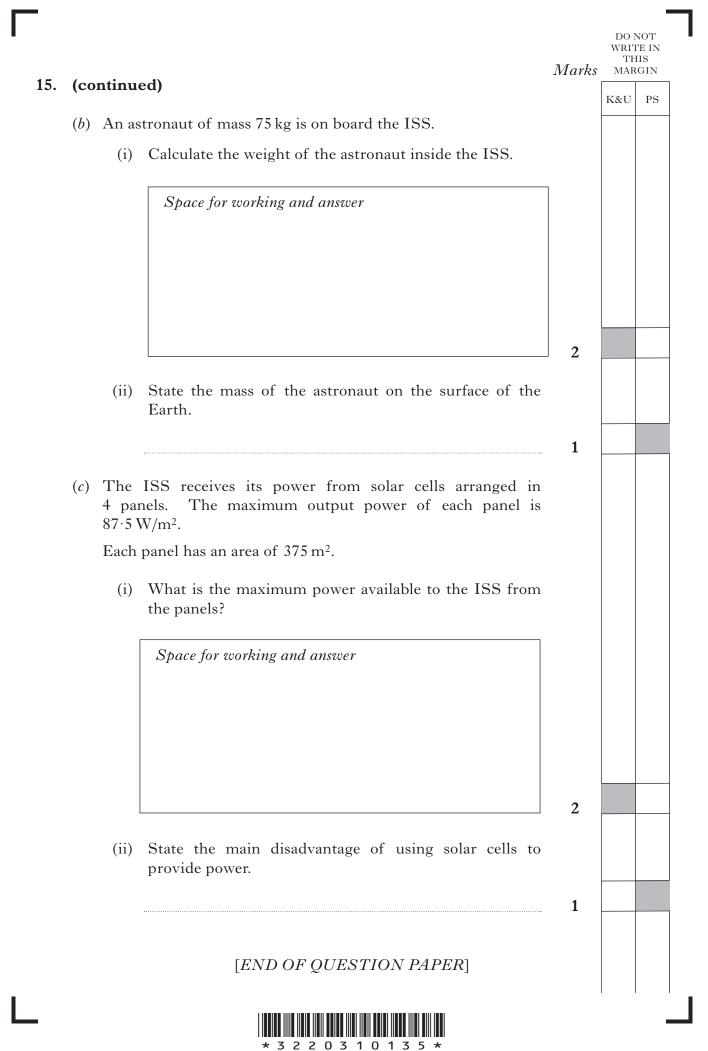
Page thirty-two


2


Page thirty-three

1

15. The International Space Station (ISS) orbits the Earth at a height of 400 km.



(a) The graph shows how the gravitational field strength varies with height above the surface of the Earth.

Page thirty-four

Page thirty-five

[3220/31/01]

DO NOT WRITE IN THIS MARGIN

Make sure you write the correct question number beside each answer.

MARGIN			
K&U	$_{\rm PS}$		

[3220/31/01]

Page thirty-six

Make sure you write the correct question number beside each answer.

K&U PS

[3220/31/01]

Page thirty-seven

DO NOT WRITE IN THIS MARGIN

Make sure you write the correct question number beside each answer.

mintont			
K&U	$_{\rm PS}$		

Page thirty-eight

Make sure you write the correct question number beside each answer.

DO NOT WRITE IN THIS MARGIN

K&U PS

[3220/31/01]

Page thirty-nine

ACKNOWLEDGEMENTS

ſ

Question 4—Photograph of a GT model helicopter. Permission is being sought from GT Model Toy Factory, China.

[3220/31/01]

Page forty