Thanks to Mr Dawson from Wallace Hall Academy in D&G for these great resources. Use them well!
Tag: revision
Summary Notes
I’ll be posting the SUMMARY NOTES from the COURSE NOTES here.
With thanks to Mr J Frazer, who took his razor to my notes!
Quantity, Symbol, Unit, Unit Symbol
Comments from the Workshop
Clicking on the link above will take you to the You Must Justify Questions that we didn’t have time for! Please look over this.
Flashcards
Quantity, Symbol, Unit, Unit Symbol
I’ve put together, with Mrs Mac’s help, a document with quantity, symbol, unit and unit symbol so that you know the meaning of the terms in the Relationships Sheet. It is in EXCEL so that you can sort it by course, quantity or symbol.
Quantity, Symbol, Units the excel sheet
Quantity, Symbol, Units a pdf sheet sorted by course and then alphabetical by quantity.
This is the same information in readily available Tablepress form. If you click on the Higher tab at the top it should sort by terms that you need in alphabetical order, or search for a term. Let me know if I’ve missed any.
Quantity, Symbol, Unit, Unit Symbol Table for N5AH
N  H  A  Physical Quantity  sym  Unit  Unit Abb. 

5  absorbed dose  D  gray  Gy  
5  absorbed dose rate  H (dot)  gray per second gray per hour gray per year  Gys^{1} Gyh ^{1} Gyy^{1}  
5  6  7  acceleration  a  metre per second per second  m s^{2} 
5  6  7  acceleration due to gravity  g  metre per second per second  m s ^{2} 
5  activity  A  becquerel  Bq  
5  6  7  amplitude  A  metre  m 
5  6  7  angle  θ  degree  ° 
5  6  7  area  A  square metre  m ^{2} 
5  6  7  average speed  v (bar)  metre per second  m s^{1} 
5  6  7  average velocity  v (bar)  metre per second  m s ^{1} 
5  6  7  change of speed  ∆v  metre per second  m s ^{1} 
5  6  7  change of velocity  ∆v  metre per second  m s^{1} 
5  count rate    counts per second (counts per minute)    
5  6  7  current  I  ampere  A 
5  6  7  displacement  s  metre  m 
5  6  7  distance  d  metre, light year  m , ly 
5  6  7  distance, depth, height  d or h  metre  m 
5  effective dose  H  sievert  Sv  
5  6  7  electric charge  Q  coulomb  C 
5  6  7  electric charge  Q or q  coulomb  C 
5  6  7  electric current  I  ampere  A 
5  6  7  energy  E  joule  J 
5  equivalent dose  H  sievert  Sv  
5  equivalent dose rate  H (dot)  sievert per second sievert per hour sievert per year  Svs^{1} Svh^{1} Svy ^{1}  
5  6  7  final velocity  v  metre per second  m s^{1} 
5  6  7  force  F  newton  N 
5  6  7  force, tension, upthrust, thrust  F  newton  N 
5  6  7  frequency  f  hertz  Hz 
5  6  7  gravitational field strength  g  newton per kilogram  N kg^{1} 
5  6  7  gravitational potential energy  E_{p}  joule  J 
5  halflife  t_{1/2}  second (minute, hour, day, year)  s  
5  6  heat energy  E_{h}  joule  J  
5  6  7  height, depth  h  metre  m 
5  6  7  initial speed  u  metre per second  m/s 
5  6  7  initial velocity  u  metre per second  m s^{1} 
5  6  7  kinetic energy  E_{k}  joule  J 
5  6  7  length  l  metre  m 
5  6  7  mass  m  kilogram  kg 
5  number of nuclei decaying  N      
5  6  7  period  T  second  s 
5  6  7  potential difference  V  volt  V 
5  6  7  potential energy  E_{p}  joule  J 
5  6  7  power  P  watt  W 
5  6  7  pressure  P or p  pascal  Pa 
5  radiation weighting factor  w_{R}      
5  6  7  radius  r  metre  m 
5  6  7  resistance  R  ohm  Ω 
5  6  7  specific heat capacity  c  joule per kilogram per degree Celsius  Jkg^{1}°C ^{1} 
5  6  specific latent heat  l  joule per kilogram  Jkg^{1}  
5  6  7  speed of light in a vacuum  c  metre per second  m s^{1} 
5  6  7  speed, final speed  v  metre per second  ms ^{1} 
5  6  7  speed, velocity, final velocity  v  metre per second  m s^{1} 
5  6  7  supply voltage  V_{s}  volt  V 
5  6  7  temperature  T  degree Celsius  °C 
5  6  7  temperature  T  kelvin  K 
5  6  7  time  t  second  s 
5  6  7  total resistance  R_{}  ohm  Ω 
5  6  7  voltage  V  volt  V 
5  6  7  voltage, potential difference  V  volt  V 
5  6  7  volume  V  cubic metre  m^{3} 
5  6  7  weight  W  newton  N 
5  6  7  work done  W or E_{ W}  joule  J 
7  angle  θ  radian  rad  
7  angular acceleration  a  radian per second per second  rad s^{2}  
7  angular displacement  θ  radian  rad  
7  angular frequency  ω  radian per second  rad s^{1}  
7  angular momentum  L  kilogram metre squared per second  kg m^{2}s ^{1}  
7  angular velocity, final angular velocity  ω  radian per second  rad s^{1}  
7  apparent brightness  b  Watts per square metre  Wm^{2}  
7  back emf  e  volt  V  
6  7  capacitance  C  farad  F  
7  capacitive reactance  X_{c}  ohm  W  
6  critical angle  θ_{c}  degree  °  
density  ρ  kilogram per cubic metre  kg m^{3}  
7  displacement  s or x or y  metre  m  
efficiency  η      
6  7  electric field strength  E  newton per coulomb volts per metre  N C^{1} Vm^{1} 

7  electrical potential  V  volt  V  
6  7  electromotive force (e.m.f)  E or ε  volt  V  
6  energy level  E_{1} , E_{2} , etc  joule  J  
feedback resistance  R_{f}  ohm  Ω  
focal length of a lens  f  metre  m  
6  frequency of source  f_{s}  hertz  Hz  
6  7  fringe separation  ∆x  metre  m  
6  7  grating to screen distance  D  metre  m  
7  gravitational potential  U or V  joule per kilogram  J kg^{1}  
halfvalue thickness  T_{1/2}  metre  m  
6  7  impulse  (∆p)  newton second kilogram metre per second  Ns kgms^{1} 

7  induced e.m.f.  E or ε  volt  V  
7  inductor reactance  X_{L}  ohm  W  
7  initial angular velocity  ω _{o}  radian per second  rad s^{1}  
input energy  E _{i}  joule  J  
input power  P_{i}  watt  W  
input voltage  V_{1} or V_{2}  volt  V  
input voltage  V_{ i}  volt  V  
6  internal resistance  r  ohm  Ω  
6  7  irradiance  I  watt per square metre  W m^{1}  
7  luminoscity  L  Watt  W  
7  magnetic induction  B  tesla  T  
7  moment of inertia  I  kilogram metre squared  kg m^{2}  
6  7  momentum  p  kilogram metre per second  kg m s^{1}  
6  number of photons per second per cross sectional area  N      
number of turns on primary coil  n_{p}      
number of turns on secondary coil  n_{s}      
6  observed wavelength  λ_{observed}  metre  m  
output energy  E_{o}  joule  J  
output power  P_{o}  watt  W  
output voltage  V_{o}  volt  V  
6  peak current  I_{peak}  ampere  A  
6  peak voltage  V_{ peak}  volt  V  
7  phase angle  Φ  radian  rad  
6  7  Planck’s constant  h  joule second  Js  
7  polarising angle (Brewster’s angle)  i_{p}  degree  ̊  
power (of a lens)  P  dioptre  D  
power gain  P_{gain }      
7  Power per unit area  Watts per square metre  Wm^{2}  
primary current  I_{p}  ampere  A  
primary voltage  V_{p}  volt  V  
7  radial acceleration  a_{r}  metre per second per second  m s^{2}  
6  redshift  z      
6  7  refractive index  n      
6  relativistic length  l'  metre  m  
6  relativistic time  t'  second  s  
rest mass  m_{o}  kilogram  kg  
6  rest wavelength  λ_{rest}  metre  m  
6  root mean square current  I _{rms}  ampere  A  
6  root mean square voltage  V_{rms}  volt  V  
7  rotational kinetic energy  E_{rot}  joule  J  
7  schwarzchild radius  r_{Schwarzchild}  metre  m  
secondary current  I_{s}  ampere  A  
secondary voltage  V_{s}  volt  V  
7  selfinductance  L  henry  H  
6  7  slit separation  d  metre  m  
7  tangential acceleration  a_{t}  metre per second per second  m s^{2}  
6  threshold frequency  f_{o}  hertz  Hz  
7  time constant  t  second  s  
7  torque  Τ  newton metre  Nm  
7  uncertainty in Energy  ∆E  joule  J  
7  uncertainty in momentum  ∆p^{x}  kilogram metre per second  kgms^{1}  
7  uncertainty in position  ∆x  metre  m  
7  uncertainty in time  ∆t  second  s  
6  velocity of observer  v_{o}  metre per second  m s^{1}  
6  velocity of source  v_{s}  metre per second  m s^{1}  
voltage gain        
voltage gain  A_{o} or V _{gain }      
5  6  7  wavelength  λ  metre  m 
6  work function  W  joule  J 
Revision Plan
28/02/18. If you’re stuck inside DON’T go on your Xboxes, PS4 or whatever the latest number try doing some timed papers.
To the student’s sister who needs the Quantity, Units, Symbols etc .I’ve uploaded the old preCfE version and you can just add the additional few. Check out Int1AH many are relevant. Missing would be t’, l’ etc.
If there is a snow day tomorrow, use the time to look at the EMF material and the test will be as soon as we get back.
__________________________________
This is a ten week revision plan, put together by Mr A Riddell from “up North”. It will give you some ideas on how to break up the daunting task of revision. You don’t have to complete this in the same order, but it does give an indication of how much you need to cover in one week.
Study Plan Higher Physics word
Tips!
Here I will post a few tips and hints to remember when answering SQA Higher Papers, hopefully they’ll be quick, snappy and memorable. You’ve got the whole of the Scottish Physics Teachers’ Community Wisdom Below!
 How to remember Cosmic Microwave Background Radiation (spell the whole lot not CMBR, as this isn’t a name) However, the way to remember CuMBRia.
 Conservation of Momentum IN THE ABSENCE OF EXTERNAL FORCES, MOMENTUM BEFORE THE COLLISION IS EQUAL TO THE MOMENTUM AFTER THE COLLISION.
 Obviously you know no secs in Physics, just stick to unit symbols and save all the problems of spelling.
 Fundamental Particles: Key point: it is not that they can be used to make bigger ‘things’, but rather that they are not made from smaller things.
 Strong force (associated with the gluon) acts over a very short distance.
 The gravitational force extends over very large/infinite distances.
 Neutrons don’t carry/have (net) charge so cannot be accelerated/guided/ deflected by magnetic fields.
 Remember: SIG FIG, your final answer should be rounded up to the same number of significant figures as the LEAST significant measurement.
 Don’t forget to revise your uncertainties.
 Make sure you see the words “end of question paper”. Don’t assume you’ve got to the end and there are no questions on the very last page!
 “Show” questions – means show correct formula, working and numerical answer stated as given in the question.
 Don’t leave anything blank! If you really don’t know, give it a go – you never know.
 The questions in the exam sections (MC and then extended answers) are in approximately the same order as the equation sheet.
 LIST: given numbers with the correct symbols before doing a calculation. Or as we say IESSUU (information, Equation, Substitution, Solution, Units and Underline)
 Substitute then rearrange.
 Read all of the question, especially that bit you skipped over at the start.
 Don’t forget units! It’s now worth at least 33% of a calculation!
 This will do for now more to come as they arise……Check out the past paper marking instructions for do’s and don’ts its full of them in that second column!
Here are some top tips for Revision from Mr Dawson from Wallace Hall Academy thanks
H Revision Pupil Questions pdf version
H Revision Pupil Questions word version
img src=”https://s.gravatar.com/avatar/e1515b0c027eaeaaa7232dae92981146?s=80″ />
HomeworkSummer review
Complete the booklet with tests on UPSN, Uncerts and the start of Dynamics for Thurs P2. DO NOT CHEAT and look at the answers if you want to succeed in the long run!