Electricity

Whoops I can’t find any electricity posts

PhysicsElectromagnetismAH_tcm4-726384

ah electromagnetism summary notes 2013

ah electromagnetism problems 2013

AH (Electrical Phenomena)

Unit 3 – 1 Fields

CircuitsNotes4

Here is a great little video on Lenz’ Law called Michael’s Toys

Homework for 6th Sept

Complete

  1. NAH 2016 pp Q1, 2
  2. NAH 2017 pp Q1, 2, 3
  3. NAH 2018 pp Q1, 2, 3
  4. Complete all tutorials, mark them and hand them in for checking
  5. Complete the SCHOLAR tests for the first 4 parts of Unit 1
  6. Revise for an Assessment on Rotational Motion on 10th Sept.

Homework for 21/6

Please complete notes for ALL of Kinematics and Angular Motion. Use the Traffic Light document to help you. Cover, calculus and the equations of motion definitions. Proving the angular motion equations, prove equation for central acceleration. Look at circular motion and cover banking, tension in circles, washing machine drums. pendulums. Hand these in Thurs Period 5.

SQA Exam

SQA Physics Exam. This is what you’re working towards!

Afternoon in the Assembly Hall

Today is what you’ve worked for. Give it your best shot.

Don’t be late

Bring your

  • pen
  • pencil
  • ruler (30 cm)
  • eraser
  • calculator
  • protractor
  • …..and go to the loo before hand!

Quantity, Symbol, Unit and Unit Symbol

I’ve put together, with Mrs Mac’s help, a document with quantity, symbol, unit and unit symbol so that you know the meaning of the terms in the Relationships Sheet. It is in EXCEL so that you can sort it by course, quantity or symbol.

Quantity, Symbol, Units the excel sheet

Quantity, Symbol, Units a pdf sheet sorted by course and then alphabetical by quantity.

This is the same information in readily available Tablepress form. If you click on the Higher tab at the top it should sort by terms that you need in alphabetical order, or search for a term. Let me know if I’ve missed any.

Quantity, Symbol, Unit, Unit, Symbol N5-AH.

NHAPhysical Quantity symUnitUnit Abb.
5absorbed dose D gray Gy
5absorbed dose rate H (dot)gray per second gray per hour gray per year Gys -1 Gyh -1 Gyy -1
567acceleration a metre per second per second m s -2
567acceleration due to gravity g metre per second per second m s -2
5activity A becquerel Bq
567amplitude A metre m
567angle θ degree °
567area A square metre m 2
567average speedv (bar)metre per second m s -1
567average velocity v (bar)metre per second m s -1
567change of speed ∆v metre per second m s -1
567change of velocity ∆v metre per second m s -1
5count rate - counts per second (counts per minute) -
567current I ampere A
567displacement s metre m
567distance dmetre, light year m , ly
567distance, depth, height d or h metre m
5effective dose H sievert Sv
567electric charge Q coulomb C
567electric charge Q or q coulomb C
567electric current I ampere A
567energy E joule J
5equivalent dose H sievert Sv
5equivalent dose rate H (dot)sievert per second sievert per hour sievert per year Svs -1 Svh -1 Svy -1
567final velocity v metre per second m s -1
567force F newton N
567force, tension, upthrust, thrustF newton N
567frequency f hertz Hz
567gravitational field strength g newton per kilogram N kg -1
567gravitational potential energy E pjoule J
5half-life t 1/2 second (minute, hour, day, year) s
56heat energy Eh joule J
567height, depth h metre m
567initial speed u metre per second m/s
567initial velocity u metre per second m s -1
567kinetic energy Ek joule J
567length l metre m
567mass m kilogram kg
5number of nuclei decayingN - -
567period T second s
567potential difference V volt V
567potential energy Ep joule J
567power P watt W
567pressure P or p pascal Pa
5radiation weighting factor wR- -
567radius r metre m
567resistance R ohm Ω
567specific heat capacity c joule per kilogram per degree Celsius Jkg-1 °C -1
56specific latent heat l joule per kilogram Jkg -1
567speed of light in a vacuum c metre per second m s -1
567speed, final speed v metre per second ms -1
567speed, velocity, final velocity v metre per second m s-1
567supply voltage Vsvolt V
567temperature T degree Celsius °C
567temperature T kelvin K
567time t second s
567total resistance Rohm Ω
567voltage V volt V
567voltage, potential difference V volt V
567volume V cubic metre m3
567weight W newton N
567work done W or E Wjoule J
7angle θ radian rad
7angular acceleration aradian per second per second rad s -2
7angular displacement θ radian rad
7angular frequency ω radian per second rad s -1
7angular momentum L kilogram metre squared per second kg m2 s -1
7angular velocity,
final angular velocity
ω radian per second rad s-1
7apparent brightnessbWatts per square metreWm-2
7back emfevolt V
67capacitance C farad F
7capacitive reactance Xcohm W
6critical angle θc degree °
density ρ kilogram per cubic metre kg m-3
7displacement s or x or y metre m
efficiency η - -
67electric field strength E newton per coulomb
volts per metre
N C -1
Vm -1
7electrical potential V volt V
67electromotive force (e.m.f) E or ε volt V
6energy level E 1 , E 2 , etcjoule J
feedback resistance Rfohm Ω
focal length of a lens f metre m
6frequency of source fs hertz Hz
67fringe separation ∆x metre m
67grating to screen distance D metre m
7gravitational potential U or V joule per kilogram J kg-1
half-value thickness T1/2 metre m
67impulse (∆p) newton second
kilogram metre per second
Ns
kgms-1
7induced e.m.f. E or ε volt V
7inductor reactanceXLohm W
7initial angular velocity ω oradian per second rad s-1
input energy E ijoule J
input power Piwatt W
input voltage V 1 or V2 volt V
input voltage V ivolt V
6internal resistance r ohm Ω
67irradiance I watt per square metre W m-1
7luminoscityLWattW
7magnetic induction B tesla T
7moment of inertia I kilogram metre squared kg m2
67momentum p kilogram metre per second kg m s-1
6number of photons per second per cross sectional area N - -
number of turns on primary coil n p- -
number of turns on secondary coil n s- -
6observed wavelengthλ observedmetrem
output energy E o joule J
output power P owatt W
output voltage V o volt V
6peak current Ipeak ampere A
6peak voltage V peak volt V
7phase angle Φ radian rad
67Planck’s constant h joule second Js
7polarising angle
(Brewster’s angle)
i pdegree ̊
power (of a lens) P dioptre D
power gain Pgain - -
7Power per unit areaWatts per square metreWm-2
primary current I p ampere A
primary voltage Vpvolt V
7radial acceleration ar metre per second per second m s-2
6redshiftz--
67refractive index n - -
6relativistic lengthl'metrem
6relativistic timet'seconds
rest mass mo kilogram kg
6rest wavelengthλrestmetrem
6root mean square current I rmsampere A
6root mean square voltage Vrmsvolt V
7rotational kinetic energy Erotjoule J
7schwarzchild radiusrSchwarzchildmetrem
secondary current Is ampere A
secondary voltage Vsvolt V
7self-inductance L henry H
67slit separation d metre m
7tangential acceleration atmetre per second per second m s-2
6threshold frequency fohertz Hz
7time constanttseconds
7torque Τ newton metre Nm
7uncertainty in Energy∆E jouleJ
7uncertainty in momentum∆px kilogram metre per second kgms-1
7uncertainty in position∆x metre m
7uncertainty in time∆t seconds
6velocity of observer vometre per second m s-1
6velocity of source vsmetre per second m s-1
voltage gain - - -
voltage gain Ao or V gain - -
567wavelengthλmetrem
6work functionWjouleJ

 

Basis for Cue Cards

Hi Folks! I had planned to finish these before the October hols! Sorry too much on. This is as far as I’ve got and I’ll update it a.s.a.p.
If you update it let me know. I’ll put the answers into a table of 2 columns so that if you fold down the middle they can be cue cards.

Learny statements RM&A

AH definitions more

AH definitions

Going through past paper questions here is a list of the SQA recommended perfect answers
TypeYrQ No.
Answer
Trad20014 ba (OR F) is directly proportional to -x
Usual now to use -y rather than -x
Trad20015 aii(Electrostatic potential at a point) is the work done per unit charge moveing the charge from infinity to the point
Trad200111 aelectric field
vibrates in all directions in unpolarised light
vibrates in one plane only in polaried light
Trad20023 civelocity required by a body to escape earth gravitational field by reaching infinity
Trad20025 aidiffraction pattern produced by electon beam
Trad200210 ciiwavelength has incerased therfore the source is moving away from the observer
Trad20063 aiForce exerted on 1 kg (of mass) placed in the field
Trad200611 c (Path length) in oil depends on angle of incidence or thickness ∴different colours are seen due to interference
Trad20098 bOne tesla is the magnetic induction of a magnetic field in which a conductor of length one metre, carrying a current of one ampere (perpendicular) to the field is acted on by a force of one newton.
Trad20099 aiDivision of amplitude is when some of the light reflects from the top of the air wedge and some is transmitted/refracted into the air. OR Some of the light is reflected from a surface of a new material/medium and some of the light is transmitted/refracted into the new material/medium.
Trad200910 aA stationary wave is caused by interference effects between the incident and reflected sound.
Trad200910 bThe antinodes of the pattern are areas of maximum displacement/amplitude/disturbance The nodes of the pattern are areas of minimum/zero displacement/amplitude/disturbance
Trad20104 aTotal angular momentum before (an event) = total angular momentum after (an event) in the absence of external torques
Trad20106 biiE-field is zero inside a hollow conductor. E-field has inverse square dependence outside the conductor.
Trad201011 aunpolarised light => Electric field vector oscillates or vibrates in all planes polarised light => Electric field vector oscillates or vibrates in one plane
Trad20143 aiThe (minimum) velocity/speed that a mass must have to escape the gravitational field (of a planet).
Trad20144 aiThe unbalanced force/ acceleration is proportional to the displacement of the object and act in the opposite direction.
Rev20144 aiiThe distance from the centre of a black hole at which not even light can escape. or The distance from the centre of a black hole to the event horizon.
Trad20145 diElectron orbits a nucleus / proton , Angular momentum quantised or Certain allowed orbits / discrete energy level
Rev20146 aiiPhotoelectric effect or Compton scattering Collision and transfer of energy
Rev20146 diElectron orbits a nucleus / proton (1) Angular momentum quantised (1) or Certain allowed orbits / discrete energy level
Rev20148 aThe unbalanced force/ acceleration is proportional to the displacement of the object and act in the opposite direction.
Trad201411c Wavelengths in the middle of the visible spectrum not reflected or destructively interfere. Red and blue reflected / combined to (form purple).
Trad201413 aii The brightness would gradually reduce from a maximum at 0 degrees to no intensity at 90 degrees. It would then gradually increase in intensity from 90 degrees to 180 where it would again be at a maximum
Rev20151 cThe speed of the mass will be less. Second mark for correct justification. eg: Flywheel has greater moment of inertia  Flywheel will be more difficult to start moving  Smaller acceleration of flywheel  More energy required to achieve same angular velocity.
Rev20152 aMassive objects curve spacetime Other objects follow a curved path through this (distorted) spacetime
Rev20152 cTime passes more slowly at lower altitudes (in a gravitational field).
or
Lower gravitational field strength at higher altitude.
Trad20153 biiiPotential is work done (per unit mass) moving from infinity to that point. or Infinity defined as zero potential. Work will be done by the field on the mass. or A negative amount of work will be done to move an object from infinity to any point. or WD by gravity in moving to that point or Force acts in opposite direction to r.
Rev20155 aiiiDifficult scale to read/information from diagram can only be read to 1 s.f.
Rev20156 aiForce acting on (acceleration of) object is directly proportional to and in the opposite direction to its displacement. (from equilibrium)
Rev20157 aiil reduced (or f increased) for X-rays or >E transferred
D x reduced for X-rays
since D x D p ³ h/4 p
D p increases
Rev20157 bsince DEDt³ h/4 p
Borrowing energy for a short period of time allows particles to escape
Rev20158 aiTwo sets of coherent waves are necessary (for an interference pattern) or (Interference patterns can be produced by) Division of wavefront.
Rev20159 aiForce acts on particle at right angles to the direction of its velocity/motion or a central force on particle.
Rev20159 b(Component of) velocity at right angles to field/ v sin θ, results in circular motion/central force. (Component of) velocity parallel to field/ v cosθ is constant/no unbalance force (in this direction).
Trad20159 biMagnetic fields/induction are equal in magnitude (½) and opposite in direction
Rev201510 aiForce exerted per (unit) charge is constant at any point in the field
Rev201510 aivAny suitable answer eg  Systematic uncertainty in measuring d or V  Alignment of metre stick  The flame has a finite thickness so cannot get exactly to the zero point.  Factors causing field to be non-uniform.  A p.d. across the resistor for all readings.  Poor calibration of instruments measuring V or d.
Rev201510 bDeflection is less. E is less. Force/acceleration is less
Rev201512 biiiRate of change of current/magnetic field is at its maximum
Trad20165 aiFrames of reference that are accelerating (with respect to an inertial frame)
Trad20165 aiiIt is impossible to tell the difference between the effects of gravity and acceleration.
Trad20168 aiiThe precise position of a particle/ system and its momentum cannot both be known at the same instant. OR If the uncertainty in the energy of the
particle is reduced, the minimum
uncertainty in the lifetime of the
particle will increase (or vice-versa).
Trad201610 aidisplacement is proportional to and in the opposite direction to the acceleration

Signature