A set of videos to help you write up your advanced higher project report.
Setting up a Word Document
In this section I’ll add information about how to write up your AH Project. Here is the first installment. Nothing great, but just to set up your document so that you gain the Structure mark
Referencing
If you’ve time this is a great little document from Queen’s University Belfast,
Resources: Notes and video (flash learning AH CfE Virtual Physics)
Read the notes, watch the video and answer the questions below, in a way that makes them form a good note about the subject.
What three pieces of key evidence didn’t fit with classical physics?
In 1911 Rutherford put forward his model of the atom, a) State the important features of this model b) What provides the centripetal force for the electrons in this model?
Describe black body radiation.
State two changes with the black body radiation curve as temperature increases.
Describe the UV catastrophe.
Who helped solve the UV catastrophe and in what ways?
Which piece of the photoelectric effect experiment demonstrates that energy is not transferred as waves?
From the photoelectric effect state the link between the energy of the photon and a) the frequency of the radiation, b) the wavelength
What did Bohr postulate about angular momentum?
State the formula for angular momentum in Bohr’s model of the atom, (define each term)
State the limits for the Bohr model of the atom
Explain the observation made by GP Thomson in 1920 which led to further debate on the issue.
What did de Broglie imply was the link between electrons as waves and particles?
Explain the confusion caused when looking at the double slit experiment with single particles.
What happens when you observe an electron passing through the slit?
What two quantities cannot be measured together with much certainty and why?
Here is a nice little video on Standing Waves. Standing waves are formed when a wave interferes with its reflection to produce nodes and antinodes.
…..and here is the explanation for the standing wave video
Below are some cracking resources from Sally Weatherly, find her here!
Scientist think that the Earth is due a “Magnetic Flip” Research this starting at the link below and then answer the AH Revised question on this from the 2015 Paper Q11
Here is a Radio 4 programme talking about the consequences of a polar flip. If you want to view further programmes click on the link below.
I’ve put together, with Mrs Mac’s help, a document with quantity, symbol, unit and unit symbol so that you know the meaning of the terms in the Relationships Sheet. It is in EXCEL so that you can sort it by course, quantity or symbol.
This is the same information in readily available Tablepress form. If you click on the Higher tab at the top it should sort by terms that you need in alphabetical order, or search for a term. Let me know if I’ve missed any.
Quantity, Symbol, Unit, Unit, Symbol N5AH.
N
H
A
Physical Quantity
sym
Unit
Unit Abb.
5
absorbed dose
D
gray
Gy
5
absorbed dose rate
H (dot)
gray per second gray per hour gray per year
Gys^{ 1} Gyh ^{ 1} Gyy^{ 1}
5
6
7
acceleration
a
metre per second per second
m s^{ 2}
5
6
7
acceleration due to gravity
g
metre per second per second
m s ^{ 2}
5
activity
A
becquerel
Bq
5
6
7
amplitude
A
metre
m
5
6
7
angle
θ
degree
°
5
6
7
area
A
square metre
m ^{ 2}
5
6
7
average speed
v (bar)
metre per second
m s^{ 1}
5
6
7
average velocity
v (bar)
metre per second
m s ^{ 1}
5
6
7
change of speed
∆v
metre per second
m s ^{ 1}
5
6
7
change of velocity
∆v
metre per second
m s^{ 1}
5
count rate

counts per second (counts per minute)

5
6
7
current
I
ampere
A
5
6
7
displacement
s
metre
m
5
6
7
distance
d
metre, light year
m , ly
5
6
7
distance, depth, height
d or h
metre
m
5
effective dose
H
sievert
Sv
5
6
7
electric charge
Q
coulomb
C
5
6
7
electric charge
Q or q
coulomb
C
5
6
7
electric current
I
ampere
A
5
6
7
energy
E
joule
J
5
equivalent dose
H
sievert
Sv
5
equivalent dose rate
H (dot)
sievert per second sievert per hour sievert per year
Svs ^{ 1} Svh^{ 1} Svy ^{ 1}
5
6
7
final velocity
v
metre per second
m s^{ 1}
5
6
7
force
F
newton
N
5
6
7
force, tension, upthrust, thrust
F
newton
N
5
6
7
frequency
f
hertz
Hz
5
6
7
gravitational field strength
g
newton per kilogram
N kg^{ 1}
5
6
7
gravitational potential energy
E_{ p}
joule
J
5
halflife
t_{ 1/2}
second (minute, hour, day, year)
s
5
6
heat energy
E_{h}
joule
J
5
6
7
height, depth
h
metre
m
5
6
7
initial speed
u
metre per second
m/s
5
6
7
initial velocity
u
metre per second
m s^{ 1}
5
6
7
kinetic energy
E_{k}
joule
J
5
6
7
length
l
metre
m
5
6
7
mass
m
kilogram
kg
5
number of nuclei decaying
N


5
6
7
period
T
second
s
5
6
7
potential difference
V
volt
V
5
6
7
potential energy
E_{p}
joule
J
5
6
7
power
P
watt
W
5
6
7
pressure
P or p
pascal
Pa
5
radiation weighting factor
w_{R}


5
6
7
radius
r
metre
m
5
6
7
resistance
R
ohm
Ω
5
6
7
specific heat capacity
c
joule per kilogram per degree Celsius
Jkg^{1} °C ^{1}
5
6
specific latent heat
l
joule per kilogram
Jkg ^{1}
5
6
7
speed of light in a vacuum
c
metre per second
m s ^{1}
5
6
7
speed, final speed
v
metre per second
ms ^{1}
5
6
7
speed, velocity, final velocity
v
metre per second
m s^{1}
5
6
7
supply voltage
V_{s}
volt
V
5
6
7
temperature
T
degree Celsius
°C
5
6
7
temperature
T
kelvin
K
5
6
7
time
t
second
s
5
6
7
total resistance
R_{}
ohm
Ω
5
6
7
voltage
V
volt
V
5
6
7
voltage, potential difference
V
volt
V
5
6
7
volume
V
cubic metre
m^{3}
5
6
7
weight
W
newton
N
5
6
7
work done
W or E_{ W}
joule
J
7
angle
θ
radian
rad
7
angular acceleration
a
radian per second per second
rad s ^{2}
7
angular displacement
θ
radian
rad
7
angular frequency
ω
radian per second
rad s ^{1}
7
angular momentum
L
kilogram metre squared per second
kg m^{2} s ^{1}
7
angular velocity,
final angular velocity
ω
radian per second
rad s^{1}
7
apparent brightness
b
Watts per square metre
Wm^{2}
7
back emf
e
volt
V
6
7
capacitance
C
farad
F
7
capacitive reactance
X_{c}
ohm
W
6
critical angle
θ_{c}
degree
°
density
ρ
kilogram per cubic metre
kg m^{3}
7
displacement
s or x or y
metre
m
efficiency
η


6
7
electric field strength
E
newton per coulomb
volts per metre
N C ^{1}
Vm ^{1}
7
electrical potential
V
volt
V
6
7
electromotive force (e.m.f)
E or ε
volt
V
6
energy level
E _{1} , E _{2} , etc
joule
J
feedback resistance
R_{f}
ohm
Ω
focal length of a lens
f
metre
m
6
frequency of source
f_{s}
hertz
Hz
6
7
fringe separation
∆x
metre
m
6
7
grating to screen distance
D
metre
m
7
gravitational potential
U or V
joule per kilogram
J kg^{1}
halfvalue thickness
T_{1/2}
metre
m
6
7
impulse
(∆p)
newton second
kilogram metre per second
Ns
kgms^{1}
7
induced e.m.f.
E or ε
volt
V
7
inductor reactance
X_{L}
ohm
W
7
initial angular velocity
ω _{o}
radian per second
rad s^{1}
input energy
E _{i}
joule
J
input power
P_{i}
watt
W
input voltage
V _{1} or V_{2}
volt
V
input voltage
V_{ i}
volt
V
6
internal resistance
r
ohm
Ω
6
7
irradiance
I
watt per square metre
W m^{1}
7
luminoscity
L
Watt
W
7
magnetic induction
B
tesla
T
7
moment of inertia
I
kilogram metre squared
kg m^{2}
6
7
momentum
p
kilogram metre per second
kg m s^{1}
6
number of photons per second per cross sectional area
Hi Folks! I had planned to finish these before the October hols! Sorry too much on. This is as far as I’ve got and I’ll update it a.s.a.p.
If you update it let me know. I’ll put the answers into a table of 2 columns so that if you fold down the middle they can be cue cards.
Going through past paper questions here is a list of the SQA recommended perfect answers
Type
Yr
Q No.
Answer
Trad
2001
4 b
a (OR F) is directly proportional to x
Usual now to use y rather than x
Trad
2001
5 aii
(Electrostatic potential at a point) is the work done per unit charge moveing the charge from infinity to the point
Trad
2001
11 a
electric field
vibrates in all directions in unpolarised light
vibrates in one plane only in polaried light
Trad
2002
3 ci
velocity required by a body to escape earth gravitational field by reaching infinity
Trad
2002
5 ai
diffraction pattern produced by electon beam
Trad
2002
10 cii
wavelength has incerased therfore the source is moving away from the observer
Trad
2006
3 ai
Force exerted on 1 kg (of mass) placed in the field
Trad
2006
11 c
(Path length) in oil depends on angle of incidence or thickness ∴different colours are seen due to interference
Trad
2009
8 b
One tesla is the magnetic induction of a magnetic field in which a conductor of length one metre, carrying a current of one ampere (perpendicular) to the field is acted on by a force of one newton.
Trad
2009
9 ai
Division of amplitude is when some of the light reflects from the top of the air wedge and some is transmitted/refracted into the air. OR Some of the light is reflected from a surface of a new material/medium and some of the light is transmitted/refracted into the new material/medium.
Trad
2009
10 a
A stationary wave is caused by interference effects between the incident and reflected sound.
Trad
2009
10 b
The antinodes of the pattern are areas of maximum displacement/amplitude/disturbance The nodes of the pattern are areas of minimum/zero displacement/amplitude/disturbance
Trad
2010
4 a
Total angular momentum before (an event) = total angular momentum after (an event) in the absence of external torques
Trad
2010
6 bii
Efield is zero inside a hollow conductor. Efield has inverse square dependence outside the conductor.
Trad
2010
11 a
unpolarised light => Electric field vector oscillates or vibrates in all planes polarised light => Electric field vector oscillates or vibrates in one plane
Trad
2014
3 ai
The (minimum) velocity/speed that a mass must have to escape the gravitational field (of a planet).
Trad
2014
4 ai
The unbalanced force/ acceleration is proportional to the displacement of the object and act in the opposite direction.
Rev
2014
4 aii
The distance from the centre of a black hole at which not even light can escape. or The distance from the centre of a black hole to the event horizon.
Trad
2014
5 di
Electron orbits a nucleus / proton , Angular momentum quantised or Certain allowed orbits / discrete energy level
Rev
2014
6 aii
Photoelectric effect or Compton scattering Collision and transfer of energy
Rev
2014
6 di
Electron orbits a nucleus / proton (1) Angular momentum quantised (1) or Certain allowed orbits / discrete energy level
Rev
2014
8 a
The unbalanced force/ acceleration is proportional to the displacement of the object and act in the opposite direction.
Trad
2014
11c
Wavelengths in the middle of the visible spectrum not reflected or destructively interfere. Red and blue reflected / combined to (form purple).
Trad
2014
13 aii
The brightness would gradually reduce from a maximum at 0 degrees to no intensity at 90 degrees. It would then gradually increase in intensity from 90 degrees to 180 where it would again be at a maximum
Rev
2015
1 c
The speed of the mass will be less. Second mark for correct justification. eg: Flywheel has greater moment of inertia Flywheel will be more difficult to start moving Smaller acceleration of flywheel More energy required to achieve same angular velocity.
Rev
2015
2 a
Massive objects curve spacetime Other objects follow a curved path through this (distorted) spacetime
Rev
2015
2 c
Time passes more slowly at lower altitudes (in a gravitational field).
or
Lower gravitational field strength at higher altitude.
Trad
2015
3 biii
Potential is work done (per unit mass) moving from infinity to that point. or Infinity defined as zero potential. Work will be done by the field on the mass. or A negative amount of work will be done to move an object from infinity to any point. or WD by gravity in moving to that point or Force acts in opposite direction to r.
Rev
2015
5 aiii
Difficult scale to read/information from diagram can only be read to 1 s.f.
Rev
2015
6 ai
Force acting on (acceleration of) object is directly proportional to and in the opposite direction to its displacement. (from equilibrium)
Rev
2015
7 aii
l reduced (or f increased) for Xrays or >E transferred
D x reduced for Xrays
since D x D p ³ h/4 p
D p increases
Rev
2015
7 b
since DEDt³ h/4 p
Borrowing energy for a short period of time allows particles to escape
Rev
2015
8 ai
Two sets of coherent waves are necessary (for an interference pattern) or (Interference patterns can be produced by) Division of wavefront.
Rev
2015
9 ai
Force acts on particle at right angles to the direction of its velocity/motion or a central force on particle.
Rev
2015
9 b
(Component of) velocity at right angles to field/ v sin θ, results in circular motion/central force. (Component of) velocity parallel to field/ v cosθ is constant/no unbalance force (in this direction).
Trad
2015
9 bi
Magnetic fields/induction are equal in magnitude (½) and opposite in direction
Rev
2015
10 ai
Force exerted per (unit) charge is constant at any point in the field
Rev
2015
10 aiv
Any suitable answer eg Systematic uncertainty in measuring d or V Alignment of metre stick The flame has a finite thickness so cannot get exactly to the zero point. Factors causing field to be nonuniform. A p.d. across the resistor for all readings. Poor calibration of instruments measuring V or d.
Rev
2015
10 b
Deflection is less. E is less. Force/acceleration is less
Rev
2015
12 biii
Rate of change of current/magnetic field is at its maximum
Trad
2016
5 ai
Frames of reference that are accelerating (with respect to an inertial frame)
Trad
2016
5 aii
It is impossible to tell the difference between the effects of gravity and acceleration.
Trad
2016
8 aii
The precise position of a particle/ system and its momentum cannot both be known at the same instant. OR If the uncertainty in the energy of the
particle is reduced, the minimum
uncertainty in the lifetime of the
particle will increase (or viceversa).
Trad
2016
10 ai
displacement is proportional to and in the opposite direction to the acceleration
If you wish to do your past paper questions in topic order then Mr C Davie from Glenrothes High School has completed the task for you and you can access it clicking on the link below.
Below are the Revised Advanced Higher Past Papers, the content is very very similar to the new National (CfE) Advanced Higher, although the marks would be different. These were the last past papers with half marks!
The past papers are copyright to SQA. They may be reproduced to support SQA qualifications only, on a noncommercial basis. If they are to be used for any other purpose, written permission must be obtained from SQA’s Marketing team on permissions@sqa.org.uk
This site is non commercial, and purely for helping the teaching of physics in Scotland.
Thanks
Thanks to Mr Stuart Farmer and Mr Andy McPhee for the course reports their filing systems are so much better than mine, but then that’s why I am doing this! Thanks guys!